我要投稿 投诉建议

《倒数的认识》教学设计

时间:2023-03-25 06:25:08 教学设计 我要投稿

《倒数的认识》教学设计(通用14篇)

  作为一无名无私奉献的教育工作者,时常需要用到教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。我们应该怎么写教学设计呢?下面是小编为大家整理的《倒数的认识》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

《倒数的认识》教学设计(通用14篇)

  《倒数的认识》教学设计 篇1

  教学内容:

  教科书第50页例7及相应的练习

  教学目标:

  1、使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。

  2、培养学生举例、观察、比较、抽象概括能力。

  3、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。

  一、口算导入

  分别出示一四组算式(加减乘除),指名报答案,找这一组算式的共同点(和是1,差是1,积是1,商是1 );

  师:今天,我们就一起来研究乘积是1的这一类算式。同学们,你能自己写一些乘积是1的算式吗?老师给你30秒时间,看看哪位同学写得既对又多。

  展示个别学生作品,大家写的算式都有一个共同点:(乘积是1)。(板书)

  师:乘积是1的两个数到底存在什么样的关系呢?请大家把书翻到第50页,自学。

  指名回答,(乘积是1的两个数互为倒数。)(板书)相机揭示课题(认识倒数)(板书)

  二、教学新课

  师:你认为在这一句话中有哪些词比较关键?师划出,逐一解读。先强调乘积及1.

  (1)问:“互为”是什么意思?(互相)

  一个人能说互相吗?互相肯定是发生在(两个人之间)。所以,“互为”二字充分说明了倒数应该是(两个数)之间的关系。

  (2)(结合学生的算式:)比如()乘()等于1,所以()和()互为倒数,也可以说(A)是(B)的倒数或者(B)是(A)的倒数。

  (3)观察互为倒数的两个数,看看它们的分子、分母有什么特点?指名回答。

  (4)指名学生结合另外的算式说说谁是谁的倒数。问:我们能单独说()是倒数吗?对啊,倒数相互依存的,这种存在相互依存关系的数,我们在五年级时就学习过,大家还记得吗?(倍数、因数)

  (5)选择一个算式,跟你的同桌说说谁是谁的倒数。

  三、求一个数的倒数

  1、刚才,你们在短时间内写出了很多乘积是1的算式,在设计这些乘法算式时有什么窍门吗?指名回答(先写一个分数,再把这个分数的分子和分母倒一下,就是另一个因数了。)

  为什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相约分,使得数是1)

  讨论到这里,你知道怎样求一个数的`倒数了吗?指名回答。大家同意吗?

  好的,接下来,老师要来考考大家了,有信心吗?我报一个数,你们一起说出这个树的倒数,5/9的倒数是9/5,7/6,6/10,11/8,3/7

  2、师: 同学们已经学会了求真分数、假分数的倒数,想一想,我们还学过哪些数?(整数、小数、带分数)那么,怎样求整数、小数、带分数的倒数呢?列出几个数:

  自主探究

  a 四人为一小组,选择一种情况研究

  b 生交流汇报,师板书例子

  c 引导概括求倒数的方法

  3、同学们真棒,通过自己的探索,学会了求一个数的倒数。那么有没有同学知道1的倒数呢?为什么?(1可以看成1/1,所以倒数仍是1,或者1×1=1)(板书)

  那0的倒数呢?为什么?指名回答(0乘任何数都得0,即0乘任何数都不可能等于1.)(板书)

  4、归纳如何求一个数的倒数

  求一个数的倒数(0除外),只要把它的分子、分母交换位置。

  5、师:学了那么多,下面就让我们一起来练一练吧(书本50页,练一练)

  展示,核对,强调互为倒数的两个数之间不能用“=”连接。

  四、深化认识

  1、多媒体出示P51第4题

  先找出下面每组数的倒数,再看看你能发现什么。

  2、 交流发现:

  师:第一组数的倒数各是多少,你们有怎样的发现?。

  (……这组分数都是真分数,它们的倒数都是假分数。)

  师:是不是所有真分数的倒数都是假分数?

  (出示:所有真分数的倒数都是假分数)

  师:谁来说说第二组

  (……这组分数都是假分数,它们的倒数都是真分数。)

  师:是不是说所有假分数的倒数都是真分数?

  (不是所有的假分数的倒数都是真分数,如果假分数的分子和分母相同,它的倒数就仍然是假分数。)

  师:你说的就是等于1的假分数。而第二组中的分数都是什么样的假分数?

  (都是大于1的假分数。)

  所以——(出示:大于1的假分数的倒数都是真分数。)

  师:第3组呢?

  (…… 这组分数的倒数都是整数。)

  这组分数有什么特点?(分子都是1,即分数单位)而它们的倒数都是(整数)

  (出示:分数单位的倒数都是整数)

  师:第四组呢?

  (…… 这组都是整数,整数的倒数都是分子为1的真分数。)

  师:是不是所有整数的倒数都是分数单位?

  (出示:非零整数的倒数都是分数单位)

  师:通过大家的研究,我们发现倒数有这样的规律——(齐读)。

  3、现在,你认识倒数了吗?真的认识了?那就请你来辨一辨。(课件显示)

  (1)、得数是1的两个数互为倒数。 ( )

  (2)、9的倒数是9/1。 ( )

  (3)、1的倒数是1,0的倒数是0。 ( )

  (4)、1/6是倒数。 ( )

  (5)、因为x×y=1(x≠0,y≠0),所以x和y互为倒数。( )

  (6)、所有假分数的倒数都是真分数。( )

  4.填空。

  3/4 × ( )=1 7 × ( )=1

  2/5 × ( )=( )× 4 = 6/7 ×( )=0.2 ×()=1

  五、全课小结

  通过这节课的学习,你有什么收获?你还有什么疑问?

  《倒数的认识》教学设计 篇2

  教学目标:

  (1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

  (2)能力目标:进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

  (3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

  教学重点:

  知道倒数的意义,会求一个数的倒数

  教学难点:

  1、0的倒数的求法。

  教具准备:

  多媒体课件

  教学过程:

  一、开门见山,揭示课题

  1、出示课题:倒数的认识

  老师:今天我们一起来学习第三单元分数除法的第1课时:倒数的认识

  2、理解字的意思

  老师:上课之前老师想请同学帮我解决个问题:“倒”这个字怎么读的?

  学生:倒dǎo,dào

  师:这两种读音表示的意思一样吗?学生用茶杯演示。

  3、老师:你觉得在这里这个“倒”字怎么读?你见过这样的数吗?

  学生举例说说。

  看到这个课题,在你的头脑中会产生什么问题?

  (设计意图:学生通过自己对字的理解,初步感知什么是倒数)

  二、探索新知,突破重点

  (一)、倒数的意义

  1、初步探究

  师:请看这两组算式,我们分组完成,比比哪组同学速度快。

  学生计算,交流

  老师:做第1组算式的同学完成的快

  这时学生可能会说:不公平,第1组的题目简单,得数都是1、

  老师:为什么第1

  组的算式简单,有什么特点?

  生:每组数中两个分数的分子、分母的位置颠倒过来了。

  生:都是乘法。

  生:得数都是1、

  老师:这样的两个数互为倒数,你们能用一句话说说什么是倒数吗?

  学生试着概括

  师概括并板书:乘积是1的两个数互为倒数。

  师:找一找关键词,说说你对这句话的理解。

  生1:乘积是1、是乘法,而且积是1

  生2:两个数,只能是两个数,三个,四个数的乘积是1也不能说它们互为倒数。

  生3:互为倒数。

  老师:“互为倒数”是什么意思呢,谁愿意说说

  老师:这学期我们班来了几位新同学,经过几周的相处,你们之间互相成为朋友了吗?谁能告诉大家,你是怎样理解“互相成为朋友”这句话的?

  生:我是他的朋友,他也是我的朋友。

  师:那我们举个例子说说。比如3/8和8/3的乘积是1

  ,我们就说因为3/8和8/3互为倒数。所以3/8的倒数是8/3;也可以说8/3的倒数是3/8。(示范说)

  师:同桌两个人举出倒数的例子,并仿照刚才老师说的用上“因为”

  “所以”。

  (设计意图:学生在计算练习中体会互为倒数的两个数的乘积是1,同时也体会到互为倒数的两个数的练习与区别,为求一个数的倒数做准备。)

  2、深入剖析

  师:为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?

  生1:“互为”是指两个数的关系。

  生2:“互为”说明这两个数的关系是相互依存的。

  师:同学们说得很好。倒数是表示两个数之间的`关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  师:和的积是1,我们就说(生齐说)

  师:5和的乘积是1,这两个数的关系可以怎么说?

  (小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

  (二)、倒数的求法

  1、求分数的倒数

  师:(出示课件例1)下面哪两个数互为倒数?请同位的同学之间在一起交流一下,把它们找出来。(学生合作交流,认真寻找。)

  老师:你是怎样找出来的?

  学生回答,老师问:五分之三的倒数和五分之三相等吗?

  学生:不相等

  板书:

  2、求整数的倒数

  师:整数6的倒数怎么求?

  生:把6看成是分母是1的分数,再把分子分母调换位置。

  板书:

  3、交流一下1和0这两个特殊的数。

  师:那1

  的倒数是几呢?(学生很快就说出来了,并说明了理由)

  师:0的倒数呢?生:没有。

  师:为什么?

  学生讨论交流

  生1:因为0和任何数相乘都得0,不可能得1。

  生2:分子是0的分数,实际上就等于0,0可以看成是0/2、0/3……把这些分数的分子分母调换位置后分母就为0了,而分母不可以为0。

  师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

  生1:求一个数的倒数,只要把分子分母调换位置。

  生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

  生3:1

  的倒数是1,0没有倒数。

  生齐读求一个数倒数的方法。

  (设计意图:学生在讨论交流中探索1、0的倒数,能很好的理解)

  三、巩固练习

  1、写出下面各数的倒数。

  2、写出下面各数的倒数。

  ①0、8的倒数是()。

  ②的倒数是()。

  3、争当小法官,明察秋毫。

  (1)1的倒数是1。

  (2)A的倒数是1/A。

  (3)因为0、5×2=1,所以2是倒数。

  (4)真分数的倒数都大于1,假分数的倒数都小于1。

  (5)因为8-7=1,3÷3=1,所以8和7,3和3是互为倒数。

  四、总结反思、评价体验

  这节课你们有什么收获?还有什么疑问?

  (设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

  五、课堂小结

  师:今天我们认识了倒数,同学们有很多发现,其实在数学中存在很多的规律,只要我们善于观察,勤于动脑,相信大家会创造更多的发现!

  《倒数的认识》教学设计 篇3

  教学目标

  1.理解和掌握倒数的意义.

  2.能正确的求出一个数的倒数.

  3.培养学生的观察能力和概括能力.

  教学重点

  认识倒数并掌握求倒数的方法

  教学难点

  小数与整数求倒数的方法

  教学过程

  一、基本训练

  (一)口算

  =

  上面各式有什么特点?

  还有哪两个数的乘积是1?请你任意举出乘积是1的两个数.

  (板书:乘积是1,两个数)

  二、引入新课

  刚才我们所举出的乘积是1的两个数之间有一种特殊的关系.

  (板书:倒数)

  三、新课教学

  (一)乘积是1的两个数存在着怎样的倒数关系呢?

  请看: ,那么我们就说 是 的倒数,反过来(引导学生说) 是 的倒数,也就是说 和 互为倒数.

  和 存在怎样的倒数关系呢?2和 呢?

  (二)深化理解

  教师提问

  1.什么是互为倒数?

  2.怎样理解这句话?(举例说明)

  ( 的倒数是 , 的倒数是 ,不能说 是倒数,要说它是谁的倒数.)

  3.0有倒数吗?为什么?1有倒数吗?为什么?(0虽然可以看作几分之0,如 , ,但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0.1可以写作 ,1与 相乘还是1,符合倒数的意义,所以1的倒数是1).

  (三)求一个数的倒数

  1.例:写出 、 的.倒数

  学生试做讨论后,教师将过程板书如下:

  所以 的倒数是 , 的倒数是 .

  (能不能写成 ,为什么?)

  总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置.

  2.深化

  你会求小数的倒数吗?(学生试做)

  《倒数的认识》教学设计 篇4

  一、 教学内容:九年义务教育六年制第九册第二单元《倒数的认识》

  二、 教材分析:

  “倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。

  三、 教学目标:1.理解倒数的意义,掌握求倒数的方法。

  2.能熟练地写出一个数的倒数。

  3.结合教学实际培养学生的抽象概括能力。

  四、 教学重点:理解倒数的意义,掌握求倒数的方法。

  五、 教学难点:熟练写出一个数的倒数。

  六、 教学过程():

  (一)、 谈话

  1.交流

  师: 我们的黑板是什么颜色?

  生:黑色。

  师:教室的墙面又是什么颜色?

  生:黑色。

  师:黑与白在语文上是什么关系?

  生:黑是白的反义词。

  生:白是黑的反义词。

  师:能说黑是反义词或白是反义词吗?

  生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。

  师:那么,数学上有没有相互依存关系的现象呢?

  生:约数和倍数。

  师:你能举例说明约数和倍数的相互依存关系吗?

  生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。

  2.导入 今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。

  (二)、学习新知

  对数游戏

  1.学习倒数的意义

  我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4 说一个数,同学们跟着根据3和4说一个数 。

  师:4是3的4/3,

  生:3是4的 3/4

  师:7是15的'7/15; 生:15是7的15/7。

  提问;看我们做游戏的结果,你们有没有发现什么?

  生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。

  生2:两个分数的分子、分母相互调换了位置。

  生2:两个分数的乘积是1。

  提问:像符合这种规律的两个数叫做什么数呢?谁能给这种数取个名字。(倒数) 出示课题:倒数的认识

  提问:那么怎样的两个数才是互为倒数呢?指导看书。

  思考:(1)什么是倒数?满足什么条件的两个数互为倒数?

  (2)你能找出互为倒数的两个数吗。请举例

  评析:回答问题

  理解“互为”的意义。怎样的两个数互为倒数。

  找朋友游戏(课前每位同学发一张数字卡片)

  练习

  (!)出示卡片 (六位同学举着卡片依次站在黑板前)

  7/9 11/4 1/50 8 6/5 99

  (2) 规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队

  提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?

  3教学求一个数倒数的方法

  出示例题:找出下列各数的倒数

  2/3 7/4 1/5 9 1/7/8 0.4

  小组讨论 指名板演

  提问:1.你是怎么找出2/3的倒数的?

  生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3

  生2:因为互为倒数的两个数的分子与分母正好调换位置。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 。

  2.你是怎么找出7/4的倒数的?

  ……

  提问: 我们怎样才能很快地找到一个数的倒数?为什么?

  4.练习 请剩下的没有找到朋友的同学继续找倒数

  5.讨论:1的倒数是谁?0的倒数呢?

  生:1的倒数是1

  师:能说明一下理由吗?

  生1:因为1与1的乘积还是1。

  生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。

  师:0的倒数呢?

  生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。

  生2:因为0与任何数相乘都得0,所以0的倒数是任何数。

  生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。

  生4:0可以写成0/1,0/1的倒数是1/0。

  生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。

  6.完善求一个数的倒数的方法

  三、 巩固练习

  (一)填空

  1.因为5/3*3/5=1,所以()和()互为();

  2.因为15*1/15=1,所以()和()互为 ();

  3.4/7与()互为倒数;

  4.()的倒数是6/11

  5.()的倒数是2

  6.1/8的倒数是()

  7.1/2/7的倒数是()

  8.0.3的倒数是()

  (二)判断

  1.得数是1的两个数互为 倒数。()

  2.互为倒数的两个数乘积一定是1。()

  3. 1的倒数是1,所以0的倒数是0 。()

  4.分数的倒数都大于1。()

  (四)思考

  4/5*()=()*8

  四、总结:今天我们学习了什么知识?你有什么收获?还有什么问题吗?

  五、 布置作业

  《倒数的认识》教学设计 篇5

  一、引导探究、合作交流

  (一)、意义——从学生比赛中引出,倒数的认识教案。

  1、同桌比赛:(看谁做得又对又快)第一组:(左边学生)×、×第二组:(右边学生)×、×

  2、思考:为什么左边学生做得又对又快?师:观察第一组中的算式有什么特点?(学生汇报:乘积是1)归纳总结:同学们我想刚才比赛的输赢是次要的,但发现这组算式的特点却是重要的。

  3、像这样乘积是1的数你还能写出几组吗?()×()=1、()×()=1

  4、归纳总结、揭示概念乘积是1的两个数叫做互为倒数。(板书)加深理解“互为”

  5、选一组算式说一说

  1谁是谁的倒数?

  2、谁是谁的倒数?

  3谁和谁互为倒数?

  (二)、探索求一个倒数的方法

  1、提问:我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的'这些例子。

  2、师生一起小结:求一个数的倒数,只要把分子分母调换位置。(板书)

  3、提问:那1的倒数是几呢?(学生很快就说出来了,并说明了理由)0的倒数呢?

  4、我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。求一个数(0除外)的倒数,只要把这个数的分子、分母交换位置就可以了。

  二、巩固练习

  1、试着写出3/5、7/2的倒数

  2、试着写出6的倒数

  3、试着写出二又三分之一的倒数

  4、说出下面各数的倒数。2/57/11130.5

  三、拓展延伸

  1、填空:

  (1)1/9的倒数是(),7的倒数是(),0.7的倒数是。

  (2)的倒数是它本身,没有倒数.

  (3)8×=10.75×=1×0.5=12、

  判断:

  (1)因为0.25×4=1,所以0.25和4互为倒数。

  (2)a的倒数是1/a。

  (3)真分数的倒数都大于1。

  (4)假分数的倒数都小于1。

  (5)1/3是倒数。()

  (6)得数是1的两个数叫互为倒数。

  四、布置课堂作业:

  1、必做题:在作业本上完成学习之友对应练习的第1、4两小题.

  2、选做题:3/4×()=()×7/11=()×6

  五、总结反思,回顾梳理。

  1、今天我们一起学习了倒数的有关知识,你有哪些新的收获?

  2、还有什么问题吗?(没有)

  3、学了倒数有什么用呢?大家课后可去思考一下。

  六、欣赏生活中倒着的现象。

  板书设计倒数的认识乘积是1的两个数互为倒数1的倒数是1.0没有倒数。

  《倒数的认识》教学设计 篇6

  整体感知

  倒数的认识的教学,主要是通过观察,分析,对比,概括的方法让学生讨论,举例,交流,真正理解什么是倒数,怎样求倒数.待新知识弄清之后,根据本课内容的特点适当插入一些内容,也就是在教学过程中让同桌同学互相多提问,师生之间多提问,互相解疑,列举出一定范围各种各样的数,一方面看有没有倒数;另一方面看一看有倒数怎样求,这样可以激发学生探索新知识的兴趣,使课堂气氛活跃,在愉快之中达到理解,掌握之目的。

  教学内容:教材23页的内容以及练习六1至6题.

  素质教育目标

  (一)知识教学点

  1.通过学生观察,分析,比较,理解倒数的意义.

  2.用列举的方法,发现规律,使学生掌握求倒数的方法.

  (二)能力训练点

  培养学生阅读能力,以及抽象概括能力,能准确地写出一定范围的各个数的倒数.

  (三)德育渗透点

  通过倒数的学习,同时渗透辩证唯物主义观点,倒数间的各个数都是相互依存,不能孤立存在.

  教学重点:理解倒数的意义和怎样求倒数.

  教学难点:求倒数方法的叙述.

  教学步骤

  一,铺垫孕伏

  1.口算:

  2.填空:

  二,探究新知

  (一)教学倒数的意义:

  1.揭示课题:今天这节课我们学习一个知识倒数.究竟什么是倒数,怎样求倒数呢 我们一起探讨.教师板书:倒数的认识.

  2.观察算式:

  (2)计算结果,发现共同点:每个算式中两个数相乘的积是1.

  (3)互相讨论:通过几组算式及结果你有什么新发现 引导学生说出:每组中每个分数分子,分母调换了位置,相乘的结果都是1.

  3.教师概括并板书:乘积是1的两个数叫做互为倒数.

  (1)互相议论:两个数指什么数 互为倒数是什么意思

  引导说出:两个数指两个分数或一个整数和一个分数,互为倒数是说一个数是另一个数的倒数,不能说某一个数是倒数.

  (3)学生举例:

  ①每人举出3组倒数的例子,并说明谁是谁的倒数

  ②同桌互相举例(每人2组),并用倒数的定义来检验.

  4,教师小结:通过分析你明白了什么 倒数是指两个数而说,互为倒数是指一个数不能称倒数,必须是一个数是另一个数的倒数.

  5.反馈练习:

  (1)判断:

  ①倒数是一个数( )

  (二)教学求倒数的'方法:

  1.学生举例:谁能举出一组互为倒数的两个分数.

  2.观察发现:互为倒数的一组数分子,分母有什么特点

  引导学生找出互为倒数的两个数的分子,分母位置是互换的.

  3.谈想法:设想一下怎样可以找到一个数的倒数呢

  4.讲解例题:

  (2)根据倒数的意义,自己找出求倒数的方法.使学生知道:只要把

  (3)师生共同发现:求倒数的方法只要把这个数的分子,分母调换位置即可.

  (4)表达方式并板书:

  5.自然数怎样求倒数

  (1)自己任意举出一个自然数,看有没有倒数 并追问:你是怎么想的 引导学生说出:自然数可以看成分母是1的分数,也可以把分子,分母调换位置.

  (2)归纳求自然数倒数的方法,引导学生说出,一个自然数的倒数就是以这个自然数作分母,以1作分子的分数.

  6.总结方法

  (1)学生试述,互相讨论,看谁能够准确表达求倒数的方法.

  (2)准确归纳并板书,求一个数( )的倒数,只要把这个数的分子,分母调换位置.

  (3)讨论:是不是所有数都有倒数 为什么

  引导学生说出:0没有倒数,因为0可以作分子,但调换位置后变为分母,分母不能是0,所以0没有倒数.

  (4)教师板书:(0除外)

  7.阅读课本中倒数意义和求倒数的方法.

  三,巩固发展

  1.判断下列说法是否正确 错的改正.

  (1)任何数都有倒数.

  (2) c和d互为倒数,所以cd=1.

  四,全课小结

  通过这节课的学习,你知道了什么 学会了什么 引导学生说出乘积是1的两个数叫做互为倒数,必须是互为倒数,以及求倒数的方法.五,布置作业 练习4,5,6题做在作业本上.六,板书设计

  倒数的认识

  乘积是1的两个数叫做互为倒数

  求一个数(0除外)的倒数,只要把这个数的分子,分母调换位置.

  《倒数的认识》教学设计 篇7

  教学目标

  1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。

  2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。

  3.培养学生的观察能力和概括能力。

  教学重点和难点

  1.正确理解倒数的意义及互为的含义。

  2.正确地求出一个数的倒数。

  教学过程设计

  (一)激发兴趣,引出概念

  1.投影。哪个同学和老师比赛?谁说得快?

  师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)

  2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。

  板书:乘积是1 两个数

  3.你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?

  生:两个数分子、分母颠倒位置就可以了。

  师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)

  4.举例说明,什么叫互为倒数?

  师:3是倒数这句话对吗?为什么?

  你们说得对,谁能说出几组倒数?

  同桌互相说,每人说两组。(指名说)

  问:怎样判断他们说得是否正确?

  生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于1,这两个数不是互为倒数。

  5.思考:1的倒数是几?为什么?0有倒数吗?为什么?

  板书:1的倒数是1.0没有倒数。

  (二)求一个数的倒数

  同学们已经掌握了倒数的意义,也能正确地判断出两个数是不是互为倒数。那么怎样找出一个数的倒数呢?

  1.出示前面的投影,找特点。

  观察互为倒数的两个数有什么特点,把观察到的结果同前后同学交流一下。

  问:谁来说说你发现了什么?

  生:互为倒数的两个数,是分子、分母交换了位置。

  师:你们观察得很仔细。根据这一规律,你们试着做一做下面的题。

  学生说老师板书:

  3.同学们想一想,怎样求一个数的.倒数?前后、左右的同学互相说一说。

  谁来给同学们汇报一下?(2~3名)

  板书:求一个数( )的倒数,只要把这个数的分子、分母调换位置。

  问:老师为什么要空出一些地方?

  生:0除外。

  问:为什么要加上0除外?(板书:0除外。)

  问:你们现在知道一上课时,老师为什么说得那么快了吗?奥秘在哪儿?你们已经知道了方法。如果给你一个数,你能很快写出它的倒数吗?比一比看。

  4.课堂练习。

  写出下面各数的倒数:

  35的倒数是怎么想的?

  问:2的倒数是几? 10的倒数呢?怎样又对又快地写出一个自然数的倒数呢?

  5.写出1.5的倒数,怎样做?

  (三)课堂总结

  我们学习了哪些知识?倒数的意义是什么?怎样判断两个数是不是互为倒数?怎样求一个数的倒数?还有什么问题?

  下面我们一起做几道题,检验一个我们这节课的知识是否真正掌握了。

  (四)巩固练习

  1.投影。

  问:怎么填得这么快,你是根据什么填的?

  问:①谁能回答?

  ②你根据什么填的?

  ③为什么根据倒数的意义填?

  看下一组题:

  问:怎么填?根据什么?与(2)有什么不同?

  师:所以做题时要认真审题,看清符号,千万不能出审题错误。

  2.下面哪两个数互为倒数?(课本24页第2题做在书上,用线连接,投影订正。)

  3.判断下面各题。对的举,错的举,并说明理由。

  投影出示:

  (1)乘积是1的两个数互为倒数。 ()

  (2)2.5和0.4互为倒数。 ()

  师:你们是怎么想的?

  生:2.5和0.4乘积是1,所以是对的。

  (3)因为1的倒数是1,所以0的倒数是0。 ()

  问:错在哪里?

  问:错在何处?

  问:这道题错在哪了?

  生:乘积是1的两个数互为倒数。这道题是3个数的乘积是1,所以错了。

  4.游戏。

  每个组第一个同学手里有一块小黑板,上面都有6个数字。每人写一个数的倒数,写完后传给你后面的同学。如果后面同学发现前面的题做错了,你可以改,再做下一题再向后传。最后一名同学做完后迅速把小黑板拿到前面来。哪一组又对又快做完,哪一组就是优胜。

  评比表扬优胜,找出谁给前面的同学改了错。

  (五)作业

  课本24页第3,5,6题。

  课堂教学设计说明

  1.这节课的设计思想首先从如何激发学生的学习兴趣入手。一上课就采取了师生比赛填空的方法,使学生产生疑问:老师为什么说得那么快?有什么窍门?学生的兴趣一下子起来了,他们迫切地想听完这节课,解决他们心中的疑惑。这样,一上课就抓住了学生的心。在课的最后,又用小组比赛的形式设计练习,把课堂气氛推向了高潮。这样既检查了学生知识的掌握情况,又培养了学生的集体荣誉感。

  2.这节课还注意充分发挥学生的主体作用。如,新授一开始,就让学生观察每道算式,找出共同点,引出倒数的意义。而后又让学生自己观察互为倒数的两个数的变化规律得出求一个数的倒数的方法。

  《倒数的认识》教学设计 篇8

  教学目标

  1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。

  2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。

  3.培养学生的观察能力和概括能力。

  教学重点和难点

  1.正确理解倒数的意义及互为的含义。

  2.正确地求出一个数的倒数。

  教学过程设计

  一、创设情境,提出问题。

  师:我们知道语言文字中有些字是可以倒过来写的。

  比如:吴吞

  学生举例:杏呆。

  师:数学中有没有这种情况呢?

  你能把4/7倒过来写吗?

  板书:4/7--(7/4) 8/3--(3/8) 2--(1/2)

  师:你能根据分子、分母的位置关系给这几组数取个名字吗?

  生:倒数。

  出示课题:倒数的认识。

  二、教学倒数的意义.

  (1)5/81/8 7/155/7 61/2 1/405

  (2)3/44/3 6/77/6 31/3 2/99/2

  教师:上面的两组题有什么不同?(第一组每个算式中两个数相乘的积都不是1,第二组每个算式中两个数相乘的积都是1.)

  教师:像第二组这样,乘积是1的两个数叫做互为倒数.

  教师举例说明什么叫做互为倒数.

  3/4和4/3互为倒数,就是3/4的倒数是4/3,4/3的倒数是3/4.

  教师:倒数是对两个数来说的,它们是相互依存的,必须说一个数是另一个数的倒数,不能孤立地说某一个数是倒数.

  让学生试着说一说第二组其它3个算式中两个数的关系.说的时候,注意让学生说出互为倒数,同时,让学生明确谁是谁的倒数.

  教师:谁还能举出几组两个数互为倒数的例子?多让几个学生说一说,并让学生根据倒数的意义来检验是不是正确.

  三、教学例题(求倒数的方法).

  教师:请同学们仔细观察上面第二组算式,想想两个什么样的数就互为倒数.如果给你一个数你能找出它的倒数吗?让学生适当讨论,并对发现的规律进行归纳.使学生明确:互为倒数的两个数的分子、分母是互相调换位置的.

  出示例题. 怎样找出 的倒数呢?你能用刚才发现的规律找出来吗?使学生想到只要把 的分子、分母调换位置就是 的倒数.教师板书:

  分子、分母调换位置─────────的倒数就可以让学生自己写.

  教师接着问:自然数5的'倒数是多少?5可以看成分母是几的分数?(可以看成分母是1的分数.)

  那么5的倒数怎样求?(把分子、分母调换位置,3的倒数就是1/5.)

  教师:任意一个自然数的倒数应该怎样求?(一个自然数的倒数就是以这个自然数作分母以1作分子的分数.)

  接着问:是不是所有的数都有倒数?什么数没有倒数?(0没有倒数.)

  0为什么没有倒数?(因为0不能作分母,所以0没有倒数.)

  教师:请大家总结一下求一个数的倒数的方法.让学生多说一说,教师注意提醒学生把0排除在外.

  四、课堂练习。

  写出下面各数的倒数:

  4/13 9 1/7 25

  反思:本节课的导入部分,我注意从文字中找数学的原形,使学生感到新颖、有趣,激起学生的好奇心,激发学生探究的欲望。并以问题为主线,由学生自己提出问题,自己讨论解决,培养了学生的问题意识,通过学生主动的数学活动建构倒数的意义,掌握求倒数的方法。

  《倒数的认识》教学设计 篇9

  教学目标:

  (1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟 练的求出倒数。

  (2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学 生的自主学习能力,提高学生观察、比较、抽象、归纳以及合 作学习的能力。

  (3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

  教学重点:

  倒数的意义与求法。

  教学难点:

  1、0的倒数,小数、带分数倒数的求法。

  教学用具:

  媒体展示台

  教学过程:

  一、竞赛激趣,揭示课题。

  1、谈话:

  师:同学们,你们喜欢比赛吗?现在我们进行小组间比赛。

  (说明比赛事项)比赛内容:写两个数的乘法算式,要求:乘积等于1;比赛时间:30秒;比赛规则:每人每次写一式,写完后传给小组内其它同学。比赛结果评定:比较数量与正确率(重复计一次)。(写在白纸上)

  2、学生开始紧张激烈比赛,教师组织评议,评选出优胜小组。

  师:短短30秒你们就写出了这么多算式,本领真大,由此也反映出数学课堂里“时间就是效率”的真谛,我们从小要养成珍惜时间习惯。

  追问:如果老师再给你们一些时间,你们还能写吗?能写多少个?

  生:可以。能写无数个。(板书:无数)

  4、说明:其实我们的祖先早就已经研究过这方面的问题,这就是今天要学习的倒数。(板书课题)今天这堂课我们就来学习倒数的知识。

  [以学生喜爱的竞赛拉开一堂课的序幕,充分调动学生学习的主动性与积极性;借助30秒的竞赛时间教育学生要珍惜时间,让德育教育的内容渗透在数学课;通过追问让学生初步感知倒数有无数组,同时竞赛的内容为倒数意义的揭示打下伏笔。]

  二、引导质疑,自主探究。

  1、引导质疑。

  师:看着“倒数”这个数学新名词,你的脑子里产生哪些问题?

  生:什么是倒数? 生:倒数是指一个数吗?

  生:倒数应该怎样表述? 生:怎样求倒数?

  生:倒数是不是一定是分数? 生:倒数有什么用?

  生:是不是每个数都有倒数? ...........

  2、自主探究。

  (1)、明确学习方法。

  师:今天我们采用自学加小组讨论的方法学习倒数的有关知识。同学们围绕刚才我们提出的这些问题先自学课本,然后小组讨论,解决问题。

  (2)、学生自学讨论,教师指导。

  (3)、组织全班交流。

  你现在知道什么是倒数了吗?

  怎样求一个数的倒数?

  3、质疑:在自学的过程中你们还有什么疑惑的地方吗?

  三、巩固提高,拓展外延。

  师:现在老师要来检查一下同学今天自学的效率怎么样?对自己有信心吗?

  (1)、说出下列各数的倒数,说说你是怎么想的?

  8、1、0、

  (组织讨论:1的倒数是1,0没有倒数。你能用已有的知识来给大家解释吗?)

  (2)、课本练习题:第4题。

  (3)、判断:

  a、9的倒数是 。

  b、任何真分数的倒数都是假分数。

  c、任何假分数的倒数都是真分数。

  d、是倒数。

  e、1的倒数是1,0的倒数是0。

  (4)、开放题:

  ×( )=( )× = ×( )=6×( )

  你会填吗?你能用今天学到的知识来填吗?

  [倒数是两个数之间的一种关系,学习它主要是为今后学习分数除法服务,以上设计一方面是巩固学生对倒数概念的掌握,另一方面又是让学生在旧知里建构新知,应用新知,从而进一步感悟到知识的内在联系。]

  四、总结反思,发展能力。

  师:今天我们学习了倒数的有关知识,请同学回忆一下你们是怎样学习的?

  生:提问-自学讨论-练习

  师:你能用“我学会了--”来描述今天学到的知识吗?

  生:.......

  教学设计的特点:

  1、构建“自主-合作探究”的自主学习模式。

  新课程强调教学过程是师生交往、共同发展的互动过程;在教学过程中要注重培养学生的独立性与自主性,引导学生质疑、探究,使学习成为在教师指导下主动的、富有个性的过程。本设计中的教学过程是围绕学生“质疑-自学-讨论-交流”活动展开:问题由学生提出,答案由学生找出,评价由学生判定。

  2、“以学定教”重新定位教师与学生角色。

  新课程强调:学生是数学学习的`主人,教师是学生数学学习活动的指导者、参与者、合作者。本教学设计的整个学习活动,充分体现了这一点,教师在引导学生对未知领域进行质疑基础上,与学生一起自主学习、合作探究。让学生通过自主合作的学习活动,在质疑与释疑中建构着自己的数学知识,发展着自己的数学素养。

  3、注意学科间的整合。

  数学是一门比较抽象的、理性占主导的学科。最优化的数学学习不仅要完成本门学科特定的任务,还应巧妙整合完成其它学科的任务。在本教学设计中,最后我让学生反思学习的方法,用“我学会了--”来总结自己的学习后的收获,这是整合语文学科对学生的语言表达能力训练。

  《倒数的认识》教学设计 篇10

  教学内容:

  苏教版义务教育教科书《数学》六年级上册第36页例7、练一练,第39页练习六第16~21题。

  教学目的要求:

  认识倒数的概念,掌握求倒数的方法,能熟练得求一个数的倒数。

  教学重点难点:

  掌握求倒数的方法,能熟练得求一个数的倒数。

  教学过程:

  一、导入新课

  问:每个算式中两个数相乘的积有什么共同的地方?你还能举几个这样的例子吗?

  二、新授

  教学例题

  (1)出示例7

  下面的几个分数中,哪两个数的乘积是1?

  (2)学生回答。

  (3)引出概念。

  乘积是1的两个数互为倒数。例如和互为倒数。可以说是的倒数,是的倒数。

  (4)学生举例来说。进行及时的评议。

  (5)追问:怎样的两个数互为倒数?为什么要说“互为”倒数?

  归纳方法

  小组讨论:

  观察倒数和原数的关系,想一想一个数的`倒数与原数相比,分子、分母的位置发生了什么变化?

  全班交流。

  求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

  问:5的倒数是几?1的倒数是几?

  学生回答,并说原因。

  追问:0有倒数吗?为什么?

  指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。

  除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

  教学“练一练”

  学生回答。

  提醒学生正确地书写格式。

  三、巩固练习。

  1、做练习六第17题

  学生填书上后,集体订正,并说说是怎样想的。

  2、做练习六第18题

  指名口头回答,选择两题让学生说说思考的过程。

  3、做练习六第19题

  重点引导学生讨论每一组数的规律。

  4、做练习六第21题

  5、做思考题

  联系倒数的意义想一想,要使三个分数乘积是1,必须符合什么条件?

  四、全课总结

  这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?

  五、作业

  练习六第20题

  《倒数的认识》教学设计 篇11

  教学目标

  1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

  2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。

  3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。

  教学重难点

  教学重点:理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。

  教学难点:掌握求倒数的方法

  教学过程

  一、导入

  课件出示:

  1、找规律:指生回答。

  2、找规律,填空,指生回答。

  3、口算,开火车口算。

  4、你能找出乘积是1的两个数吗?指生说。

  今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识

  二、新授

  1、教学倒数的意义。

  (1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。

  (2)学生汇报研究的结果:什么是倒数?生生说,举例说明。

  乘积是1的两个数互为倒数。举例说明。课件出示。

  观察每一对数字,你发现了什么?

  像这样乘积是1的数字有多少对呢?

  (3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)

  (4)互为倒数的两个数有什么特点?

  像这样的每组数都有什么特点呢?

  两个数的分子和分母交换了位置(两个数的分子、分母正好颠倒了位置)

  2、教学求倒数的方法。试着写出3/5 、7/2的倒数。

  (1)写出3/5的倒数:求一个分数的`倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

  (2)写出7/52的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

  想:写出6的倒数。独立完成。

  先把整数看成分母是1的分数,再交换分子和分母的位置。 6

  = 6/1 1/6

  求一个数(0除外)的倒数,只要把这个数的分子、分母交换位置就可以了。

  3、教学特例,

  深入理解

  (1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)

  (2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)

  4、课件出示,巩固练习:这些数怎样求倒数呢?

  (1)学生独立解答,教师巡视。

  (2)汇报时有意识地让学有困难的学生说一说求倒数的方法。

  三、巩固应用

  课件出示:

  1、练习六第2题:填一填。

  2、找朋友。

  3、写出上面各数的倒数

  4、辨析练习:练习六第3题“判断题”。

  5、我的发现。

  6、马小虎日记,开放性训练。

  7、谜语:

  五四三二一

  (打一数学名词)

  四、总结

  你已经知道了关于“倒数”的哪些知识?你联想到什么?还想知道什么?

  《倒数的认识》教学设计 篇12

  教学内容:

  教材P24页中的例1、例2 ,完成练习六中的部分练习题。

  教学目标:

  1、知识与技能:

  (1)使学生理解倒数的意义,在众多的数中说出哪两个数互为倒数,学生能用完整、正确的语言表达倒数。

  (2)掌握求倒数的方法,并能正确熟练的求出倒数。

  2、过程与方法:

  引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

  3、情感、态度与价值观:

  (1)通过合作活动培养学生学会与人合作,愿与人交流的习惯。

  (2)通过亲身参与探究活动,获得积极成功的情感体验。

  教学重点:

  概括倒数的意义,掌握求倒数的方法。

  教学难点:

  理解“互为”、“倒数”的含义以及0、1的倒数。

  教学方法:

  创设情境、启发诱导、合作交流、自学与讲授相结合等。

  课 型:新授课。

  教学过程:

  一、游戏激趣,揭示课题。

  1、理解“互为”的含义。

  朋友这个词对我们来说已经非常熟悉了,朋友,看到这个词你有什么想法说的?能告诉大家你最好的朋友是谁吗?指名说说自己的好朋友是谁?你能用一句话来表述你们之间的关系吗?(×××和我互为朋友,我是×××的朋友,×××也是我的朋友。板书:互为)另外找一名同学,你能再描述一下他

  们二人的关系吗?(略)那我们能说×××是朋友吗?(不能,因为朋友是相互的,互相是朋友,互为朋友)同学们,在我们生活中有没有像朋友一样必须是一起出现,相互依存的知识呢?请举例——

  (父子关系、母女关系等)

  2、简单理解“倒”。

  师:同学们,你们今天的精神面貌真是好极了,老师有点惊呆了,板书“呆”,呆是一个上下结构的字,你们喜欢文字游戏吗?板书:“呆”的上下颠倒就成了“杏”,语文中的文字有这样的构字规律,比如(杏——呆;吞——吴;音——昱;士——干……)那么数学中的数也有这种规律吗?先来计算几道题目,计算之后相信自然会找到答案。

  板书:

  3

  8× 8

  3= 1 7

  15×15

  7=15×= 151112 ×12= 1

  二、新课教学。

  (一)引导质疑。

  学生算完后,观察并思考:这些题有什么共同的地方?

  生1:得数是1 生2:乘积是1

  除了乘积是一,因数还有什么特点(分子分母交换位置)

  师再举例如: 5/4×4/5 7/10×10/73×1/3

  进一步明确并(板书):乘积是1

  生3:都是两个数相乘. 〈 板书 〉:两个数

  1、 你们还能写出两个数乘积是1的算式吗?

  那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家30秒的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的把你写的念出来,和大家共同分享? (生读,师有选择的板书在黑板上。 )

  师:这么短的时间内就能写出这么多乘积是1的两个数,不错。 如果给你们充足的时间,你们还能写多少个这样的乘法算式?(无数个)

  出示课题:乘积是1的两个数是什么关系呢?这就是我们这节课要学习的内容:倒数的认识 师指着板书说:我们称“乘积是1的两个数互为倒数”。

  师:那么倒数的相互关系在具体算式中怎么说呢,谁和谁互为倒数呢?

  比如4/5和5/4的乘积是1 ,我们就说4/5和5/4互为倒数。(师板书4/5和5/4互为倒数) 还可以说4/5的倒数是5/4;5/4的倒数是4/5。

  生:①模仿说 ②同桌互说

  2、理解意义:

  (1)在倒数的意义中,你认为哪几个字比较重要?你是怎么理解“互为”一词的?

  (互为”是指两个数的关系。 “互为”说明这两个数的关系是相互依存的。)

  倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  (2)以前我们学过这种两数间相互依存关系的知识吗?

  (3)2/5和5/2的积是1,我们就说??(生齐说)

  (4)7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同

  (5)辨析:下面的说法对吗?为什么?

  A:2/3 是倒数。( )

  B:得数为1的两个数互为倒数。( )

  C、

  D、12712和×43712乘积是1 ,所以32127和32712互为倒数。( ) ×=1,所以12、43、互为倒数。 ( )

  3、小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。

  (二) 探索求一个倒数的方法

  1、我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。 (分子和分母调换了位置。)

  根据这一特点你能写出一个数的倒数吗? 试一试!

  2、写出下列各数的倒数:3/5 7/2 5 13

  (1)先写3/5的倒数。教师查看学生书写的情况。

  (2)教师板书学生错误书写方法:3/5=5/3这样写对吗?为什么错了?正确的写法应该是怎样的呢?出示

  3/5 的倒数是( ) 7/2 的倒数是( )

  5 的倒数是( ) 13 的'倒数是( )

  师生一起小结:求一个分数的倒数,只要把分子分母调换位置。(板书)

  师:那5的倒数是什么你是怎样想的?(把5看成是分母是1的分数,再把分子分母调换位置。 )师根据学生的回答及时板书。

  3、1和0的倒数

  师:那1 的倒数是几呢?为什么?

  0的倒数呢?

  师:为什么?

  师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后????(生齐:分母就为0了,而分母不可以为0。)

  4、师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

  求一个数(0除外)的倒数,只要把分子和分母调换位置就行了。

  三、练习巩固。

  1、判断题:

  ①互为倒数的两个数,乘积是1。 ( )

  ②任何假分数的倒数是真分数。 ( )

  ③因为3×1/3=1,所以3是倒数。 ( )

  ④1的倒数是1。 ( )

  2、思考题:

  3/8×( )=( )×=( )×6=1

  3、找出马小虎的日记错误并改正。

  今天,我学习了一个新知识------倒数。我知道了互为倒数的两个数的乘积一定等于1,比如3×1/3=1,那么3是倒数,1/3是倒数,你知道了吗?我还知道了所有的数都有倒数(小数除外),比如整数2的倒数是1/2。我还学会了求任何数的倒数只要把分数的分子和分母交换位置就可以了。

  瞧!我学的怎么样!

  四、全课小结

  同学们,这节课大家通过自己的努力以及与别人的合作,认识了倒数,学会了求倒数的方法,大家的表现很精彩,老师由衷的祝贺你们。

  五、作业

  课本26页第4题。

  六、板书设计:

  倒数的认识

  乘积是1的两个数互为倒数。

  求倒数的方法:分子分母交换位置,

  若是整数,先划成分母是1的分数。

  1的倒数还是1,0没有的倒数。

  《倒数的认识》教学设计 篇13

  教学内容 倒数的认识

  教学目标

  1.通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

  2.使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。

  3.通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

  教学重难点

  教学重点:理解倒数的意义,学会求倒数的方法。

  教学难点:发现倒数的一些特征。

  教具准备 课件

  设计意图

  教学过程

  特色设计

  通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。

  一、猜字游戏引入新课

  找找下面文字的构成规律

  呆———杏 土———干吞———吴

  按照上面的规律填数

  ——( ) ——( ) ——( )

  能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数

  二、新知探究

  (一)探究讨论,理解倒数的意义。

  1.课件出示算式。

  开展小组活动:算一算,找一找,这组算式有什么特点?

  小组汇报交流。

  我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

  2.出示倒数的意义:乘积是1的两个数互为倒数。

  3.你是怎样理解互为倒数的呢? 能举例吗?

  (二)深化理解。

  1.乘积是1的两个数存在着怎样的倒数关系呢?

  2.互为倒数的两个数有什么特点?

  3.想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?

  因为1×1=1,根据“乘积是1的两个数互为倒数”,所 以1的倒数是1。

  又因为0与任何数相乘都不等于1,所以0没有倒数。)

  (三)运用概念。

  1.讨论求一个数的倒数的.方法。

  出示例2:写出其中3/5 、7/2 两个分数的倒数。

  学生试做讨论后,教师将过程 。

  小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)

  2.怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

  三、巩固练习

  (一)完成教材第28页的“做一做”

  (二)完成教材第29页练习六的第1-5题。

  四、课堂小结

  今天我们学习了有关倒数的哪些新知识? 板书设计

  《倒数的认识》教学设计 篇14

  教学目标

  1.理解和掌握倒数的意义.

  2.能正确的求出一个数的倒数.

  3.培养学生的观察能力和概括能力.

  教学重点

  认识倒数并掌握求倒数的方法

  教学难点

  小数与整数求倒数的方法

  教学过程

  一、基本训练

  (一)口算

  =

  上面各式有什么特点?

  还有哪两个数的乘积是1?请你任意举出乘积是1的两个数.

  (板书:乘积是1,两个数)

  二、引入新课

  刚才我们所举出的乘积是1的两个数之间有一种特殊的.关系.

  (板书:倒数)

  三、新课教学

  (一)乘积是1的两个数存在着怎样的倒数关系呢?

  请看: ,那么我们就说 是 的倒数,反过来(引导学生说) 是 的倒数,也就是说 和 互为倒数.

  和 存在怎样的倒数关系呢?2和 呢?

  (二)深化理解

  教师提问

  1.什么是互为倒数?

  2.怎样理解这句话?(举例说明)

  ( 的倒数是 , 的倒数是 ,不能说 是倒数,要说它是谁的倒数.)

  3.0有倒数吗?为什么?1有倒数吗?为什么?(0虽然可以看作几分之0,如 , ,但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0.1可以写作 ,1与 相乘还是1,符合倒数的意义,所以1的倒数是1).

  (三)求一个数的倒数

  1.例:写出 、 的倒数

  学生试做讨论后,教师将过程板书如下:

  所以 的倒数是 , 的倒数是 .

  (能不能写成 ,为什么?)

  总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置.

  副标题#e#

  2.深化

  你会求小数的倒数吗?(学生试做)

  三、训练、深化

  (一)下面哪两个数互为倒数

  (演示课件:1)

  (二)求出下面各数的倒数

  (演示课件:2)

  (三)判断

  1.真分数的倒数都是假分数.

  2.假分数的倒数都小于1.

  3.0没有倒数.

  (四)提高

  如果末尾加上=1怎么填?

  如果末尾加上=0怎么填?

  如果末尾加上=2怎么填?

  四、课堂小结

  今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有不明白的问题吗?

  五、课后作业

  (一)下面哪两个数互为倒数?

  8

  (二)写出下面各数的倒数.

  3 1

【《倒数的认识》教学设计】相关文章:

倒数认识教学设计12-24

倒数的认识的教学设计12-17

倒数的认识教学设计11-30

倒数的认识微课教学设计03-23

倒数的认识教学设计(精选20篇)09-25

倒数认识教学设计15篇02-17

倒数的认识教学设计15篇12-16

倒数的认识教学设计(精选12篇)01-31

倒数的认识教学设计(15篇)01-31

倒数的认识教学设计集合15篇04-05