我要投稿 投诉建议

鸽巢原理教学设计

时间:2021-02-07 17:22:17 教学设计 我要投稿

鸽巢原理教学设计

  一步一步引导学生合作交流、自主探索,让学生亲身经历问题解决的全过程,增强学习的积极性和主动性。以下内容是小编为您精心整理的鸽巢原理教学设计,欢迎参考!

鸽巢原理教学设计

  鸽巢原理教学设计

  一、教学目标

  (一)知识与技能

  通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

  (二)过程与方法

  结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

  (三)情感态度和价值观

  在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

  二、教学重难点

  教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

  教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。

  三、教学准备

  多媒体课件。

  四、教学过程

  (一)游戏引入

  出示一副扑克牌。

  教师:今天老师要给大家表演一个“魔术”。取出大王和小王,还剩下52张牌,下面请5位同学上来,每人随意抽一张,不管怎么抽,至少有2张牌是同花色的。同学们相信吗?

  5位同学上台,抽牌,亮牌,统计。

  教师:这类问题在数学上称为鸽巢问题(板书)。因为52张扑克牌数量较大,为了方便研究,我们先来研究几个数量较小的同类问题。

  【设计意图】

  从学生喜欢的“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

  (二)探索新知

  1.教学例1。

  (1)教师:把3支铅笔放到2个铅笔盒里,有哪些放法?请同桌二人为一组动手试一试。

  教师:谁来说一说结果?

  预设:一个放3支,另一个不放;一个放2支,另一个放1支。(教师根据学生回答在黑板上画图表示两种结果)

  教师:“不管怎么放,总有一个铅笔盒里至少有2支铅笔”,这句话说得对吗?

  教师:这句话里“总有”是什么意思?

  预设:一定有。

  教师:这句话里“至少有2支”是什么意思?

  预设:最少有2支,不少于2支,包括2支及2支以上。

  【设计意图】

  把教材中例1的“笔筒”改为“铅笔盒”,便于学生准备学具。且用画图和数的分解来表示上述问题的结果,更直观。通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。

  (2)教师:把4支铅笔放到3个铅笔盒里,有哪些放法?请4人为一组动手试一试。 教师:谁来说一说结果?

  学生:可以放(4,0,0);(3,1,0);(2,2,0);(2,1,1)。(教师根据学生回答在黑板上画图表示四种结果)

  引导学生仿照上例得出“不管怎么放,总有一个铅笔盒里至少有2支铅笔”。

  假设法(反证法):

  教师:前面我们是通过动手操作得出这一结论的,想一想,能不能找到一种更为直接的方法得到这个结论呢?小组讨论一下。

  学生进行组内交流,再汇报,教师进行总结:

  如果每个盒子里放1支铅笔,最多放3支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。这就是平均分的方法。

  【设计意图】

  从另一方面入手,逐步引入假设法来说理,从实际操作上升为理论水平,进一步加深理解。

  教师:把5支铅笔放到4个铅笔盒里呢?

  引导学生分析“如果每个盒子里放1支铅笔,最多放4支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。

  教师:把6支铅笔放到5个铅笔盒里呢?把7支铅笔放到6个铅笔盒里呢???你发现了什么?

  引导学生得出“只要铅笔数比铅笔盒数多1,总有一个盒子里至少有2支铅笔”。 教师:上面各个问题,我们都采用了什么方法?

  引导学生通过观察比较得出“平均分”的方法。

  【设计意图】

  让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。

  (3)教师:现在我们回过头来揭示本节课开头的魔术的结果,你能来说一说这个魔术的道理吗?

  引导学生分析“如果4人选中了4种不同的花色,剩下的1人不管选那种花色,总会和其他4人里的一人相同。总有一种花色,至少有2人选”。

  【设计意图】

  回到课开头提出的问题,揭示悬念,满足学生的.好奇心,让学生认识到数学的应用价值。

  (4)练习教材第68页“做一做”第1题(进一步练习“平均分”的方法)。 5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

  2.教学例2。

  (1)课件出示例2。

  把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。为什么? 先小组讨论,再汇报。

  引导学生得出仿照例1“平均分”的方法得出“如果每个抽屉放2本,剩下1本不管放在哪个抽屉里,都会变成3本,所以总有一个抽屉里至少放进3本书。”

  (2)教师:如果把8本书放进3个抽屉,会出现怎样的结论呢?10本呢?11本呢?16本呢?

  教师根据学生的回答板书:

  7÷3=2??1不管怎么放,总有一个抽屉里至少放进3本;

  8÷3=2??2不管怎么放,总有一个抽屉里至少放进3本;

  10÷3=3??1 不管怎么放,总有一个抽屉里至少放进4本;

  11÷3=3??2 不管怎么放,总有一个抽屉里至少放进4本;

  16÷3=5??1 不管怎么放,总有一个抽屉里至少放进6本。

  教师:观察上述算式和结论,你发现了什么?

  引导学生得出“物体数÷抽屉数=商数??余数”“至少数=商数+1”。

  【设计意图】

  一步一步引导学生合作交流、自主探索,让学生亲身经历问题解决的全过程,增强学习的积极性和主动性。

  (三)巩固练习

  1.11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。为什么?

  2.5个人坐4把椅子,总有一把椅子上至少坐2人。为什么?

  (四)课堂小结

  教师:通过这节课的学习,你有哪些新的收获呢?

  我们学会了简单的鸽巢问题。

  可以用画图的方法来帮助我们分析,也可以用除法的意义来解答。

【鸽巢原理教学设计】相关文章:

空巢老人调研报告08-19

关爱空巢老人心得05-17

《翠鸟移巢》的阅读答案02-06

养鸽创业计划书范文01-17

《关雎》教学设计03-24

初冬教学设计04-03

《海燕》教学设计04-03

《zcs》教学设计03-26

草原教学设计03-11

《景阳冈》教学设计03-05