我要投稿 投诉建议

圆锥的体积优秀教学设计

时间:2024-03-08 09:31:44 美云 教学设计 我要投稿

圆锥的体积优秀教学设计(通用10篇)

  作为一名教职工,有必要进行细致的教学设计准备工作,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么你有了解过教学设计吗?以下是小编收集整理的圆锥的体积优秀教学设计,欢迎阅读,希望大家能够喜欢。

圆锥的体积优秀教学设计(通用10篇)

  圆锥的体积优秀教学设计 1

  教学目的:

  使学生初步掌握圆锥体积的计算公式。

  并能运用公式正确地计算圆锥的体积,发展学生的空间观念。

  教学难点:

  圆锥的体积应用

  学具准备:

  等底等高的圆柱和圆锥,水和沙,多媒体课件

  教学时间:

  一课时

  教学过程:

  一、复习

  1、圆锥有什么特征?(课件出示)

  使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。

  2、圆柱体积的计算公式是什么?

  指名学生回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。

  二、导人新课

  出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。

  板书课题:圆锥的体积

  三、新课

  1、教学圆锥体积的计算公式。

  师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?

  指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。

  师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?

  先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。

  教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”

  然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

  学生分组实验。

  汇报实验结果。先在圆锥里装满水,然后倒入圆柱。正好3次可以倒满。

  多指名说

  接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。请大家注意观察,看看能够倒几次正好把圆柱装满?

  问:把圆柱装满一共倒了几次?

  生:3次。

  师:这说明了什么?

  生:这说明圆锥的体积是和它等底等高的圆柱的体积的。

  多找几名同学说。

  板书:圆锥的体积=1/3 ×圆柱体积

  师:圆柱的体积等于什么?

  生:等于“底面积×高”。

  师:那么,圆锥的体积可以怎样表示呢?

  引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。

  板书:圆锥的体积= 1/3 ×底面积×高

  师:用字母应该怎样表示?

  然后板书字母公式:V=1/3 SH

  师:在这个公式里你觉得哪里最应该注意?

  教学例1课件出示)一个圆锥的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  1/3×19×12=76((立方厘米))

  答:这个零件体积是76立方厘米。

  做一做:课件出示,学生回答后,教师订正。

  1、一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?

  2、已知圆锥的`底面半径r和高h,如何求体积V?

  3、已知圆锥的底面直径d和高h,如何求体积V?

  4、已知圆锥的底面周长C和高h,如何求体积V?

  5、一个圆锥的底面直径是20厘米,高是9厘米,它的体积是多少?

  例2课件出示)在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)

  判断:课件出示,学生回答后,教师订正。

  1、圆柱体的体积一定比圆锥体的体积大( )

  2、圆锥的体积等于和它等底等高的圆柱体积的 ( ) 。

  3、正方体、长方体、圆锥体的体积都等于底面积×高。 ( )

  4、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米( )

  四、教师小结。

  这节课我们学习了哪些知识?你还有什么问题吗?

  五、作业。课本练习

  圆锥的体积优秀教学设计 2

  设计意图:

  本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,旨在让学生理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。

  我的设计是“颠倒课堂”的一次尝试,旨在让学生晚上在家观看教学视频,进行深层次的掌握学习,一次学不会,还可以反复学习,直到学会为止。这是与传统的“白天在课室听老师讲课,晚上回家做作业”的方式正好相反的课堂模式。

  教学目标:

  1、理解掌握求圆锥体积的计算公式和推导过程,会运用公式计算圆锥的体积。

  2、会应用公式计算圆锥的体积并解决一些实际问题。

  3、帮助学生建立空间观念,培养学生抽象的逻辑思维能力,激发学生的想象力。

  教学重点:

  使学生初步掌握圆锥体积的计算方法并解决一些实际问题

  教学难点:

  圆锥体积计算方法和推导过程。

  教学过程:

  一、复习铺垫:

  1、揭示课题:今天我们一起来探究如何计算圆锥的体积。

  2、以旧引新:我们知道,圆柱的体积=底面积×高,字母公式:V=Sh。如何计算圆锥的体积呢?圆柱的底面是圆的,圆锥的底面也是圆的,圆锥的体积与圆柱的体积有没有关系呢?

  二、实验操作:

  1、请看接下来的2个实验:

  2、实验准备:2组等底等高的圆柱、圆锥容器;水与沙子。

  3、播放视频:

  实验一:我们将圆锥容器装满水,再往圆柱容器里面倒(倒3次),3次正好装满。

  实验二:我们将圆柱容器装满沙,再往圆锥容器里面倒(倒3次),3次正好装满。

  4、通过实验你们发现了什么?

  三、公式推导:

  1、通过两次的实验我们可以得出结论:

  圆柱的体积是与它等底等高的圆锥体积的3倍;也就是说圆锥的体积是与它等底等高的圆柱体积的。

  2、写成公式:圆锥的体积=与它等底等高的圆柱体积×;因为圆柱的体积=底面积×高,所以圆锥的体积=底面积×高×;写成字母公式:V= Sh。因此,要求圆锥的体积,必须知道圆锥的底面积与高。

  3、如果知道圆锥的底面半径r与高h,圆锥的体积公式还可以怎样表示呢?因为底面圆的面积s=πr2,所以圆锥的体积V= πr2h。

  4、在应用圆锥体积公式时不要忘记乘!

  四、知识应用

  1、接下来我们应用公式解决实际问题。

  题:工地上有一堆沙子,近似于一个圆锥体,沙堆底面直径4m,高1.2m。这堆沙子大约有多少立方米?(得数保留两位小数)

  2、分析题意:要求这堆沙子大约有多少立方米,就是求圆锥体沙堆的体积。根据公式我们需要知道沙堆的底面积与高。根据底面直径4m,可以先求出沙堆的底面积,再用底面积乘高求出沙堆的体积。

  3、列式解答。(分步与综合)

  五、知识小结:

  今天我们学习了圆锥的体积计算:V= Sh= πr2h。

  在应用圆锥体积公式时我们要记住乘,还要留意单位名称是否统一!

  六、结束。

  【课堂教学设想】

  1、学生看完视频对于实验成功的必要条件“等底等高”、“每次倒满”等有了一定的认识,且会跃跃欲试,为课堂的`实验操作做了铺垫。

  2、课堂上组织学生分小组实验:

  圆柱与圆锥等底不等高时,实验结果会怎样?

  圆柱与圆锥等高不等底时,实验结果会怎样?

  “圆锥的体积是圆柱体积的”这一关系存在的条件是什么?

  圆锥与圆柱体积相等时,如果高相等,底面积有什么关系?如果底面积相等,高有什么关系?

  3、课堂检测,促进知识内化。

  【教学反思】

  本节课教学目标定位为学生初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,所以设计时力求每个环节都为教学目标服务。

  课前观看视频。首先回忆圆柱体积公式,通过圆柱与圆锥的底面都是圆的,让学生猜测圆柱与圆锥体积之间的关系,然后通过两次的实验验证圆锥体体积的计算方法,实现了一个“做数学”的过程。通过课外的视频学习,能加深学生对图形特征以及图形之间的内在联系的认识,进一步领会转化的数学思想。

  课内通过小组实验操作进一步验证“圆锥的体积是圆柱体积的”这一关系存在的必要条件是等底等高,从而推导出圆锥的体积计算公式:V= Sh= πr2h,从而培养了学生构建知识系统的能力和知识迁移及综合整理的能力。课堂上不再重复学习微课程中的知识,把时间花在完成练习上,通过不同的练习检测学生的掌握情况,对暴露的问题进行有针对性的辅导,从而提高教学效率。

  圆锥的体积优秀教学设计 3

  【教学过程】

  一、复习

  1、圆柱的体积公式是什么?用字母怎样表示?

  2、求下列各圆柱的体积。(口答)

  (1)底面积是5平方厘米,高是6厘米。

  (2)底面半径4分米,高是10分米。

  (3)底面直径2米,高是3米。

  师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。

  师:圆锥的底面是什么形状的?什么是圆锥的高?请拿出一个同学们自己做的圆锥讲一讲。

  生:圆锥的底面是圆形的。

  生:从圆锥的顶点到底面圆心的距离是圆锥的高。

  师:你能上来指出这个圆锥的高吗?

  师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。

  师:你们看到过哪些物体是圆锥形状的?

  师:对。在生活中有很多圆锥形的物体。

  师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积。请同学们拿出一对等底等高圆锥和圆柱。想一想用什么办法能研究出等地等高的圆锥和圆柱的体积之间存在什么关系,然后把你的想法放在小组中交流,再分工进行实验。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。

  出示小黑板:

  1、圆锥的体积和同它等底等高的圆柱的体积有什么关系?

  2、圆锥的体积怎么算?体积公式是怎样的?

  学生分组做实验,老师巡回指导。

  师:我们先来回答第一个问题。在你们做实验用的圆锥的体积和同它等底等高的圆柱的体积有什么关系?

  生:圆柱的体积是圆锥体积的3倍。

  生:圆锥的体积是同它等底等高的圆柱体权的1/3。

  板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。

  师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?

  生:我们先在圆锥内装满沙,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。

  师:说得很好。那么圆锥的体积怎么算呢?

  生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。

  师:谁能说说圆锥的体积公式。

  生:圆锥的体积公式是v=1/3sh。

  师:老师也做了一个同样实验请同学认真看一看。想一想有什么话对老师说吗?请看电视。

  师:请大家把书翻到第42页,将你认为重要的`字、词、句圈圈划划,并说说理由。

  生:我认为"圆锥的体积v等于和它等底等高的圆柱体积的三分之一。"这句话很重要。

  生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。

  师:大家说得很对,那么为什么这几个字特别重要?如果底和高不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。大家还有两个是等底不等高的圆锥和圆柱,请同学们用刚才做实验的方法试试看。

  师:等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。师:可见圆锥的体积等于圆柱体积的三分之一的关键条件是等地等高。

  师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系来解决下列问题。

  例l :一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  (两名学生板演,老师巡视)

  师:这位同学做的对不对?

  生:对!

  师:和他做的一-样的同学请举手。(绝大多数同学举手)

  师:那么这位同学做错在哪里呢?(指那位做错的同学做的)

  生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。

  师:对了。刚才我们通过实验知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即v=1/3sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。

  三、巩固练习

  (1)、一个圆锥的底面积是25平方分米,高是9分米,它体积是多少?

  (2)、求圆锥的体积(看图)

  (3)、一个圆锥的底面直径是20厘米,高是8厘米,它体积是多少?(图)师:三题都填对了。接下来我要考考你们,看是不是掌握了今天的知识。

  2、填空。

  (1) 一个圆锥的体积是8立方分米,底面积是2平方分米,高( )分米、。(2)圆锥形的容器高12厘米,容器中盛满水,如将水全部倒入等底的圆柱形的器中,水面高是( )厘米。

  3、选择

  (1) 两个体积相等的等底的圆柱和圆锥,圆锥的高一定是圆柱高的( ) 。

  (2) 把一段圆柱形的木棒削成一个最大的圆锥,削去部分的体积是圆锥体积的( )。

  四、课堂总结

  师:今天,我们学习了什么内容?怎样计算圆锥的体积?

  对,这节课我们认识了圆锥,并推导出了圆锥的体积计算公式。回去以后,先回忆一下今天学过的内容,想一想,在运用v=1/3sh这个公式算圆锥体积时,要特别注意什么。

  五、布置作业

  课外作业:有一个高9厘米,底面积是20平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水?(边做实验边讨论)

  【教学目的】

  1、使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。

  2、培养学生初步的空间观念、逻辑思维能力、动手操作能力。

  3、向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。

  【教学重点】

  圆锥的体积计算。

  【教学难点】

  圆锥的体积公式推导。

  【教学关键】

  圆锥的体积是与它等底等高的圆柱体积的三分之一。

  【教具准备】

  多媒体、等底等高的圆柱和圆锥空心实物各一个,水若干。

  【学具准备】

  空心圆锥和圆柱实物各一个,沙土若干。

  圆锥的体积优秀教学设计 4

  教学内容:

  冀教版小学数学六年级下册第40~42页。

  教学目标:

  1、知识与技能:知道圆锥的各部分名称,探索并掌握圆锥的体积公式,会用公式计算圆锥的体积。

  2、过程与方法:通过观察、讨论、实验等活动,经历认识圆锥和探索圆锥体积计算公式的过程

  3、情感态度与价值观:积极参加数学活动,了解圆锥和圆柱之间的联系获得探索数学公式的活动经验。

  教学重难点:

  教学重点:了解圆锥的特点,探索并理解圆锥体积的计算公式会用公式计算圆锥的体积。

  教学难点:理解圆锥的高和圆锥体积公式中“Sh”表示的实际意义。

  教具学具:

  1、等底等高的圆柱和圆锥型容器,一些沙子。

  2、多媒体。

  教学流程:

  一、炫我两分钟

  主持学生指名叫学生回答下列问题:

  1.圆柱有几个面?各有什么特点?

  2.怎样计算圆柱的体积?

  学生回答问题。

  【设计意图:通过学生主持炫我两分钟,使学生复习以前学过的相关知识,在轻松愉快的氛围中自然引入本节所学知识。】

  二、创设情境

  1、教师先出示一个圆柱形容器,提问:如果想知道这个容器的容积,怎么办?

  2、出示问题情境:

  最近老师家准备装修,准备了一堆沙子,可是老师遇到了一个难题,大家和我一起解决好吗?(出示沙堆图片),这堆沙子的底面半径是2米,高是1.5米,工人告诉我要用6立方米沙子,我不知道我准备的这些沙子够不够?怎样计算这堆沙子的体积呢?今天我们就一起来研究一下圆锥体积的计算方法。(板书课题)

  【设计意图:在谈话、创设问题情境的过程中,引起学生的认知冲突,从而产生求知欲望。】

  三、探究新知

  尝试小研究一(课前):了解圆锥的特点

  1.观察圆锥形的物体或图片,它们有哪些特点?

  我的发现:

  2.圆锥由1个( )面和1个( )面2个面组成,圆锥的底面是一个( ) ,圆锥的侧面是一个( ) 。

  3.从圆锥顶点到底面圆心的距离是圆锥的( ),用字母( )表示。

  4.怎样计算圆锥的体积?

  我的猜想:( )

  尝试小研究二(课上):推导圆锥体积的计算公式

  1、引导学生借助圆柱,探讨圆锥的体积公式。

  ①、猜:圆锥的体积怎样计算呢?大胆猜一下。真的是这样吗?

  ②、是怎样推导的呢?你有什么想法?

  下面我们就用实验的方法来推导圆椎的体积公式。

  老师提供了实验用具,拿出来看看:(有圆柱,有圆椎,有沙子,有水)都有吗?

  2、用实验的方法,推导圆锥的体积公式。

  ①、引导学生观察用来实验的圆锥、圆柱的特点。

  其实老师已经准备好了材料,在你们的小组长手中,看一看,比一比,有什么特点吗?(学生发现等底等高)(师板书等底等高)

  ②、学生实验:

  你想怎么实验?(小组可以议一议)(老师指导:倒一下)

  请大家以小组为单位进行实验,在实验中,注意作好记录,思考三个问题:(大屏幕出示这三个问题)(学生读一读思考题)

  A:你们小组是怎样进行实验的?

  B:通过实验,你们发现了所给的圆锥、圆柱在体积上有什么关系?

  C:根据这个关系怎样求出圆锥的体积?

  (教师指导:为了让实验更准确些,可以用尺子将沙子刮平再倒入)

  ③、学生交流汇报,完成计算公式的推导:

  小组汇报,师板书。

  圆锥的体积等于和它等底等高的圆柱体积的三分之一。

  V=1/3Sh

  【设计意图:通过小组合作,观察、讨论、实验等活动,经历认识圆锥和探索圆锥体积计算公式的`过程,知道圆锥的各部分名称,探索并掌握圆锥的体积公式,会用公式计算圆锥的体积。】

  四、解决问题,巩固练习

  (一)运用这个公式解决老师提出的问题,帮助老师解决问题。

  1、 学生试做。

  2、对子同学交流。

  3、小组交流。

  4、展示汇报。

  (二)判断: 用手势来回答

  1、圆柱的体积是圆锥体积的3倍。( )

  2、一个圆柱,底面积是12平方分米,高是5分米,它的体积是20立方分米( )

  3、把一个圆柱木块削成一个最大的圆锥,削去的体积是圆柱体积的三分之二。( )

  (三)完成教材第42页“试一试”。

  【设计意图:通过练习,加深对本节课知识的了解,使学生更好的掌握本节课所学知识,并提高学生应用所学知识解决实际问题的能力。】

  五、盘点收获

  通过这节课的学习,你有什么收获?你还想了解哪些知识

  【设计意图:引导学生进行小结,培养学生的探究欲望,有利于知识的积累和自主学习能力的提高。】

  六、拓展延伸

  教材第42页“练一练”第4题。

  【设计意图: 把课上的知识延伸到课外,使学生进一步感受数学于生活并应用于生活。】

  板书设计: 圆锥和圆锥的体积

  圆锥的体积等于和它等底等高的圆柱体积的三分之一。

  圆锥的体积=底面积×高×1/3

  V=1/3Sh

  5 O

  圆锥的体积优秀教学设计 5

  教学目标

  1.理解求圆锥体积的计算公式。

  2.会运用公式计算圆锥的体积。

  3.培养同学们初步的空间观念和思维能力;让同学们认识转化的思考方法。

  教学重点

  圆锥体体积计算公式的推导过程。

  教学难点

  正确理解圆锥体积计算公式。

  教学过程

  一、铺垫孕伏

  1.提问:

  (1)圆柱的体积公式是什么?

  (2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。

  2.导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的体积)

  二、探究新知

  (一)指导探究圆锥体积的计算公式

  1.教师谈话:

  下面我们利用实验的.方法来探究圆锥体积的计算方法。老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土。实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里。倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

  2.学生分组实验。

  学生汇报实验结果:

  ①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。

  ②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。

  ③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。

  4.引导学生发现:

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的 。

  板书:

  5.推导圆锥的体积公式:用字母表示圆锥的体积公式.板书: 。

  6.思考:要求圆锥的体积,必须知道哪两个条件?

  7.反馈练习

  圆锥的底面积是5,高是3,体积是( )。

  圆锥的底面积是10,高是9,体积是( )。

  (二)算一算

  学生独立计算,集体订正。

  说说解题方法。

  三、全课小结

  通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

  圆锥的体积优秀教学设计 6

  【教学内容】

  圆锥的体积(1)(教材第33页例2)。

  【教学目标】

  1、参与实验,从而推导出圆锥体积的计算公式,会运用圆锥的体积公式计算圆锥的体积。

  2、培养学生初步的空间观念,让学生经历圆锥体积公式的推导过程,体验观察、比较、分析、总结、归纳的学习方法。

  【重点难点】

  圆锥体积公式的推导过程。

  【教学准备】

  同样的圆柱形容器若干,与圆柱等底等高的圆锥形容器,与圆柱不等底等高的圆锥形容器若干,沙子和水。

  【情景导入】

  1、复习旧知,作出铺垫。

  (1)教师用电脑出示一个透明的圆锥。

  教师:同学们仔细观察,圆锥有哪些主要特征呢?

  (2)复习高的概念。

  A、什么叫做圆锥的高?

  B、请一名同学上来指出用橡皮泥制作的圆锥模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)

  2、创设情境,引发猜想。

  (1)电脑呈现出动画情境(伴图配音)。

  夏天,森林里闷热极了,小动物们都热得透不过气来。一只小白兔去“动物超市”购物,它在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(动画中圆柱形和圆锥形的雪糕是等底等高的)

  (2)引导学生围绕问题展开讨论。

  问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个怎么样?”(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)

  问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)

  问题三:如果你是森林中的.小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法跟小组交流一下,再向全班同学汇报)

  过渡:小白兔究竟跟狐狸怎样交换才合理呢?学习了“圆锥的体积”后,大家就会弄明白这个问题。

  【新课讲授】

  自主探究,操作实验

  下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积之间的关系,解决电脑博士给我们提出的问题。

  出示思考题:通过实验,你们发现圆柱的体积和圆锥的体积之间有什么关系?你们的小组是怎样进行实验的?

  (1)小组实验。

  A、学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的也有5倍关系的。)

  B、同组的学生做完实验后,进行交流,并把实验结果写在黑板上。

  (2)全班交流。

  ①组织收集信息。

  学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在黑板上:

  A、圆柱的体积正好等于圆锥体积的3倍。

  B、圆柱的体积不是圆锥体积的3倍。

  c、圆柱的体积正好等于圆锥体积的8倍。

  D、圆柱的体积正好等于圆锥体积的5倍。

  E、圆柱的体积是等底等高圆锥体积的3倍。

  f、圆锥的体积是等底等高圆柱体积的。

  ②引导整理信息。指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)

  ③参与处理信息。围绕3倍关系情况讨论:请这几个小组同学说出他们是怎样通过实验得出这一结论的?哪个小组得出的结论更科学合理一些?

  圆锥的体积是等底等高圆柱体积的。(突出等底等高,并请学生拿出实验用的器材,自己比划、验证这个结论)引导学生自主修正另外两个结论。

  (3)诱导反思。为什么有两个实验小组的结果不是3倍的关系呢?

  (4)推导公式。尝试运用信息推导圆锥的体积公式。这里的sh表示什么?为什么要乘?要求圆锥体积需要知道几个条件?

  (5)解决问题。童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高,之后播放狐狸拿着圆锥形雪糕离去的画面)

  【课堂作业】

  完成教材第34页“做一做”第1题。

  先组织学生在练习本上算一算,然后指名汇报。

  答案:13×19×12=76(cm3)

  【课堂小结】

  教师:请你说说知道哪些条件就可以求圆锥的体积?学生自由交流。

  【课后作业】

  1、完成练习册中本课时的练习。

  2、教材第35页第3、4、5题。

  答案:第3题:提示:可以利用直尺、软尺等工具测量出圆锥形实物的底面直径(或者底面周长)和高,再根据V圆锥=1/3sh计算出该物体的体积。

  第4题:(1)25、12(2)423、9

  第5题:(1)×(2)√(3)×

  圆锥的体积优秀教学设计 7

  教学目标

  1.在操作和探究中理解并掌握圆锥的体积计算公式。

  2.引导学生探究、发现,培养学生的观察、归纳等能力。

  3.在实验中,培养学生的数学兴趣,发展学生的空间观念。

  教学重点

  圆锥体积的计算公式的推导过程。

  教学难点

  圆锥体积计算公式的理解。

  教学过程

  一、情景铺垫,引入课题

  教师出示画面,画面中两个小孩正在商店里买蛋糕,蛋糕有圆柱形和圆锥形两种。圆柱形蛋糕的标签上写着底面积16cm2,高20cm,单价:40元/个;圆锥形的蛋糕标签上写着底面积16 cm2,高60 cm,单价:40元/个。

  出示问题:到底选哪种蛋糕划算呢?

  教师:图上的两个小朋友在做什么?他们遇到什么困难了?他们应该选哪种蛋糕划算呢?谁能帮他们解决这个问题?

  学生明白首先要求出圆锥形蛋糕的体积。

  教师:怎样计算圆锥的体积?这节课我们一起研究圆锥体积的计算方法。

  揭示课题。板书课题:圆锥的体积

  二、自主探究,感悟新知

  1.提出猜想,大胆质疑

  教师:谁来猜猜圆锥的体积怎么算?

  2.分组合作,动手实验

  教师:圆锥的体积和圆柱的体积之间究竟有没有关系呢?如果有关系的话,它们之间又是一种什么关系?通过什么办法才能找到它们之间的关系呢?带着这些问题,请同学们分组研究,通过实验寻找答案。

  教师布置任务并提出要求。

  每个小组的桌上都有准备好的器材:等底等高空心的或实心的圆柱和圆锥、河沙或水、水槽等不同的器材,以及一张可供选用的实验报告单。四人小组的成员分工合作,利用提供的器材共同想办法解决问题,找出圆锥体积的计算方法。并可根据小组研究方法填写实验报告单。

  学生小组合作探究,教师巡视指导,参与学生的活动。

  3.教师用展示实验报告单

  教师:你们采用了哪些方法研究等底等高的圆柱和圆锥之间的关系?通过实验,你们发现了什么?

  方案一:用空心的圆锥装满水,再把水倒在与这个圆锥等底等高的空心圆柱形容器中,倒了三次,刚好装满圆柱形容器,因为圆柱的体积=底面积×高,所以圆锥的体积=1/3×圆柱的体积。

  方案二:方法与一小组的方法基本一样,只不过装的是河沙。我们的结论和一小组一样,圆锥的.体积也是这个等底等高圆柱体积的三分之一。

  教师:二个小组采用的实验方法不一样,得出的结论都一样。老师为你们的探索精神感到骄傲。

  教师把学生们的实验过程演示一遍,让学生再经历一次圆锥体积的探究过程。

  4.公式推导

  教师:圆柱的体积怎样计算?圆锥的体积又怎样计算?

  教师引导学生理解只要求出与这个圆锥等底等高的圆柱的体积,再乘以三分之一,就得到圆锥的体积。

  板书:圆柱的体积=底面积×高

  V=S×h

  ↓〖4↓〖6↓

  圆锥的体积=1/3×底面积×高

  V=1/3×S×h

  教师:圆柱的体积用字母V表示,圆锥的体积也用字母V表示。怎样用字母表示圆锥的体积公式?

  抽学生回答,教师板书:V=1/3Sh

  教师引导学生理解公式,弄清公式中的S表示什么,h表示什么。

  要求学生阅读教科书第39页和第40页例1前的内容。勾画出你认为重要的语句,并说说理由。

  5.运用所学知识解决问题

  教学例1。

  一个铅锤高6 cm,底面半径4 cm。这个铅锤的体积是多少立方厘米?

  学生读题,找出题中的条件和问题。

  引导学生弄清铅锤的形状是圆锥形。

  学生独立解答。抽学生上台展示解答情况并说出思考过程。

  三、拓展应用,巩固新知

  1.教科书第42页第1题

  学生独立解答,集体订正。

  2.填一填

  (1)圆柱的体积字母表达式是(),圆锥的体积字母表达式是()。

  (2)等底等高的圆柱的体积是圆锥体积的()倍。

  抽生回答,熟悉圆锥的体积计算公式。

  3.把下列表格补充完整

  形状 底面积S(m2) 高h(m) 体积V(m3)

  圆锥 15 9

  圆柱 16 0.6

  学生在解答时,教师巡视指导。

  4.教科书第42页练习九第2题

  分组解答,抽生板算。教师带领学生集体订正。

  5.应用公式解决实际问题

  教师:现在我们再来帮助这两个同学解决他们的难题。

  要求学生独立解答新课前买蛋糕的问题。

  抽学生说出计算的结果。明白两个蛋糕的体积一样大,因此买两种形状的蛋糕都可以。

  四、课堂总结

  教师:这节课的学习中,你都有哪些收获?有关圆锥体积的知识还有哪些不清楚的?

  圆锥的体积优秀教学设计 8

  教学目标

  1、知识目标:使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。、

  2、能力目标:培养学生初步的空间观念,动手操作能力和逻辑思维能力。

  3、情感目标:向学生渗透知识间可以相互转化的辩证唯物主义思想,让学生学习将新知识转化为原有知识的学习方法、

  教学重难点

  教学重点:圆锥的体积计算。

  教学难点:圆锥的体积计算公式的推导。

  教学工具

  ppt课件。

  教学过程

  一、导入新课

  1、出示铅锤

  师:同学们,我们刚认识了圆锥,在学习“圆锥的认识”时认识了这个物体—铅锤。铅锤的外形是圆锥形的,这个铅锤所占空间的大小叫做这个铅锤的体积。

  问:你们有没有办法来测量这个铅锤的体积?

  生:排水法

  师:同学们回答很积极,想到了之前学过的排水法,那咱们对这个方法进行一下评价(学生想到了,并不是所有的圆锥都可以用排水法来测量体积。比如一些庞大的圆锥形物体)

  2、PPT出示圆锥形麦堆和圆锥形的高大的建筑物

  像这种比较大的圆锥形的物体就不适合用排水法测量体积,所以我们需要找到一个解决此类问题的普遍的方法。

  出示课题圆锥的体积

  二、探究新知

  1、回忆

  师:我们学过那些形状的物体的体积的计算方法

  生:长方体正方体圆柱体(学生边说,师边PPT出示图片)

  师:我们在推导圆柱体体积的计算方法的时候是将圆柱体转化长方体或者正方体,转化前后体积不变,你觉得圆锥体和哪种形状的物体有关系呢?

  生:圆柱体

  师:为什么?

  生:圆锥体和圆柱体都有圆形的底面

  2、猜测

  师:既然大家都认为圆锥体和圆柱体由一定的关系,你能大胆猜测一下,圆锥体和圆柱体的体积之间有怎样的关系么?

  (学生猜测,找学生说说猜测的结果)

  3、验证

  师:有了猜测我们就通过实验来验证咱们的猜测(利用学具进行验证,一边实验,一边填写实验记录单)

  (找学生读一读表格中需要填写的内容,并提问,比较圆柱和圆锥的时候,是比较的什么?为学生的.实验操作做一个引领。操作过程6—8分钟)

  4、实验后讨论,并分组汇报实验结果

  (在实验中我设置了两次不同的实验,第一次是等底等高的圆柱和圆锥,第二次是等底不等高的圆柱和圆锥,以便对比得出结论,并不是所有的圆柱和圆锥都符合3倍关系,是有前提条件的)

  5、结论

  通过操作发现:圆锥的体积是同它等底等高的圆柱体积的1/3

  板书:圆柱的体积=底面积×高

  圆锥的体积=底面积×高÷3

  三、运用知识

  1、PPT出示填空和判断

  师:我们学会了求圆锥的体积的计算方法,现在我们利用所学知识来解决生活中的实际问题。

  2、PPT出示例题3

  (学生计算,计算过程中巡视学生解题情况,挑选两种不同的解题方法展示)

  四、拓展

  PPT出示拓展题

  五、总结,谈收获

  通过本节课的学习,你有哪些收获?

  圆锥的体积优秀教学设计 9

  教学内容:

  教科书第20~21页例5及相应的 试一试,练一练和练习四的第1~3题。

  教学目标:

  1.组织学生参与实验,从而推导出圆锥体积的计算公式。

  2.会运用圆锥的体积计算公式计算圆锥的体积。

  3.培养学生观察、比较、分析、综合的能力以及初步的空间观念。

  4.以小组形式参与学习过程,培养学生的合作意识。

  5.渗透转化的数学思想。

  教学重点:

  理解和掌握圆锥体积的计算公式。

  教学难点:

  理解圆柱和圆锥等底等高时体积间的倍数关系。

  教学资源:

  等底等高的'圆柱和圆锥容器一套,一些沙或米等。

  教学过程:

  一、联系旧知,设疑激趣,导入新课。

  1.我们已经知道了哪些立体图形体积的求法?(学生回答时老师出示相应的教具---长方体,正方体圆柱体,然后板书相应的计算公式。)

  2.我们是用什么方法推出圆柱体积的计算公式的?(是把圆柱体转化为长方体来推导的。板书:转化)

  3.(出示教具)大家觉得这个圆锥与哪个立体图形的关系最近呢?(老师比较学生指出的圆柱与圆锥的底和高,引导学生发现这个圆柱与圆锥等底等高。)

  4.大家觉得我们今天要研究的圆锥的体积可能转化为什么图形来研究比较简单呢?能说说自己的理由吗?

  5.它们的体积之间到底有什么关系呢?

  二、实验操作、推导圆锥体积计算公式。

  1.课件出示例5。

  (1)通过演示使学生知道什么叫等底等高。

  (2)让学生猜想:图中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?

  (3)实验操作,发现规律。

  (用学具演示)在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的 。

  老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?

  (4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的 。

  2.教师课件演示

  3.学生讨论实验情况,汇报实验结果。

  4.启发引导推导出计算公式并用字母表示。

  圆锥的体积=等底等高的圆柱的体积 1/3=底面积高1/3

  用字母表示:V= 1/3Sh

  小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以1/3 ?

  5.教学试一试

  (1)出示题目

  (2)审题后可让学生根据圆锥体积计算公式自己试做。

  (3)批改讲评。注意些什么问题。

  三、发散练习、巩固推展

  1.做练一练第1.2题。

  指名一人板演,其余学生做在练习本上。集体订正,强调要乘以1/3 。

  2.做练习四第1.2题。

  学生做在课本上。之后学生反馈。错的要求说明理由。

  四、小结

  这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

  学生交流

  五、作业

  练习四第3题。

  圆锥的体积优秀教学设计 10

  教学目标

  1、推导出圆锥体积的计算公式。

  2、会运用圆锥的体积公式计算圆锥的体积。

  重点难点

  圆锥体积公式的推导过程。

  教学过程

  一、板书课题

  师:同学们,今天我们来学习“圆锥的体积”(板书课题)。

  二、出示目标

  理解并掌握圆锥的体积计算公式,并能运用公式解决实际问题。

  三、自学指导

  认真看课本第33页到第34页的`例2和例3,边看书,边实验,理解圆锥的体积计算方法,并将例3补充完整。想:

  1、圆锥的体积与圆柱的体积有什么关系?

  2、圆锥的体积计算公式是什么?用字母如何表示?

  5分钟后,比谁能正确地回答思考题并能做对检测题!

  检测题

  完成课本第34页“做一做”第1、2题。

  小组合作,校正答案

  后教

  口答

  一个体积是1413立方分米的铁块,可以制造成多少个底面半径是3分米、高是5分米的圆锥形零件?

  小组内互相说。

  当堂训练

  1、必做题:

  课本第35页第5、6、7题。(做在作业本上)

  2、选做题:

  有一个近似圆锥形的沙堆,底面周长是12.56米,高1.2米。把这些沙铺在一个长4米、宽3米的长方形沙坑里,可以铺多厚?(得数保留两位小数)

【圆锥的体积优秀教学设计】相关文章:

《圆锥的体积》教学设计04-17

圆锥的体积教学设计03-02

[精华]圆锥的体积教学设计11-24

小学数学《圆锥的体积》优秀教学设计(精选10篇)03-09

六年级《圆锥体积》教学设计07-02

圆柱的体积教学设计09-01

《圆柱的体积》教学设计06-26

圆锥认识的教学设计推荐02-23

《圆柱和圆锥的认识》的教学设计04-20

长方体的体积教学设计02-02