我要投稿 投诉建议

复数概念的教学设计

时间:2021-01-09 11:24:10 教学设计 我要投稿

复数概念的教学设计

  复数的学习是高中数学一个很重要的点,学好复数,才能更加深刻理解数学,下面是小编为大家提供的复数概念的教学设计,温我们一起来看看吧!

复数概念的教学设计

  复数概念的教学设计

  教学目标

  (1)掌握复数的有关概念,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。

  (2)正确对复数进行分类,掌握数集之间的从属关系;

  (3)理解复数的几何意义,初步掌握复数集C和复平面内所有的点所成的集合之间的一一对应关系。

  (4)培养学生数形结合的数学思想,训练学生条理的逻辑思维能力.

  教学建议

  (一)教材分析

  1、知识结构

  本节首先介绍了复数的有关概念,然后指出复数相等的充要条件,接着介绍了有关复数的几何表示,最后指出了有关共轭复数的概念.

  2、重点、难点分析

  (1)正确复数的实部与虚部

  对于复数,实部是,虚部是.注意在说复数时,一定有,否则,不能说实部是,虚部是,复数的实部和虚部都是实数。

  说明:对于复数的定义,特别要抓住这一标准形式以及是实数这一概念,这对于解有关复数的问题将有很大的帮助。

  (2)正确地对复数进行分类,弄清数集之间的关系

  分类要求不重复、不遗漏,同一级分类标准要统一。根据上述原则,复数集的`分类如下:

  注意分清复数分类中的界限:

  ①设,则为实数

  ②为虚数

  ③且。

  ④为纯虚数且

  (3)不能乱用复数相等的条件解题.用复数相等的条件要注意:

  ①化为复数的标准形式

  ②实部、虚部中的字母为实数,即

  (4)在讲复数集与复平面内所有点所成的集合一一对应时,要注意:

  ①任何一个复数都可以由一个有序实数对()唯一确定.这就是说,复数的实质是有序实数对.一些书上就是把实数对()叫做复数的.

  ②复数用复平面内的点Z()表示.复平面内的点Z的坐标是(),而不是(),也就是说,复平面内的纵坐标轴上的单位长度是1,而不是.由于=0+1·,所以用复平面内的点(0,1)表示时,这点与原点的距离是1,等于纵轴上的单位长度.这就是说,当我们把纵轴上的点(0,1)标上虚数时,不能以为这一点到原点的距离就是虚数单位,或者就是纵轴的单位长度.

  ③当时,对任何,是纯虚数,所以纵轴上的点()()都是表示纯虚数.但当时,是实数.所以,纵轴去掉原点后称为虚轴.

  由此可见,复平面(也叫高斯平面)与一般的坐标平面(也叫笛卡儿平面)的区别就是复平面的虚轴不包括原点,而一般坐标平面的原点是横、纵坐标轴的公共点.

  ④复数z=a+bi中的z,书写时小写,复平面内点Z(a,b)中的Z,书写时大写.要学生注意.

  (5)关于共轭复数的概念

  设,则,即与的实部相等,虚部互为相反数(不能认为与 或是共轭复数).

  教师可以提一下当时的特殊情况,即实轴上的点关于实轴本身对称,例如:5和-5也是互为共轭复数.当时,与互为共轭虚数.可见,共轭虚数是共轭复数的特殊情行.

  (6)复数能否比较大小

  教材最后指出:“两个复数,如果不全是实数,就不能比较它们的大小”,要注意:

  ①根据两个复数相等地定义,可知在两式中,只要有一个不成立,那么.两个复数,如果不全是实数,只有相等与不等关系,而不能比较它们的大小.

  ②命题中的“不能比较它们的大小”的确切含义是指:“不论怎样定义两个复数间的一个关系‘<’,都不能使这关系同时满足实数集中大小关系地四条性质”:

  (i)对于任意两个实数a, b来说,a<b, a=b, b<a这三种情形有且仅有一种成立;

  (ii)如果a<b,b<c,那么a<c;

  (iii)如果a<b,那么a+c<b+c;

  (iv)如果a<b,c>0,那么ac<bc.(不必向学生讲解)

【复数概念的教学设计】相关文章:

复数的教学设计01-17

《数列的概念》教学设计03-22

概念图教学设计05-10

概念转变教学设计论文03-24

初中数学概念的教学设计04-23

理解集合的概念教学设计02-12

正弦定理概念教学设计02-07

单数双数概念的教学设计02-25

小学名词复数教学设计01-17