五年级上册数学教学设计
在教学工作者开展教学活动前,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。优秀的教学设计都具备一些什么特点呢?下面是小编收集整理的五年级上册数学教学设计,仅供参考,大家一起来看看吧。
五年级上册数学教学设计1
【教学内容】
教材第67页例1、“做一做”和练习十五第1、2题。
【教学目标】
1.根据等式的性质,使学生初步掌握解方程及方程检验的方法,并理解方程和方程的解的概念。
2.培养学生的分析能力及应用所学知识解决实际问题的能力。
3.帮助学生养成自觉检验的良好习惯。
【重点难点】
理解并掌握解方程的方法。
【教学准备】
实物投影及多媒体课件。
【复习导入】
1.提问:什么是方程?等式有什么性质?
2.你会根据下面的图形列出方程吗?
3.填一填。
4.导入新课:前面两节课我们借助天平平衡,学习了方程的意义和等式的性质,今天这节课我们继续研究与方程有关的新知识。
【新课讲授】
1.方程的解与解方程的概念。
(1)理解“方程的解”和“解方程”的意义。
教师演示:先在左盘放上一个重100g的杯子,再往杯子里加入xg的水,天平失去平衡。
提问:怎样才能使天平保持平衡呢?
请学生到台前操作:天平右边的砝码加到250g时,天平平衡。
提问:你能根据天平两边物体质量的相等关系列出方程吗?
根据学生的回答,板书:100+x=250
启发:怎样才能求出方程中未知数x的值呢?你有什么办法?把你的办法和小组的同学交流。
学生活动后,组织反馈。
方法一:根据加减法之间的关系。
因为250-100=150,所以x=150。
方法二:根据数的组成。
因为100+150=250,所以x=150。
方法三:根据等式的性质。
因为100+x-100=250-100,所以x=150。
讲解:当x=150时,100+x=250这个方程的左右两边相等,像这样使方程左右两边相等的未知数的值,叫做方程的解。求方程解的过程叫解方程。这节课我们就来学习解方程。(出示课题)
(2)比较“方程的解”和“解方程”。
提问:方程的解与解方程到底有什么不同呢?
根据学生的交流情况,引导小结:方程的解是一个数,解方程是一个过程。 那么你怎样检验x的值是不是方程的解呢?
学生汇报。
(3)即时巩固。
完成教材第67页“做一做”第2小题。
2.教学例1。
(1)出示例1题图。
师:今天我们学习怎样利用天平平衡的原理来解方程。请同学们观察思考:怎样才能使天平左右两边只剩“x”,而保持天平平衡呢?
引导学生思考:根据在天平两边同时拿走相同的物品,天平仍然平衡的道理,即方程左右两边同时减去一个数,仍然相等。
追问:为什么要从方程两边同时减去3,而不是其他数?
结合学生的回答,教师板书:
x+3=9
x+3-3=9-3
x=6
提问:解方程的过程就是这样的吗?还应该注意些什么呢?
讲解:求方程中未知数x的值时,要先写“解”,表示下面的过程是求未知数x的值的`过程,再在方程的两边都减去3,求出方程中未知数x的值。写出这一过程时,要注意把等号对齐。(示范板书解方程的过程)
解:x+3=9
x+3-3=9-3
x=6
引导:x=6是不是正确的答案呢?我们可以通过检验来判断:把x=6代入原方程,看看左右两边是不是相等。
提问:如果等式的左右两边相等,说明什么?(说明答案是正确的)如果不相等呢?(说明答案是错误的)请同学们用这样的方法试着检验一下。(随学生的回答扼要板书检验过程)
师:像刚才这样,求方程中未知数的值的过程,叫做解方程。请同学们回忆刚才解方程的过程,你认为解方程时要注意什么?
(2)即时巩固。
解下列方程,并检验。
x+4.5=9100+x=100
师强调:解方程时注意等号要对齐,检验时过程要写清楚,养成检验的良好习惯。
教师提问:通过例1我们知道,方程两边同时减去一个相等的数,方程左右两边相等。请同学们想一想,如果方程两边同时加上一个数(0除外),左右两边还相等吗?
【课堂作业】
1.完成课本第67页“做一做”第1题。
2.解下列方程,并检验。
【课堂小结】
提问:这节课你学习了什么?还有什么收获
小结:通过刚才解方程的过程,我们知道了方程两边同时加上或减去一个相同的数,左右两边仍然相等。需要注意的是,在书写过程中写的都是等式,不是递等式。
【课后作业】
完成课本练习十五的第1、2题。
五年级上册数学教学设计2
一、教学背景分析
1、教材分析
《简单问题和混合运算》是冀教版教材第九册第二单元《小数乘法》第6时的内容,本课时内容是在学生掌握小数乘法的计算方法和整数乘法运算定律的基础上,把学生置身于解决问题的情境中,经历解决现实问题的过程,并用小数乘法知识解决简单问题,能应用运算定律进行小数简便运算。围绕“乘法的分配律”这一核心知识,通过“王老师要为幼儿园买香蕉、苹果各14千克,她带了150元钱,够吗?(香蕉5.6元/千克,苹果4.4元/千克)”的相关图片、信息,认识到现实生活中蕴含着大量的数学信息,感受到数学在现实世界中有着广泛应用,并能解决实际问题,能表达解决实际问题的过程。
2、学生分析
学生在整数乘法中,已经掌握了乘法的三种运算定律,会进行整数乘法的简便运算。五年级再一次安排简单问题和混合运算,目的是让学生利用简算方法的有效迁移,学会小数乘法的简便运算,并能利用相关知识解决有关混合运算实际问题。基于以上分析,我们确定本课的教学重、难点:促进学生已有经验的正迁移,解决生活中简单的实际问题,归纳概括小数混合运算的运算顺序。
二、案例描述
自学自研,教室里静得出奇,孩子们的大脑在飞速地运转,享受着独立思考的快乐;小组交流开始了,组长有序的组织,教室里热闹起来,你补充,我纠错,他质疑……合作的氛围热烈而真诚。当教室里慢慢静下来的时候,小组交流结束了,全班展示交流开始:
师:老师刚才发现,九组组长对本组6号进行了有效的帮助,她为小组赢得2分!刚才老听到二组有掌声响起,请二组组长起立,告诉我们为什么?
生:(二组组长杨宇宁)因为我们组的1、2、3、4、5号同学全没做出那种简单的方法,而6号同学做出来了,我们给他掌声鼓励!
师:真好!我们还学会了激励性评价!现在,我们目光聚焦前黑板,请对抗组来点评1组的展示。
(二组朱琪大方地走上讲台)
生1:大家好!我代表二组点评,请大家看这里,5.6×14+4.4×14=(5.6+4.4)×14=10×14=140(元),140﹤150,我认为最后这步比较很重要,还应该加上单位“元”,二组同学做对了!我给他4.5分,因为他们的书写上山了,最后一步还没写单位。
(马上有好几个学生站起,“我补充!”“我纠错!”“我质疑!”)
生2:(九组的崔佳豫跑上台来,转身面对大家)大家好!我来为二组点评的同学补充,从题中我们获得信息:香蕉每千克5.6元,5.6×14是王老师买14千克香蕉的价钱,苹果每千克4.4元,4.4×14是王老师买14千克苹果的价钱,5.6×14+4.4×14是王老师买香蕉和苹果的总钱数。我的补充完毕,大家还有什么意见或补充?
生3:(4组的陈思彤从座位上站起)我反驳,我认为最后一步单位不加也可以,因为题里已经明确给了单位,既然140﹤150写出来了,大家都明白单位是元。
师:我们大家来看一看,单位可以不加吗?(绝大多数学生点头认可)点评,我们给几分?
(学生有的在喊“3分”,有的伸出手指示意。)
师:因为朱琪这一学期刚转到我们学校,但她很快融入了我们得集体,有勇气上台点评,所以老师给他加1分的勇气分,给她4分,大家同意吗?(生齐答同意)
师:请大家目光继续聚焦我们的前黑板,请对抗组点评5组的展示。
生:(6组崔美地迅速站到黑板前)大家好!我代表6组点评,请大家看这里,香蕉每千克5.6元,苹果每千克4.4元,5.6+4.4表示每千克香蕉和苹果共多少元,因为王老师要为幼儿园买香蕉、苹果各14千克,所以再乘14就是王老师共花的钱数,然后再和王老师带的150元钱做一下比较,就知道钱带够了!5组的同学做对了,而且书写很工整,所以我给他们5分!我的点评完毕,大家还有什么疑问或补充吗?
……
师:点评我们给她几分?说出你的理由!
生:4分,因为声音太小了!
师:我们回头看一看两种做法,如果让你向你的组员推荐,你会推荐哪种方法?理由是什么?
生1:如果让我推荐,我会推荐5组的做法,因为5组方法更简便!
生2:(郭一萱迅速站起来)我有不同做法!5.6×14=78.4(元)4.4×14=61.6(元)78.4+61.6=140(元)140﹤150所以王老师带的钱够!
师:来,你说,老师帮你写到黑板上。(随学生回答,师板书在这种做法综合算式的旁边)
生3:(郭一萱的话音刚落,1组的贾鑫卓站起来)老师,我也有不同做法,5.6+4.4=10(元),10×14=140(元),140﹤150所以王老师带的钱够!
师:我们先来看郭一萱的补充,再与一组的展示做一下比较,两种方法有本质的区别吗?我们看郭一萱是怎么做的?(分步,孩子们边分析边回答着)那1组展示的是什么算式?(有学生在下面小声说“综合”)对,两者只是分步与综合的区别,所以同属于一种做法。贾鑫卓补充的也是。另外,两位同学的补充应该在两种方法点评完毕,下次注意!
师:如果让你推荐,你会推荐哪种?
生:(2组的杨宇宁站起)如果让我推荐,我会推荐郭一萱的做法,因为四年级老师说过,分步做更容易得分!
生:(4组的陈思彤又站起来)我同意杨宇宁的'意见,因为这样做可以的高分!
生:(郭一萱又站起来)我反驳,因为这种做法计算容易出错,还不如列综合算式得分多!(听课老师笑了,讲课老师也笑了,多么真实的课堂!)
师:刚才你们都是从分数角度来分析的,我们能从其他角度来想一想吗?
生:我还是觉得5组的方法更简单,因为5.6+4.4=10,得到的是整数,计算简便。
师:但这种方法适合所有的题吗?有什么条件吗?
生:我觉得只有数量相等的时候才可以用这种简便方法,而其他时候只能用一组的方法。
师:分析的很有道理,虽然整数乘法的运算定律对于小数乘法同样同样适用,但我们需要有选择的使用。同学们愿不愿接受更难的挑战?那就请你观察两个综合算式,说出运算顺序。
……
三、教学反思
在自学自研部分,虽然老师只叫两组不同方法展示,但在全班交流环节,分步、综合两种方法全展示在黑板上:(1)5.6×14+4.4×14=(5.6+4.4)×14=10×14=140(元)140﹤150(2)5.6×14=78.4(元)4.4×14=61.6(元)78.4+61.6=140(元)140﹤150(3)5.6×14+4.4×14=(5.6+4.4)×14=10×14=140(元),140﹤150(4)5.6+4.4=10(元),10×14=140(元),140﹤150而且当老师提出问题“如果让你向你的组员推荐,你会推荐哪种方法?理由是什么?”孩子们的理由是多角度的:“如果让我推荐,我会推荐5组的做法,因为5组方法更简便!”“如果让我推荐,我会推荐郭一萱的做法(5.6×14=78.4(元)4.4×14=61.6(元)78.4+61.6=140(元)140﹤150),因为四年级老师说过,分步做更容易得分!”“我同意杨宇宁的意见,因为这样做可以的高分!”“我还是觉得5组的方法更简单,因为5.6+4.4=10,得到的是整数,计算简便。”……随着孩子们讨论的逐步深入,老师抛出更深层次的问题“但这种方法适合所有的题吗?有什么条件吗?”“我觉得只有数量相等的时候才可以用这种简便方法,而其他时候只能用一组的方法。”在孩子们思维的交锋中,每个人都重新建构了自己的计算方法,或(1),或(2)……虽然算法多样化为构建过程提供了开放的场景,为每位学生提供了一个思考、表达自己独特见解的时空,但我们最终的落脚点,仍然是课堂所呈现出来的鼓励学生从多样化的讨论中吸纳别人的经验,把他人的思想精华纳入到自己的认知领域,由低层次思维向高层次思维逐层优化,逐步达到算法的个体优化。
一节课上下来,总体感觉,孩子们的精彩成就了精彩的课堂,让我们尽情享受数学课堂,让孩子们在知识的超市尽情畅游,体验生命的狂欢。走在课改的路上,我们边走边思考,思考让我们逐渐深刻!
五年级上册数学教学设计3
教学目标:
知识与技能
会利用乘法分配律、乘法结合律对含有字母的式子进行化简。
过程与方法
通过小组合作,对含有字母的式子进行化简,并能用语言描述化简的思考过程。
情感态度与价值观
在学习过程中体验学习的快乐,培养学习兴趣。
重点难点:
会利用乘法分配律、乘法结合律对含有字母的式子进行化简。
教学用具:
教学课件
教学过程:
一、 复习引入
口答
(1)6m减去5m的差;
(2)8b减去5的差;
(3)7x的4倍;
(4)5x与2x的和再加上3。
小结:我们可以用含有字母的式子来表示数量关系。
二、探究新知
(一)用乘法分配律化简
出示情境:小胖和小丁丁到书店里购买练习本,练习本每本x元,小胖买了3本,小丁丁买了2本。
师:你可以提出什么问题?
板书:他们一共要付多少元?小胖要比小丁丁多付多少元?
1、解决问题一:他们一共要付多少元?
学生交流、反馈:3x+2x;(3+2)x 师:你能将式子3x+2x用更简单的结果表示吗?为什么是5x?(3个x加上2个x就是5个x。)
板书计算过程
3x+2x =(3+2)x =5x(元)
答:他们一共要付5x元。
师:式子3x+2x可以用简单的5x来表示,这就是对含有字母式子的化简,也是我们今天要学习的内容。(板书课题:化简)
提问:想一想,将3x+2x化简为5x,运用了以前学习的什么运算定律?(用乘法分配律化简)
小结:以前学习的运算定律和运算性质同样适用于含有字母的.式子。
2、解决问题二:小胖要比小丁丁多付多少元?
师:你能将3x-2x化简吗?(3个x减去2个x是1个x)写出化简过程。
板书计算过程
3 x-2x =(3-2)x =x(元)
答:小胖要比小丁丁多付x元。
3、试一试
化简下列各式
m+7m 9k-8k 3+4x+3x 15x-9x+6x-6
(二)用乘法结合律化简
1、出示:每本练习本x元,如果小胖、小巧、小亚各买了3本,一共要付多少元?
学生独立列式,同桌交流。
反馈,结合学生反馈板书
做法1、
3x+3x+3x =(3+3+3)x =9x(元)
做法2、
33x =(33)x =9x(元)
小结:将33x化简为9x,运用了乘法结合律。
2、试一试
化简:5x4 34a+6a 三、练习
1、化简下列各式
刚才的这些算式哪些能化简,怎么化简?
6m-5m 8b-5 7x4 5x+2x+3。
再来两题难一点的
92x-3x (15m+9)3
2、判断
(1)12x+9x3 =21x3 =7x ( )
(2)42a+7a =8a+7a
=15a ( )
(3)3x+4y=7xy ( )
3、选择题
长方形的长是3a厘米,宽是2a厘米,它的周长是( )厘米。
A、5a B、6a C、10a D、12a
4、将一个式子化简后是12x,原式可能是什么?
课堂小结
说说今天学习了什么知识,有哪些收获?
五年级上册数学教学设计4
教材分析
义务教育课程标准实验教科书人教版小学数学五年级上册第五单元《平行四边形的面积 》第一课时 (包括教材80-81页例1、例2和“做一做”,练习十五中的第1-4题。)通过实验、操作、观察图形的拼摆、割补理解平行四边形的面积计算公式的来源,从而进行分析、概括出面积计算公式,进一步发展学生的思维能力和发展学生的空间观念。
学情分析
1.学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形的面积计算,加上这些平面图形在生活中随处可见,应用也十分广泛,学生学习时并不陌生。
2、从学生的现实生活与日常经验出发,设置切近生活的情境,把学习过程变成有趣的活动。
教学目标
知识与技能
1.使学生理解和掌握平行四边形的面积计算公式。
2、会正确计算平行四边形的面积。
过程与方法:
1.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,
2、发展学生的空间观念。
情感态度与价值观:引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力。通过演示和操作,使学生感悟数学知识内在联系的逻辑之美,加强审美意识。
教学重点和难点
重点、难点:理解和掌握平行四边形的面积计算公式;理解平行四边形的面积计算公式推导过程。
教学过程
一、复习导入
1.什么叫面积?常用的面积计量单位有那些?
2.出示一张长方形纸,他是什么形状?它的面积怎么算?
二、探究新知
1、情景导入:出示长方形、 平行四边形 。这两个图形哪一个大一些呢?平行四边形的面积怎样算呢 ?
板书课题:平行四边形的面积
2.用数方格的方法计算面积。
(1)用幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。
(2)同桌合作完成。
(3)汇报结果,可用投影展示学生填好的表格。
(4)观察表格的数据,你发现了什么?通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
2.推导平行四边形面积计算公式。
(1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?
(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的.面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。
a.学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
b.请学生演示剪拼的过程及结果。
c.教师用教具演示剪—平移—拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
小组讨论。出示讨论题:
①拼出的长方形和原来的平行四边形比,面积变了没有?
②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?
小组汇报,教师归纳:
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,
这个长方形的宽与平行四边形的高相等,
因为 长方形的面积=长×宽,
所以 平行四边形的面积=底×高。
3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
S=ah
三、 应用反馈。
1.出示教材练习十五第1题。读题并理解题意。
学生试做,交流作法和结果。
2.讨论:下面两个平行四边形的面积相等吗?为什么?
学生讨论汇报。全班订正。(通过不同形式的练习,不仅巩固了知识,同时培养了学生解决问题的能力)
四、课堂小结。通过这节课的学习,你有什么收获?(引导学生回顾学习过程,体验学习方法。)
五年级上册数学教学设计5
教学内容:
义务教育课程标准实验教科书北师大版小学数学五年级上册书15-16页
教学目标:
1、通过计算两只蜗牛每分爬行多少米,发现商和余数的特点,知道什么是循环小数。
2、会用四舍五入法对循环小数取近似值。普通记法和简记两种方法表示循环小数,会读循环小数。
3、通过动物乐园的情景,体会生活中的实际问题,进一步体会数学与生活的密切联系,利用已有知识,经历探索循环小数的过程,发展应用意识。
教学重点:
认识循环小数,会用四舍五入法对循环小数取近似值。
教学难点:
会正确表示循环小数,掌握余数和商的特点以及他们和被除数、除数之间的关系。
教学准备:
多媒体课件.
教学过程:
一、创设情境,揭示问题。
1.谈话引入:同学们,喜欢看比赛吗?说一说你喜欢看什么比赛?动物王国要举行各种比赛,想看看吗?首先是一场爬行比赛,蜘蛛和蜗牛正在奋力的爬行着(课件出示课本主图),请同学们认真观察主题图,你发现了哪些数学信息?
2.学生汇报数学信息。
3.根据这些信息你能提出什么数学问题?
A:蜘蛛每分钟爬行多少米?
B:蜗牛每分钟爬行多少米?
C:谁爬得快?
【设计意图:创设动物王国的情境,激发学生的学习兴趣。引导学生发现数学信息,提出数学问题,培养学生的数学应用意识。感受数学来源于生活。】
二、探究发现,建立模型。
1.估一估,谁爬得快一些?
学生汇报。
2.蜘蛛和蜗牛每分钟爬行的速度到底是多少呢?
学生独立完成,指名板演。
3.计算时你发现了什么?
4.商重复出现的数字与余数重复出现的数字有联系吗?如果有,有什么联系?
大家先独立思考。【学生先独立思考半分钟】
师:现在把你的想法和同桌交流一下。【半分钟讨论】
师:咱们先看它【手指着第一个算式和竖式】,谁来说一说你的想法。【两个学生说】
生1:商从小数点后面开始每次除得到的商都是3,然后余数又是1,商3,余数是1,不断反复出现。
【学生表达上可能不清楚,或指向不明,对学生的语言进行引导】师:那这边呢?【手指着第一个算式和竖式】【一个学生说】
生2:余数中的数字6和5循环,所以商中的数字5和4循环
师:看来正是由于计算过程中余数的不断循环导致我们的商中小数部分的某些数字也在不断循环。
师:嗯,这真是一个有趣的发现。
师:像24.333…,0.85454…这样从小数部分的某一位起,一个数字或几个数字依次不断重复出现的小数,我们给它取一个名字叫…
生:循环小数【板书循环小数】
4.介绍写法
师:既然我们都算出来了,可是该怎么写上去呢?能一直写下去吗?生:不能师:你有什么好的方法?
生:可以用省略号代替,表示无限【师在横式后面板书:24.333…】
师:那这个商应该怎样写呢?像这样吗?【板书:0.854…】生:不可以,这样就不知道哪些数字在循环。师:所以循环的数字我们至少要写两次。【再在原来那里添上54】【引导规范书写,循环的数字至少应该写两次】
5.循环小数的读法
师:真不错,我们一起写好了,有谁愿意来尝试读一读这个算式。生:24.3333333…
师:其实应该这样读二十四点三,三循环【请两个学生读】
师:你会读了吗?能把第二个算式读给你同桌听听吗?
师:谁来尝试读给全班同学听。生:零点八五四,五四循环
师:通过我们刚才准确的计算,我们知道谁爬的快些吗?【蜘蛛要爬得快一些。】
6.求循环小数的近似数。
有时候根据需要,我们可以用四舍五入法对循环小数取近似值,如0.85454保留两位小数就是:0.85454…≈0.85
7.循环小数的简记
师:其实啊,循环小数除了这种表示方法【手指着】,还有其他的表示方法,你们想知道吗?现在请你自己认真仔细的阅读。
8.总结循环小数的特征。
师:那我们学到了像24.333…,0.85454…这样的小数都是循环小数。【出示课件】那循环小数有什么特征呢?
师:请你把你的想法和同桌分享【同桌讨论,全班分享】 【板书小数部分】
9.小结:通过观察这两个商我们发现了,它们的小数部分有一个数字或几个数字依次不断重复出现,像这样的小数就是我们今天所要认识的“循环小数”。【出示课件】
【设计意图】:学生通过自主探究与合作交流认识了循环小数,使学生全面参与新知的产生、发展和形成过程,真正体验到探究的乐趣和学数学的价值,有利于学生今后的再学习。
三、理解应用,强化体验。
师:通过刚才的学习,我们认识了循环小数,那你能迅速通过第一关的考验吗?
(一)第一关:“超级小神算”计算下面各题,哪些商是循环小数?【学生计算,教师巡视,并指导】
1÷2= 1÷3 = 1÷5= 1÷7 =
(二)第二关:1.下面哪些数是循环小数?
(三)第三关:判断,正确的打√,错误的`打×。
1.3.141 5926 5358…是循环小数。()
2. 0.282828是循环小数。()
3. 9.0526526…是循环小数。()接下去一位是()。
(四)第四关:刚才我们观看了动物们爬比赛,海里的动物正在举行游泳比赛呢!出示:
1、学生提出问题
2、自主解决问题
【设计意图】:使学生全面参与新知的发生、发展和形成过程,真正体验到探究的乐趣,感受到数学的与生活的密切联系。
(五)第五关拓展:
1.
2.8.236236 …小数部分第8位上是数字几?第50位上是数字几?四、全课小结:师:通过这节课的学习,你有哪些收获?
板书:
除得尽吗(循环小数)
蜗牛每分爬行多少米?蜗牛每分爬行多少米?
73÷3=24.333···(米)9.4÷11=0.85454···(米)
《除得尽吗》教学反思:
《除得尽吗》是新版北师大版第一单元《小数除法》中的一部分内容。本节课是在学生学习了小数除法和小数除法的计算及求积、商的近似值的基础上进行的,这是学生第一次认识循环小数。为了让学生掌握循环小数的概念并求出循环小数的近似值。我是这样设计的一个情境贯穿始终,提供时间让学生自主探究、合作交流,充分发挥学习的积极性和主动性,反思如下:
优点:
1.创设情境激发学生的学习兴趣和探索的欲望。
新课标倡导:让生活走进课堂,让学生从已有的生活经验出发,动手、动脑从生活中感知体会理解,更有利于学习的学习。我以学生熟悉的比赛引人,结合书中的情境,创设了两只小昆虫在网上晒自己的爬行情况,让学生感受到生活中处处有数学,用数学。以比赛情境为主线,贯穿整个课堂。开课你喜欢看比赛吗?设疑引入,说一说你喜欢看什么比赛?动物王国要举行各种比赛,想看看吗?首先是一场爬行比赛,蜘蛛和蜗牛正在奋力的爬行着(课件出示课本主图),请同学们认真观察主题图,你发现了哪些数学信息?学生观察后自主交流。
2.创造性地使用教材,鼓励学生提出问题,体现教研专题。
新课程提倡要创设贴近学生生活的情境,重要目的之一是要让学生感受数学与生活的密切联系,感受学习的必要性,进而产生学习的需要和乐学、好学的动力。这节课我没有直接呈现教材的情境图,而是让学生在情境图中获取数学信息,并从中发现问题、提出问题,再提供时间让学生自主分析、解决问题,这符合新课标倡导的四个能力的培养。学生完整叙述之后,提供时间列式,学生提问:为什么用除法计算?在提供时间尝试计算,计算中发现规律。
3.本节课不但重视结果,更重视学生的学习过程,这正是《新课标》所倡导的。引导学生交流发现时教师及时引导,也充分发挥了评价的激励作用,注重训练学生讲题,重视学生表达能力的培养,整节课也体现了我本学期我的研究课题,教会学生提问,可以说一举多得。
⒋重视学生良好习惯的培养。
我们都知道好习惯成就美丽人生。本节课我做到面向全体学生,培养学生认真倾听,大胆发言,认真审题及书写要规范等多方面的习惯而且特别强调学生的书写姿势,相信经过长期训练学生一定会受益匪浅。
⒌练习设计形式比较多样,由易到难,不但巩固了所学的知识,也提高了学生应用知识解决实际问题的能力。
不足:
⒈这节课预设不到位,没有备好学生,估计不足。
⒉课堂上教师有反馈,由于时间有限,有点着急了,对学有困难的学生关注的不够,反馈做得不是很到位。
3.由于重视学生讲题,导致练习没有完成。
改进:
⒈认真学习新课程标准的理念及目标,做到心中有数。
⒉用心研究教材,教法,充分挖掘教材的情境因素,激发学生兴趣,不但备教材更要备好学生,从而打造高效课堂。
⒊充分发挥同伴互助的作用,积极参加教研活动,以教研促教学。向课堂40分钟要成绩。
⒋精心设计好每个教学环节,关注细节的把握和处理,力争做到滴水不漏。
⒌关注学困生,课上给予必要的指导,并做好个别辅导。
五年级上册数学教学设计6
教材分析
可能性是学习数学四个领域中“统计与概率”中的一部分,“统计与概率”中的统计初步知识学生在之前的学习已经涉及,但概率知识对于学生而言还是一个全新的概念,它是学生以后学习有关知识的基础。本单元主要教学内容是事件发生的不确定性和可能性,并能知道事件发生的可能性是有大小的。教学关键是如何让学生把对“随机现象”的丰富的感性认识升华到理性认识。
学情分析
五年级学生已经具备了一定的生活经验和统计知识,对现实生活中的确定现象和不确定现象已经有了初步的了解,并有一定的简单分析和判断能力,但学生只是初步的感知这种不确定事件,对具体的概念还没有深入地理解和运用。根据学生的年龄特点和生活经验,教师做出适当引导,学生就会进行正确的分析和判断的。所以教材选用学生熟悉的现实情境引入学习内容,设计了多种不同层次的、有趣的活动和游戏,激发了学生的学习兴趣,使其感受到数学就在自己的身边,体会数学学习与现实的联系,为学生自主探索、合作学习创造机会。
教学中,教师要利用这些情境让学生积极地参与到学习活动中,让学生在具体的操作活动中进行独立思考,使学生在大量观察、猜测、试验与交流的过程中,经历知识的形成过程,逐步丰富对不确定现象及可能性大小的体验。
教学目标
知识技能:使学生初步体验有些事件的发生是确定的,有些事件的发生是不确定的。能列出简单试验所有可能发生的结果,知道事件发生的可能性的大小。
数学思考:培养学生简单的逻辑推理、逆向思维和与人交流思考过程的能力。
问题解决:能由一些简单事件发生的可能性大小逆推比较事件多少。
情感态度:通过本单元的学习使学生感受到生活中处处有数学,并能够运用可能性的知识解决生活中的问题,逐渐对统计与可能性知识产生兴趣,培养学生学习数学的兴趣。
教学重点:
会用“可能”“不可能”“一定”描述事件发生的可能性。能够列出简单试验中所有可能发生的结果,知道可能性是有大小的。
教学难点:
能根据可能性的大小判断物体数量的多少。
课时安排:
3课时
1.可能性………………………………2课时
2.掷一掷………………………………1课时
课 时 教 案
课题: 第四单元:可能性(1) 第x 课时 总序第x个教案
课型: 新授
编写时间:xxxx年xx 月xx 日
执行时间:xxxx 年xx月xx日
教学内容:教材P44例1及教材练习十一第1、2、3、4题。
教学目标:
知识与技能:学生初步体验有些事件发生是确定的,有些则是不确定的。
过程与方法:学生通过亲身体验,在观察、交流、动手、思考、验证的过程中探索新知。
情感、态度与价值观:培养学生的表达能力和逻辑推理能力。
教学重点:体验事件发生的等可能性。
教学难点:会用“可能”、“不可能”正确地描述事件发生的可能性。
教学方法:采用游戏教学法,将教学情境真实地搬到现实生活当中,让学生在游戏中,真实地参与中积累与学习知识。
教学准备:师:多媒体、抽签卡纸、盒子、彩色球、铅笔。生:棋子。
教学过程
一、情境引入
1.导入:今天老师给大家带来一个小小的礼物,猜一猜是什么?
让学生猜一猜,学生猜可能是文具,可能是玩具,可能是书
2.师揭题:学生说的这些都是有可能发生的事情,在数学上都是些不确定性事件。这节课我们就来研究事件发生的可能性。(板书课题:可能性)
3.出示谜语:小黑人儿细又长,穿着木头花衣裳。画画写字它全会,就是不会把歌唱。
学生可能会说:铅笔。
师追问:确定吗?让学生肯定回答一定是铅笔或确定是铅笔。
4.出示奖品铅笔,并说明这是奖励表现秀的学生的,希望大家都能努力。
二、互动新授
1.引入:下周班会,老师想组织大家表演节目,每个人都有机会表演。但节目形式不能重复,每个类型只能有一个节目,大家讨论一下,我们应该怎样确定每一个同学演什么节目呢?
组织小组讨论,大部分同学会想到用抽签的方法来决定。
2.活动:出示三张卡片,上面分别写上唱歌、跳舞、朗诵,找同学上来抽一张,引导学生先思考一下,会抽到什么?
学生会想到:可能是唱歌,可能是跳舞,也可能是朗诵。这三种情况都有可能。
师小结:每位同学表演节目类型是一件不确定的事件,有三种可能的结果。
3.抽签指生抽一张。(以抽到跳舞为例)
师引导:如果再找一名同学来抽签,可能会抽到什么?
生可能回答:可能是唱歌,也可能是朗诵。
引导学生质疑:有没有可能会抽到跳舞?
指生回答:不可能,因为剩的两张签里没有跳舞。
找生抽一张,验证学生的猜测是否正确。
(以学生抽到的是朗诵为例)
4.引导:最后只剩一张了,你们能猜一猜这一张可能是什么吗?
生可能会回答:一定是朗诵,因为只剩下朗诵这张卡片了。
5.师小结:刚才在猜测会抽到什么节目时,第一次同学们用的词是“可能”,第二次同学们用的词是“不可能”,第三次用的是“一定”。一般事情的发生都有“可能”“不可能”“一定”三种情况,当然,不同情况下,它们有时也会发生变化。(板书:可能 不可能 一定)
三、巩固拓展
1.完成教材第45页“做一做”。
出示:两个盒子,一号盒子放的全部是红棋子,二号盒子放的有红棋子和绿棋子。
引导学生先说一说,哪个盒子里一定能摸出红棋子?哪个盒子里可能会摸出绿棋子?哪个盒子里不可能摸出绿棋子?等问题。
让学生在小组内组织摸一摸活动,并验证,再集体汇报。
2.完成教材第47页“练习十一”第1题。
让学生说一说,并说明理由。
3.完成教材第47页“练习十一”第2题。
先让学生自主连一连,教师发彩色球让学生验证摸一摸,再说一说为什么这么连。
4.说一说:教师引导学生用“一定”“可能”“不可能”等词语说说自己生活中一些事件发生的可能性。
四、课堂小结
师:这节课你们学了什么知识?有什么收获?
引导归纳:
1.判断事件发生的可能性的几种情况:可能、不可能、一定。
2.能结合实际情况对一些事件进行判断。其中“不可能”和“一定”是能够在完全确定的情况下做出的判断,而“可能”是在不能确定的情况下做出的判断,它通常包含经常、偶尔两种情况。
作业:教材练习第47页第3、4题。
板书设计:
可能(不能确定)
可能性 不可能
(完全确定)
一定
课题: 第四单元:可能性(2) 第x 课时 总序第x 个教案
课型: 新授
编写时间:xxxx 年xx月xx日
执行时间:xxxx年xx月xx日
教学内容:教材P45~46例2、例3及练习十一第5、8题。
教学目标:
知识与技能:让学生知道事件发生的可能性是有大小的。
过程与方法:进一步学习比较多种结果事件可能性的大小方法:先得出结果总数,再看哪种结果在总数占的比例多。
情感、态度与价值观:培养学生的动手操作、归纳和判断能力。
教学重点:会比较两种结果事件的可能性大小。
教学难点:能根据可能性的大小逆向思考比较事件数量的多少。
教学方法:游戏教学法;自主探索、合作交流。
教学准备:多媒体、盒子、彩色棋子。
教学过程
一、复习引入
1.出示:
(1)用合适的语言描述下面事件发生的可能性。
①太阳( )从东边落下。
②明天( )考试。
③冬天( )会下雪。
④掷一枚硬币( )正面朝上。
(2)盒子里有3个红棋子和1个黄棋子,任意摸一个可能是什么颜色的棋子?为什么?引导学生说出,可能是红棋子也可能是黄棋子。因为盒子里面既有红色棋子也有黄色棋子。
质疑:你觉得摸到哪种颜色的棋子最有可能呢?为什么?
引导学生思考,在小组内交流讨论。学生可能会说,红色棋子摸到最有可能,因为盒子里红棋子比黄棋子多。
2.导出课题:看来事件发生的可能性是有大有小的。今天这节课咱们就来研究事件发生的可能性的大小。(板书课题:可能性的大小)
二、互动新授
1.体验可能性有大有小。
出示教材第45页例2情境图。
(1)引导:在盒子里有红色和蓝色两种棋子,任意摸出一个棋子,可能是什么颜色?(可能是红色,也可能是蓝色。)
(2)(继续出示情境图做实验部分)有一个小组做了一次实验,他们摸出一个棋子,记录它的颜色,然后放回去摇匀再摸,重复20次,同学们观察他们摸完20次后的结果是怎样的?(摸出红色的'多,蓝色的少。)
(3)追问:这说明了什么?
(摸到红棋子的可能性比较大,蓝棋子的可能性小。)
(4)质疑:假如再摸一次的话,摸出哪种颜色棋子的可能性大?(红色),那是不是一定能摸到红色呢?
(不一定,因为蓝色摸到的可能性虽小也有可能会摸到。)
2.动手操作。
(1)每个小组都有一个盒子,里面都装有红色和蓝色两种棋子,请小组仿照教材的实验,自己摸一摸,并由小组长记录结果。
小组操作结束后,汇报记录结果,并根据结果说一说你盒子里哪种颜色的棋子多。并追问:每个小组的统计结果都一样吗?
指名小组汇报,对不同结果的小组进行比较。
(2)引导学生思考:通过刚才的操作,你发现可能性的大小与什么有关?
引导学生小结:与在总数中所占数量的多少有关,在总数中占的数量越多,摸到的可能性就越大,占的数量越少,摸到的可能性也就越小。(板书)
(3)让学生举出生活中的例子:如抽奖、买彩票等。并由此对学生进行正确的思想教育。
3.出示教材第46页例3。
(1)先让学生观察出示的记录结果,再指名回答例题中的问题。
(从试验记录可以看出,一组摸了20次,摸出黄球5次,摸出红球15次,摸出黄球的次数少于红球的次数。另一组摸了20次,摸出黄球 4次,摸出红球16次,摸出黄球的次数少于摸出红球的次数。
八个小组一共摸到红球123次,摸到黄球37次,摸到红球的次数比摸到黄球的次数多。也就是说,从盒子里摸出红球的可能性大在,黄球的可能性小。因此,我们可以判断出:盒子里红球多,黄球少)
(2)引导小结方法:当可能性的大小与数量相关时,在总数中所占数量越多,可能性越大,所占数量越少,可能性就越小。
三、巩固拓展
1.完成教材第45页“做一做”。
先让学生自主思考,小组交流,再汇报。并说出为什么这么想。
引导学生总结:在总数中占的颜色多的可能性大,占的颜色少的可能性小。可以进一步渗透“公平”的思想与画法。
2.完成教材第46页“做一做”第1题。
先让学生观察从图中能得到的信息,再说一说。
(盒子里红色的棋子多,黄色的棋子少)
引导学生运用可能性大小的逆向思考:从可能性的大小可以推想数量的多少吗?(让学生动手操作,小组合作,并记录结果。)
四、拓展小结
师:这节课你们学了什么知识?有什么收获?
引导归纳:
1.事件发生的可能性有大有小。
2.在总数中占的数量越多,摸到的可能性就越大,占的数量越少,摸到的可能性也就越小。
3.摸到的可能性大的说明在总数中占的数量多,摸到的可能性小的说明在总数中占的数量少。
作业:教材练习第47~48页练习十一第5、8题。
板书设计:
大←→数量多
可能性
小←→数量少
五年级上册数学教学设计7
◆教材分析
《组合图形的面积》是义务教育标准实验教材小学数学五年级上册第六单元的内容。这部分内容是在学生已经掌握了各种图形的面积计算的基础上进行教学的。
◆教学目标
1、结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算面积;
2、能根据图形的特点,选择合适而又简便的方法计算组合图形的面积;
3、能灵活思考解决实际生活中的问题,进一步发展学生的空间观念。
◆教学重难点
【教学重点】应用知识解决生活中有关组合图形面积的.问题。
【教学难点】怎样分割或者补足图形。
◆课前准备
xxx课件。
一、情景引入
1、复习
第一个图形是什么形?它的面积怎样计算?学生口答。
教师在长方形图的下面板书:S=ab。
第二个图形呢?
学生分别口答后,教师在每个图的下面写出相应的计算面积的公式。
可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。
2、认识组合图形
让学生指出有哪些图形?
师:计算这些图形的面积我们已经学会了,今天老师带来了几张图片(99页的四幅图),认一认,它们是什么?
这些图片分别是由哪几个平面图形组成的?
这几张图片显示的都是组合图形,你觉得什么样的图形是组合图形?
师:组合图形是由几个简单的图形组合而成的。
问:说一说,生活中哪些物体的表面可以看到组合图形?
同学们现在已知认识了组合图形,这就是这节课我们重点学习的内容。
二、探索新知
1、在实际生活中,有些图形也是由几个简单的图形组合而成的(出示题目及图)。
图表示的是一间房子侧面墙的形状,它的面积是多少平方米?
◆教学过程
2、如果不分割能直接算出这个图形的面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?
3、暴露资源,组织研讨:
方法一:三角形+正方形三角形面积=5×2÷2=5(m2)
正方形面积=5×5=25(cm2)房子侧面面积=25+5=30(cm2)
方法二:两个梯形
梯形面积=(5+2+5)×(5÷2)÷2=12×2.5÷2=30÷2=15(m2)房子侧面面积=15×2=30(cm2)
方法三:拼成一个长方形
长方形面积=(5+2+5)×(5÷2)=12×2.5=30(m2)房子侧面面积=长方形面积
方法四:从长方形中挖走两个小三角形
五年级上册数学教学设计8
我所在的班处在农村地区,班级有40名学生。其中优生的比例约占40%,合格的约占20%,极差的学生有5%。班级总体感觉良好,对学习数学有比较浓厚的兴趣,思维活跃,有自主探索知识的学习习惯,成绩稳定。但是家长的辅导不令人满意。
教学目标:
1、知识与技能:掌握数方格的顺序和方法,能用数方格的方法计算一些不规则图形的面积,能正确估计不规则的图形面积的大小。
2、过程与方法:能借助方格图估算不规则图形的面积,在估算面积的过程中,体验解决问题策略的多样性,培养初步的估算意识和估算习惯,体验估算的必要性和重要作用。
3、情感态度价值观:提高学生运用数学知识解决实际问题的能力,让学生体会数学源于生活,用于生活。让学生欣赏大自然的美,使学生体会环保的重要性。
教学重点:利用方格图估计不规则图形面积。
教学难点:估算的习惯和方法的选择。
教学过程:
一、情境引题,学习新知:
1、创设情境,揭示课题:
师:从我们牙牙学语到认识数字,从我们拿起笔到记录生活中的开心快乐,同学们每天都在不知不觉中成长。我想:只要同学们努力学习科学文化知识,成功的道路上必将留下你们一串串成长的脚印。(揭示课题:成长的脚印)
2、情境入题,学习新知:
师:今天,老师带来了小华出生时的脚印图片。怎样才能知道这个脚印的面积有多少呢?
(1)学生自己先独立进行估计,然后小组内进行交流。
(2)全班交流:
生1:我们是用数格子的方法来进行计算的,我先数了数满格的大约是11个,其他不够一个格子的我进行了拼补,这样大约是17cm2。
生2:我们的方法也是这样的,我们把不满一格的按照一格进行计算,这样大约是18 cm2。
师:大家都是用数方格的方法估计的,还有没有其他的估算法呢?
生1:可以把这个脚印看成了近似的长方形,长8厘米,宽2厘米,所以面积是2×8=16 cm2。(课件演示此方法)
生2:我有个不同的方法,我是看成了近似的梯形,上底约2厘米,下底约2.5厘米,高约8厘米,根据梯形的面积公式,算出(2+2.5)×8÷2=18cm2。
(3)课件出示小华两岁时的脚印,学生估面积:
3、小结方法,实践新知:
(1)师:刚才大家对像脚印这样的不规则图形的面积进行了估算,想想刚才大家用什么方法进行估算的?
师板书:1、借助方格图数一数所占的格数。
2、把它看成一个近似的规则图形,测量后进行计算。
(2)请同学们算一算自己脚印的面积约是多少?
学生自己先独立取脚印,然后借助附页3的方格图估算脚印面积。
二、新知实践,解决问题:
1、估算不规则图形的'面积:
(1)学生独立进行估计:
(2)交流汇报时让学生说说自己是怎样估计的。
2、估算手掌的面积:
(1)师:估一估自己手掌的面积:
(2)学生合作估算并在方格纸上验证:(学生在此环节开展好帮差活动)
三、课后实践,体会环保:
1、估算一片树叶的面积:
2、体会绿树对环保的重要性:
(1)如果一棵树有10000片树叶,估算这棵树所有树叶的总面积。
(2)在有阳光时,大约每25 m2的树叶能在一天里释放足够一个人呼吸所需的氧气。这棵树在有阳光时,一天里释放的氧气能满足多少人呼吸的需要?
四、课堂回顾,总结提高:
同学们,今天你们有什么收获?有什么体会?说来听听。
板书设计:
成 长 的 脚 印
不规则图形面积的估算:
1、借助方格图数一数。
2、把它看成一个近似的规则图形,测量后进行计算
教学反思:
这节课的重点是掌握估计不规则图形面积的计算方法,难点是如何转化为近似的基本图形。在讲这节课之前,我一直觉得这节课很难教,学生应该很难理解如何近似的看成基本图。但是,结果出乎意料,学生理解掌握得不错,能够把不规则图形近似确定成基本图形,然后再计算。
首先,在课题引入时,先复习组合图形面积的计算方法——可通过“分割”或“添补”的方法,转化为已学过图形的面积,再计算。强化学生“分割”和“添补”图形的能力,为估算不规则图形的面积做铺垫。然后,通过课件展示几幅不规则的图形(如:树叶、鱼、布娃娃等等),让学生通过观察,说出他们的发现,这些图形有什么共同点?与以前学过的图形相比较,让学生通过对比,引导学生说出,这些图形都是不规则图形。最后,谈话引入新课:其实现实生活中有很多类似这样的不规则图形,如何估算这些图形的面积呢?这一节课,我们将共同探讨这个问题。让学生带着问题学习,有目的的学习,并知道学习估算不规则图形面积的重要性,这样他们学得更投入、更有热情!
在探索新知时,先出示“成长的脚印”图形,让学生通过观察,用自己喜欢的方法估算出“脚印”的面积,再让他们小组交流讨论,最后让学生说出自己的估算过程和思路。这时,很多学生还是用数方格的方法,但是学生在交流自己的估算过程时,就有疑问,不满一格而且又不规则的,如何更好的估算面积呢?先不直接告诉学生方法,让学生讨论可以用什么方法估算,最后还是没得到满意的方法。这时,学生带着强烈的好奇心,非常想要知道如何估算面积。此时,教师再引导学生通过“分割”“添补”的方法,把不规则图形近似的看成已学过的基本图形的面积,再计算。最后再通过课件演示这个过程,并在方格纸的“脚印”中画出近似基本图,给学生一种视觉上的刺激,让学生很直观地观察估算的过程,学会把不规则图形近似的看成基本图再计算的方法。再让学生用这种方法估算小华2岁时的脚印面积,让学生先独立完成,再全班交流,让学生说出他们是如何近似的看成基本图,最后也用课件演示整个估算过程,画出近似基本图。巩固学生把不规则图形近似看成基本图再估算的能力。
通过练一练的两道习题,再加强巩固估算不规则图形面积的方法,先让学生独立完成,再小组交流讨论,最后再全班交流。展示学生的作品,让学生说出他们自己的估算思路,全班学生一起观察判断是否估算正确,最后再用课件演示画出近似图。这个过程,让学生自己说出自己的估算思路,其他同学一起观察判断,既能锻炼学生的表达能力,也能锻炼学生集中精神注意判断同学的估算是否正确,还能检查学生是否已掌握此种估算的方法,一举三得,何乐而不为之呢?
五年级上册数学教学设计9
一、 案例背景:
执教班级是五(3)班和五(5)班,这两个班的学生思维都比较活跃,知识面较广。
教学内容是北师大版六年制小学数学第九册第25-26页探索活动(一)《平行四边形的面积》。课前,学生只学了长方形、正方形面积计算,而平行四边形在他们的头脑中还是个直观模型,有关平行四边形特征等知识一无所知。鉴于上述种种情况,对教学进行必要的知识铺垫,以利于这次探索活动有效地开展。从事数学教学工作以来,我崇尚在课堂教学中,尽量为学生创设“合作交流,自主探索”的空间。
二、教材简析:
平行四边形面积的计算,是在学生掌握了长方形和正方形的面积计算,对平行四边形有了初步的认识,清楚了其特征及底和高的概念的基础上进行教学的。若想使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外,掌握平行四边形面积公式的推导方法,对后面学习其他图形的面积计算会起到积极的迁移作用。
三、教学诠释与研究。
“ 平行四边形的面积”我教学不止一次。以前教的是人教版教材,我把教学的重点放在:借助剪、拼的方法。利用形变积不变的道理,把平行四边形转化为长方形,从而推导出平行四边形的计算公式。教学时,我让学生动手剪、拼,把平行四边形拼成了长方形之后,我就开始下面的启发式提问:①平行四边形的底与长方形的长有什么关系?②平行四边形的高与长方形的宽有什么关系?③转化前后两图形之间什么没有变?启发学生讨论,回答。这样组织教学,学生一般都能得出正确结论,课堂教学进程是一帆风顺的,“效果”是好的。
现在再来审视一下以前的这一节课堂教学,我发现在这种看似良好的效果背后,却潜伏着大的危机:在这样的课堂中,问题由老师提出,思维的路线由老师操纵,学生究竟有多少自主学习的成分?这样的课堂教学貌似“启发式”,实则是由教学操纵的“包办婚姻”,学生是没有“自主权”的。若长此以往,学生只能成为解决问题的高手,而不是发发现问题、提出问题的高手。我们知道,创造源自问题,这样的教育培养出的学生还有创造性吗?
如今,我又开始教学这一内容。不同的现在使用的是北师大版的新教材。这一内容出现在五年级数学上册,标题是“探索活动(一)平行四边形的面积”。教材首先展示了这样一个情境:公园准备在一块平行四边形的空地上铺草坪,如何计算这块空地的面积?教材这样安排的目的是让学生面对一个新的问题,思考如何去解决,从而使学生感到学习新知识的必要性;随后,教材提供了两种解决问题的方法:一种是通过数格子的方法,数出这个平行四边形的面积,一种是通过剪与拼的活动,将平行四边形转化为长方形,然后计算出面积,最后,教材安排了观察平行四边形与长方形的关系,从中推导出计算平行四边形面积的公式。教材的编排意图是重在让学生自主探索,在探索活动中,使学生发现并理解平行四边形面积的计算方法。课堂教学时如何体现文本的这一“真谛”呢?新课程提倡教师要依据教材教,而不是教教材。在这一理念指导下,我对教材进行了重组。我根据班上学生的学习习惯和认识基础来创设问题情境。下面是课堂教学中的开始片断:
小黑板出示:
师:每个小方块的面积是1平方厘米,你能知道上面每个图形的面积是多少吗?
生:图1的面积是12平方厘米。
师:你们是怎么想的?
生1:我是一块块数的。
生2:我发现长方形长是4㎝,宽是3㎝,所以面积是4×3=12(平方厘米)。
师:谁能很快知道图2这个图形的面积吗?
生1:它的面积还是12平方厘米,因为还是由12个小正方形组成的。
生2:把中间的一排往左推一格,所以还是12平方厘米。
生3:把多的一块剪下来拼过去,正好是一个长方形,面积还是12平方厘米。
师:同学们真会动脑筋!我们可用割下来补过去的方法,将图形转变为长方形,很快知道它的面积。谁能很快说出图3的面积?
生1:在图形中间划出一个正方形,面积是9平方厘米,再把两边的三角形拼在一起,面积是3平方厘米,一共是12平方厘米。
生2:把左边的两个小三角形剪下来补在右边也正好是个长方形,面积是12平方厘米。
师:对于这个图形,我们用割补的方法能很快知道它的面积。
接下来,小黑板出示:
比较一下,图中的平行四边形的面积与长方形面积大小如何?
生1:我用数方格的方法:长方形有5×3=15个小方格,而平行四边形有11整格,加上8个半格拼成的4个整格,也是15个方格,平行四边形面积和长方形面积同样大。
生2:我把平行四边形左边的割下一个三角形,补到右边,就得到一个长方形,得到的长方形面积是15个方格,所以,平行四边形的面积也是15个方格,两个图形的面积大小相同。
师:把平行四边形割补成长方形,图形的什么变了,什么没有变?
生:图形的形状变了,面积大小没有变。
师:说得好!我们把割下的一块没有扔掉,而补在这里,正好得到一个长方形,图形的形状变了,但面积没有变。所以,原来的平行四边形的面积是15个小方格。两个图形的面积一样大。
反思:现代建构主义认为,知识并不能简单地由教师或其他人传授给学生而只能由每个学生依据自身已有的知识和经验主动地加以建构。所谓对新的学习材料的'“理解 ”,就是学习者依据自身的已有知识和经验(认知绘声绘色)去解释新材料,使新材料与主体的已有知识、经验之间建立起实质性的、非任意的联系。在上述片断中,我设计了三个图形让学生直接说出它们的面积,并对学生用割补的方法给予肯定,为的是学生去探究平行四边形的面积计算方法时能产生学习的正迁移。接着,又设计了面积相等的两个图形,一个是长方形,一个是平行四边形,特别是两个图是在画有小方格的背景上画出的,我还暗示性的画出了平行四边形的高,让学生比较两个图形面积的大小,学生很快就能用数小方格的方法和“割补”法,为下面的推导出平行四边形的面积公式奠定了关键性的一步课后反思时,我觉得这节课在引导学生推导平行四边形面积公式时铺垫、暗示还是多了点,如果抽掉那些铺垫,直接让学生把一个平行四边形剪拼成长方形,这时课堂上又会是怎样的情景呢?我期待着下一次的教学实践。
几经思考,第二天在另一个班上这一内容时,我决定我觉得该给学生更多的自主探索的空间。请看下面的教学片断:
师:刚才同学们用“割补”法将平行四边形转化成长方形,比出了两个图形面积的大小,是不是所有的平行四边形都能用割补的方法转化成长方形呢?请同学们拿出各自的平行四边形纸片,动手剪剪拼拼,看看行不行?
学生进行操作实践,加验证。
师:你们手中的平行四边形能不能转化成长方形?谁愿意上讲台前演示给大家看?
学生争着前来演示,沿着平行四边形地高剪开,拼成长方形。
学生演示时,师追问学生:是沿着哪一条线剪的?
生:沿着平行四边形地高剪开的。
师:为什么要沿着高剪?
生:因为长方形的四个角都是直角,不沿着高剪,就拼不成一个长方形。
师:由此看来,对于任何一个平行四边形都可以转化成一个长方形,长方形的面积你们已经会计算了,现在,你们能算出你们手中的平行四边形的面积吗?
有的学生在量着,有的则愣着,有的忍不住抱怨着:它没有告诉什么呀,怎么算?我悄悄地走过去,小声地问:你希望告诉你什么,你就能算了,你有办法自己去知道需要的条件吗?得到启发,该生也拿尺量了起来。
全班交流自己的结果。
生:我量得我手中的平行四边形的底是6㎝,高是4㎝,所以面积是6×4=24(平方厘米)。
师:你能不能告诉大家,计算平行四边形的面积为什么用平行四边形的底乘高?
生:因为用割补的方法把平行四边形转化成长方形,面积不变。我发现长方形的长相当于平行四边形地底,宽相当于平行四边形的高,所以平行四边形的面积是底乘高。
结合学生的回答,板书:
长 方 形 面 积 = 长×宽
平行四边形面积 = 底×高
师:用字母s表示平行四边形的面积,a表示它的底,h表示它的高,计算平行四边形面积的字母公式是怎样的?
生1:s=a×h
生2:还可以用小圆点代替乘号。
生3:还可以省略小圆点,写作:s=ah
师:这节课,你们学到了什么?
生:学会了计算平行四边形的面积。
师:是怎么学会的呢?
部分学生沉默,估计是学生不善于表达。
师:面对着求平行四边形面积的新问题,我们用割补的方法转化成学过的长方形,用旧知识解决了新问题。以后,我们还可以用这种思想方法去获取三角形,梯形面积计算等新知识。你们说这种思想方法重要吗?
反思:对于如何概括出求平行四边形面积的公式?我没有像以前那样由教师提出一个个小问题,然后学生回答,从而得出公式,而是直接先让学生计算手中的平行四边形的面积。如何计算平行四边形的面积呢?这一问题对学生来说具有极大的挑战性。学生居然算出来了,这说明学生的潜力是巨大的。课堂上一定要让学生积极地独立思考,自主探究。如果教师牵着学生走,铺垫太多,会妨碍学生独立思考,不利于学生的发展。平行四边形的面积学生既然求出来了,归纳求平行四边形面积的公式也就水到渠成了。
五年级上册数学教学设计10
教学内容:
苏教国标版数学五年级上册第59~60页例1及相应的“试一试”、“练一练”、练习十第1-3题。
教学目标:
1、结合具体情境,让学生探索并发现简单周期现象中的排列规律,能根据规律确定某个序号所代表的是什么物体或图形。
2、使学生主动经历探索发现、合作交流的过程,体会画图、列举、计算等解决问题的不同策略,能根据实际情况,选择合适的解决问题的策略。
3、让学生在探索规律的过程中体会数学与日常生活的联系,获得运用所学
知识解决问题的成功体验,建立自信心。
教学重点:使学生探索发现简单周期现象中的排列规律(找规律),并能选择合适的策略解决这类问题。
教学难点:让学生会确定几个物体为一组,如何根据余数来确定某个序号所代表的是什么物体或图形。
教具准备:多媒体课件。作业纸附件。
教学过程:
课前播放《喜羊羊与灰太狼》主题曲《别看我只是一只羊》。会的学生跟着哼唱。轻松课前的气氛。
游戏导入,激发兴趣。
刚刚的歌曲熟悉吗?谁来说说看你最喜欢里面的哪一个卡通形象?(让学生说)老师最喜欢喜羊羊,因为它聪明又乖巧(课件出示喜羊羊图片)那请你猜一猜,下一个会出现谁?第三个呢?接着猜。第四呢?第五个呢?第六个呢?你是怎么猜出来的?你真聪明,其实在我们平时的生活中,像这样有规律的排列现象还有很多很多,今天我们这节课我们就来一起学习一下“找规律”。(板书课题)
设计意图:本节课从一开始就创设了一个轻松的氛围,从最近受学生欢迎的国产动画片《喜羊羊与灰太狼》入手,让学生在不知不觉中,在一个愉悦的氛围中进入了课堂,并且开始初步探索他们感兴趣的卡通形象的排列规律,很好的激发了学生的兴趣。
感知物体的有序排列,探究简单的周期规律
师:请你先闭上眼睛,老师带你去一个非常漂亮的地方(课件出示图片),看,这地方你们认识吗?对了,我们来到了喜羊羊他们生活的地方——青青草原。来到了这个地方,你有什么感受呢?
生:青青草原被装扮的好漂亮啊!
师:恩,的确,草原上盆花似锦,彩灯高挂,彩旗招展,好美呀。大家有没有发现,在这些美丽的图片上其实也蕴含着数学的许多奥妙。老师截取了其中的一小部分,放大,请大家仔细观察。
一.(出示教材例1主题图)师:我们一起看这一幅图,从图中你都看到了哪些物体?
生:盆花、彩灯、彩旗;
师:恩,你观察的真仔细。
师:那这些物体的摆放有规律吗?谁来说一下盆花的摆放有什么规律?
生:一盆蓝花,一盆红花。师:恩,你真聪明。也就是说几盆为一组呢?
生:两盆花为一组。
师:恩,你讲的真棒!那我们可以在图中这样表示出来。(教师电脑演示)
师:那彩灯、彩旗的摆放又有什么规律呢?你能照着样子在练习纸上圈一圈吗?(学生自己圈一下,体会每组有几盏彩灯?每组有几面彩旗?)
二、汇报结果。
师:那谁来说说看彩灯的摆放有什么规律?应该是几盏为一组?每组的几盏灯分别按怎么样的顺序排列的呢?
生:3盏灯为一组,每组的三盏灯分别是按红、紫、绿的顺序排列的。
师:那彩旗呢?谁来说?
生:每四面为一组,分别是红色、红色、黄色、黄色。
师;恩。说的非常棒。
师:其实啊,像这里的盆花、彩灯、彩旗它们都是每几个为一组,一组一组依次重复排列的。(板书:依次重复排列)
设计意图:这个环节选择了日常生活中较为常见的简单周期现象作为学生探索规律的素材,把生活中按规律摆放的盆花、彩灯、彩旗等场景与喜羊羊与灰太狼生活的草原结合起来,把学生能够把更多的注意力集中到这些不同物体排列规律的观察上来。其实要让学生说出各类物体的摆放顺序并不难,但关键是怎么样让学生用较为简洁的语言表达清楚。在设计此环节时,我注意了这么一点:特别是在交流时,应该在学生自由汇报的基础上,老师用规范的数学语言引导学生把观察到的规律用简洁、准确的语言清楚的表达出来。为下面的计算法解题策略作一个铺垫。
三、自主探究,体会多样的解题策略。
刚才同学们都观察得很仔细,说得也非常好,找到了他们排列的规律,也就找到了解决问题的金钥匙。
那首先我们来看盆花。(点击出示盆花小图)初步提问:在图中,我们能
看到几盆花?
提问:照这样摆下去,左起第15盆花是什么颜色?谁来猜一猜。(请几个
学生猜一猜)那你们是怎么想的呢?先把你的解决过程在练习纸上表示出来,然后同桌之间交流一下,比一比,你们的方法有什么不同?开始。
3.全班交流。
引导:谁愿意把你方法介绍给全班同学?
学生可能提出如下的想法。(适时板书:画图、推想、计算)
生1:画图的策略:o ● o ● o ● o ● o ● o ● o ● o(o表示蓝花,
●表示红花)第15盆是蓝花。
教师提问:你一共画了多少个“圆”?(15个,正好是蓝花。)
生2:推想的策略:左起,第l、3、5……盆都是蓝花,第2、4、6……盆都是红花。第15盆是蓝花。
教师提问:其他同学明白这种想法的意思吗?(引导学生说出位置是单数的都是蓝花,双数的都是红花),像这种方法我们数学上把它叫做推想的方法。
生3:计算的策略:把每2盆花看作一组,15÷2=7(组)……1(盆),第15盆是蓝花。
学生说,师板书:15÷2=7(组)……1(盆)答:第15盆是蓝花。针对算式,教师提问:能说说2是从哪里来的?(每2盆花为一组)。7表示什么意思呢?(一共有这样的7组)。注意7的单位是“组”,而不是“盆”,余下的1盆指得是哪一盆?(是指接下来一组的第一盆,与每组的第一盆颜色相同)。
设计意图:此环节的教学,应给学生充分的时间去研究观察物体排列规律以及自主的探索解决此类实际问题的策略。每个学生都是有差异的个体,他们有自己解决问题的经验,对每一个问题都有自己的理解和处理方式。我在设计时尊重学生提出的每一种方法,并没有急于的进行优化策略。让学生在接下来的解决问题中发现问题,自己优化、选择合适的策略。
四、独立尝试,逐步优化解题方法。
1.出示“试一试”第1题,让学生自己尝试解答。
(1)师:我们再来看看彩灯,用你喜欢的方法思考:“从左边起第17盏彩灯是什么颜色的?”
(2)引导学生针对计算的方法质疑思考:为什么除以3?(每3个彩灯可以看作一组)余数2呢?表示什么意思呢?(接下来一组的`第二盏是紫色的灯。)
师:那根据第17盏灯是什么颜色很快的说出18盏灯是什么颜色?
生:绿色。
师:恩!真棒!你是怎么想的呢?那你们会用计算的方法来验证一下吗?试试看。共4页,当前第2页1234
学生汇报计算过程。表扬学生。
除数为什么是3?(每三盏灯为一组)那这里没有余数怎么办呢?也就是说这个物体和每组中的第几个相同呢?
如果没有余数呢?(强调:有余数,余数是几,这个物体就和每组中的第几个物体相同;如果没有余数,这个物体就和每组中的最后一个物体相同)
(3)重点比较:通过两题的解答,你认为用哪种方法解决找规律的问题更简便?(计算的方法最简便。)
师:是的,用计算的方法解决找规律的问题既快又准确。
2.出示“试一试”第2题,让学生用计算的方法解答。
(1)师:这里还有彩旗,请大家用计算的方法,求求看。
(2)总结提炼:这些题为什么都要除以4?余数是几时是红旗?黄旗呢?
设计意图:在提倡运用多种策略解题的基础上,引导学生对各种方法进行分析、比较,并逐步理解各种方法的优缺点,在解决实际问题中自觉实现策略优化,同时让学生获得成功的体验。
五、多样练习,加深对解题方法的理解
1.看活动图片:练一练第1题。
(1)引语:跨过草原,让我们一起进入羊村,来到羊羊学校,看看小羊们都在干些什么吧!
(2)出示喜羊羊,瞧,喜羊羊正在勤奋刻苦,研究黑白棋子呢!看,他摆的棋子有规律吗?请你在练习纸上圈一圈发现的规律。指名说说规律。(每三颗为一组,两颗白子,一颗黑子)
提出问题:如果继续摆下去,猜一猜,第21枚摆的是白子还是黑子?(口头汇报,并说说怎样想的)
(3)第100枚呢?(学生动手做一做,指名交流)
2.练一练第2题。
(1)引语:美羊羊的手工制作多棒呀,她正在按绿、黄、蓝、红的顺序穿一条彩色手链呢,瞧,多漂亮呀!如果按照这个顺序串下去,第18颗珠子是什么颜色?第24颗呢?
(2)学生口答。
3.画图形:
练一练第3题。
师:出示戴着眼镜的慢羊羊结合想想做做3,同学们,聪明的你能出色的完成慢羊羊村长交给你的这个任务吗?
(1)学生独立完成。汇报交流。
看来啊同学们还学得真棒,慢羊羊难不倒我们。准备奖励我们一下。可是懒羊羊不服气了,这有什么难的,我还会自己设计按规律摆放的图形了!出示思考题,学生思考。你觉得懒羊羊摆放的图形有规律吗?如果按照这样摆下去,第17个图形是什么图形?
……
(2)学生讨论,反馈自己的想法。教师适当指导。小结:所以我们在找规律时一定要仔细观察,看清是从哪一个图形开始找起的。
设计意图:练习设计主要是基础性练习,同时也有开放性、拓展性练习,关注课堂中每一个学生,让每一个学生在课堂中都有不同程度的发展。特别是最后一题拓展,更加强调了有时物体摆放的规律并不一定要从第一个找起,有时是从第二个,甚至第三个开始才有规律的。所以找规律一定要仔细、认真。
六、全课小结,回顾与反思学习过程
1.同学们,今天学习了什么内容?在那么多解决找规律问题的方法中你觉得哪种方法比较好?共4页,当前第3页1234
2.我们今天找到了许多规律,也用规律解决了许多问题。其实大自然中也蕴藏着很多的有规律的现象……
欣赏大自然的规律。(草原上春夏秋冬,月圆月缺的变化……)
欣赏生活中的规律。(红绿灯的交替变化)
同学们,只要我们留心观察生活,就会发现数学就在我们身边。
设计意图:通过学习内容的回顾和小结,有效落实三维目标,通过对自然规律、生活中规律的欣赏,让学生进一步感受到数学就在自己的身边,有效激发学生学习数学的兴趣。
最后老师给你们留了个作业:
自己设计一组有规律的图形,并把规律圈出来。然后求出第28个是什么图形。发送邮箱:。
板书设计:
找规律
五年级上册数学教学设计11
【教学内容】
教材第69页例4、例5、“做一做”和练习十五的第8-14题。
【教学目标】
1.进一步掌握转化的思路,正确解答二步计算的方程。
2.在掌握ax±b=c和a(x±b)=c的方程解法的基础上,学会找出等量关系,用列方程的方法解答二步计算的文字题。
3.养成分析的习惯,训练严谨的学习态度。 培养学生用不同的方法解决问题的思维方式。
【重点难点】
1.掌握ax±b=c和a(x±b)=c的方程解法。
2.看图找出等量关系,并根据等量关系列出方程解决问题。
【教学准备】
多媒体课件。
【复习导入】
1.解下列各方程,并说明解题的思路与解法根据。
(1)3.8-x=2.9(2)5x=12.5
学生独立完成后相互交流。
小结:这两道题是最基础的解方程题目。根据等式的性质,就可以求解了。
2.出示例4的情景图,学生思考:怎样列方程呢?
学生相互讨论。
这道题与以前学过的解方程有什么不一样的.呢?(学生回答)那这节课我们一起来继续学习解方程。
板书课题。
【新课讲授】
1.教学例4。
(1)出示例4情景图。
(2)如何列出方程呢?
学生讨论,汇报。
引导分析:先找出题中的已知与未知数量关系,列出等量关系式,再根据等量关系列出方程:
等量关系式:图中有3盒铅笔和4支铅笔一共是40支,3盒铅笔+4支铅笔=40支铅笔,已知每盒铅笔x支,三盒共3x支。
列方程为:3x+4=40
(3)追问:这种方程该怎么解呢?
学生尝试解题,然后说出解题思路。
引导学生小结:可以把3x看作一个整体,就是三盒铅笔的总数,再利用等式的性质,左右同时减去4,就将方程变成了我们学过的一般方程:3x=36,然后左右同时除以3,得x=12。
完整的解题过程:
解:3x+4=40
3x+4-4=40-4
3x=36
3x÷3=36÷3
x=12
答:每盒铅笔有12支。
学生写出检验过程。
(4)这样一类方程应该如何解呢?
学生讨论后汇报交流。
教师引导小结:先把含有未知数的那一项看作是一个整体,利用等式的性质把方程变成只有两项,再求解。
2.教学例5。
(1)出示例5:解方程2(x-16)=8。
(2)观察、讨论:这个方程能不能利用例4所学的方法解呢?
学生讨论后交流。
教师引导:可以把(x-16)看作是一个整体。
学生尝试解题,指定一名学生板演,集体讲评。
解方程2(x-16)=8。
解:2(x-16)÷2=8÷2把什么当作一个整体?
x-16=4
x-16+16=4+16
x=20
学生完成检验过程。
(3)想一想:还有没有其他的解法呢?
学生分组讨论,然后汇报。
引导小结:可以先把2(x-16)变成2x-32,及时提问:这一步运用什么定律?(学生回答:乘法分配律)那方程就变成了2x-32=8,再利用例4的方法解。
学生独立写出解答过程。
解方程2(x-16)=8。
解:2x-32=8运用了什么运算定律?
2x-32+32=8+32
2x=40
2x÷2=40÷2
x=20
检验:方程左边=2(20-16)
=40-32
=8=方程右边
所以,x=20是方程的解。
(4)引导学生小结:在解较复杂的方程时,可以先将一个式子当作一个整体,变成了一般方程再利用等式的性质求解,记住解完方程后要检验。
【课堂巩固】
完成课本第69页“做一做”。
学生独立思考,独立完成解答过程,然后师生共同分析、讲解。
【课堂小结】
提问:同学们,这一节课你又学会了哪些类型的方程?有什么收获呢?
小结:这节课,我们知道在解较复杂的方程时,可以先将一个式子当作一个整体,变成了一般方程再利用等式的性质求解,记住解完方程后要检验。
【课后作业】
1.完成教材第71~72页练习十五第8~14题。
五年级上册数学教学设计12
一、复习准备
1.复习旧知,铺垫引导
师:同学们还记得我们前两天学习的平行四边形和三角形的面积计算公式吗?还记得三角形的面积是怎样推导出来的吗?
生:转化成平行四边形。
(在学生说的同时,教师配以投影展示,让学生注意到图形的转化。)
谈话:同学们对前面的知识掌握的真不错。
二、新知探索
(一)呈现实际情境,感受计算梯形面积的必要性
师:这里有一个灌溉堤坝的横截面如下图,它的面积是多少?
师:梯形的面积到底该怎么计算呢?今天,让我们共同来研究。(板书课题:梯形的面积)
师:你认为我们该从哪儿入手研究呢?
(学生思考片刻可能会回答:可以先转化为学过的图形)
师:在我们生活中有很多这样的梯形,而且需要我们计算它的面积。那么到底该怎样计算它的面积呢?我有个建议,发挥小组的力量,共同合作探究。
(二)提供材料,自主探究图形的转化过程
1、提出小组合作的要求
师:下面我们共同来研究梯形的面积计算方法。小组全作的要求如下:
a.利用你们小组的梯形学具,先独立思考能把它转化成已学过的什么图形。
b.把你的方法与小组成员进行交流,共同验证。
C.选择合适的方法交流汇报。
2.自主探究,合作学习
(学生小组合作讨论,动手操作,教师巡视参与并给以适当的指导。让部分小组上黑板展示)
3.全班汇报交流
师:同学们已经用不同的方法转化成了我们学过的图形,哪一个小组先派代表给同学们讲解,其他时小组的同学可以随时提问。
生1:我们小组的方法是用两个相同的梯形拼成一个平行四边形。
(学生边动手演示,边说转化过程。)
生2:我们小组是把梯形沿两腰中点剪开,变成两个小梯形,再转化成平行四边形。
生3:我们取了两个相同的直角梯形,因此,拼成的图形是长方形。
(三)探索、归纳梯形的面积计算公式
师:同学们介绍了各种方法,现以第一种转化为平行四边形为例(实物投影出示),这一个梯形和转化后的平行四边形有什么联系?怎样推导其面积公式?
生:梯形上、下底的和等于拼成后平行四边形的底,梯形的高就是平行四边形的高。
生:梯形的面积是所拼平行四边形面积的一半。
生:梯形的面积=(上底+下底)高2
(教师板书梯形面积计算公式)
师:一个梯形的面积为什么要除以2?
生:因为拼成的平行四边形有两个梯形,求一个梯形就需要除以2。
师:请同学们再任选一种转化方法进行推导,验证梯形的面积计算公式和刚才的是否一致。
师:如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式应怎样表示?
板书:S=(a+b)h2
(学生在得出梯形面积的计算公式后,安排计算堤坝横截面的面积)
三、联系实际,巩固运用
1.试一试
引入:梯形的用途很广泛,在很多物体中都经常看到梯形。下面我们来解决一些日常中的问题,计算下列梯形的面积
(1)出示篮球场的罚球区图形,请计算出罚球区的面积。
(2)出示汽车侧面玻璃,要制作这扇门的窗户需要多少平方厘米的有机玻璃?
2.练一练第1、2、3题,让学生独立完成。
3.思考题
我们经常见到圆木,钢管等堆成下图的形状,求图中圆木的总根数,你有几种解答方法?
四、课堂小结
师:通过今天的上课,谈谈你的收获。
案例分析:
动手实践、自主探索与合作交流是形计算教学的有效策略,是学生学习数学的重要方式,本课的教学应该说较好地落实了这一理念。具体体现在:
1.学习策略的变化是本节课最突出的一个特点。如:在探索新知这一环节中,改变了过去由教师讲解、代替学生操作的传统教学方式。通过动手实践小组内交流选择可行的方法这样三个步骤,完成了转化和归纳的全过程。突出体现了学生是学习的主人这一新理念。充分调动了学生学习的'主动性,激发了学生探究的欲望。使学生在不断地探索、合作、交流中经历了知识的形成与发展的全过程,并从中体会到了探究所带来的乐趣。
2.第二个突出的特点是把所学知识与实际生活紧密联系起来。如练习题的设计就突出体现了这一点。通过计算学生比较熟悉的篮球场中的罚球区图形的面积,某些汽车侧面的玻璃面积等实际生活中的问题,使学生体会到数学与生活的联系。培养了学生用数学眼光认识事物,应用数学的意识,从而进一步体会数学的应用价值。
不足之处:学生手中的梯形学具应具有多样性(大小不同;大小相同;形状不同;形状相同),让学生在动手操作转化的过程中去体会:两个完全一样的梯形这一条件的重要性。
五年级上册数学教学设计13
课题:平行四边形的面积第1课时总第课时
教学目标:
1.使学生通过实际操作和讨论分析,探索并掌握平行四边形的面积公式,能应用公式正确计算平行四边形的面积,解决一些简单的实际问题。正确率达到80%
2.使学生经历观察、操作、测量、填表、讨论、分析、归纳等数学活动过程,初步体会图形转化的意义和价值,培养空间观念,发展初步的逻辑思维。
3.使学生在探索平行四边形面积公式的活动中,进一步增强与同伴合作交流的意识,初步感受“变”和“不变”的辩证思想。教学重点:理解并掌握平行四边形的面积公式。教学难点:理解平行四边形面积公式的推导过程。教学准备:课件教学过程:
一、例题引路(6分钟左右)
1、长方形面积怎么算?板书:长方形面积=长×宽。
2、出示PPT,引导观察。观察例1,说说自己的想法。转化前后,什么没有变?
3、交流例2,你是怎么转化?
预设:①沿着高剪出一个三角形,平移后,转化成长方形。 ②沿着高剪出一个梯形,平移后转化成长方形。组织交流,转化的方法。强调:沿着高剪。
二、自学例3(16分钟左右)
1、明确例3中的数学信息及所需要解决的问题出示:例3的PPT导入:例3中要我们做什么?围绕导学单进行自主学习。
2.自学
导学单(时间:5分钟)
①拿出预先准备好的平行四边形。量出或数出它的底、高分别是多少,填在表格中。平行四边形底cm高cm出示表格以及平行四边形。组织学生交流,板书。(板书在右边。)
②把刚才三个平行四边形转化成长方形后填写下表。转化成的长方形长cm宽cm面积cm2组织学生进行转化操作,操作后交流填表。(板书在左边。)
③小组讨论:
1.转化成的长方形与平行四边形面积相等吗?
2.长方形的长和宽与平行四边形的`底和高有什么关系?
3.根据长方形的面积公式,怎样求平行四边形的面积?完成填空。
板书:
平行四边形的面积=底×高↓ ↑ ↑
长方形的面积=长×宽
④小组交流交流内容:
1.平行四边形的面积推导过程。
2.公式的字母表示方式。
组织交流、观察、讨论,强化认识。板书字母公式S=ah
⑤完成试一试。独立完成,板演。集体交流。
三、练习(10分钟左右)
(1)适应练习第8页练一练
(2)巩固练习
完成“练习二”第1——5题。
①独立完成。
②集体交流。
找到平行四边形的底和高第1题:抓住等底等高来画。
第5题:周长没有变,面积变小了。因为高变短了。
(3)创编练习
一个平行四边形(如图),周长是78cm,以cD为底时它的高是18cm,有Bc是24cm,求它的面积?
A D
B c思考:平行四边形的两组对边是相等的,求到cD的长,那么面积也求到了。
四、课作(8分钟左右)完成《补充习题》第4页
帮助学困生,收集典型错题,讲评时所用。
校对作业,分析典型错例,统计正确率,错误的订正。全对的做“提高题”。
提高题:你有几种方法求下面图形的面积?
五、家作
完成《课课练》第x页
五年级上册数学教学设计14
教学内容:
北师大版小学数学教材五年级上册第88—89页。
教材分析:
《组合图形的面积》是北师大版五年级上册第六单元的第一课,学生在三年级已学习了长方形与正方形的面积计算,在本册的第四单元又学习了平行四边形,三角形与梯形的面积计算,本课时的组合图形面积的计算是这两方面知识的发展,也是日常生活中经常需要解决的问题,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,感受计算组合图形面积的必要性,二是针对组合图形的特点强调学生学习的自主探索性。让学生自主探索计算组合图形的基本方法,并在交流、讨论中开阔思路,修正想法,从而更好地解决生活中有关组合图形的实际问题。
学情分析; 作为五年级的学生,通过之前的学习对于平面基本图形的感知和认识已有了一定的基础,也掌握了一些计算图形面积和解决图形问题的方法。但本班学生分析思考能力较差,基础较薄弱,所以应进一步提高知识的综合运用能力,加强团体合作精神,善于去交流思考,探索解决问题的策略。
教学目标:
1、在自主探索活动中,理解计算组合图形面积的多种方法。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。 3、进一步渗透转化的教学思想,提高学生运用新知识解决实际问题。 4、感受计算组合图形面积的必要性,产生积极学习的兴趣。 教具:多媒体教学课件 教学过程:
一、图形欣赏、激发兴趣
1、今天老师给大家带来了一个小动物,你们猜猜会是什么动物呢?课件出示由基本的平面图形组成的金鱼图形学生欣赏。
(设计意图:兴趣是最好的老师,学生怀着极大的兴趣是上好一节课良好的开端,兴趣是一种无形的力量,是学好数学的保证。)
2、美丽的金鱼是由哪几个基本的平面图形组成的?在学生回答的同时一并复习正方形、长方形、平行四边形、三角形、梯形的面积计算公式。
(设计意图:复习学过的五种基本图形的面积计算方法,唤醒学生的旧知,为下面学习组合图形的面积计算作铺垫,也为确保正确计算组合图形的面积夯实基础)
二、自主探索、合作交流 1、发现规律,初揭课题
拼图游戏:让学生用七巧板拼出自己喜欢的一个图案,学生一边拼图形,一边交流,教师巡视指导。选择2-3个有代表性的图形用实物投影展示出来。 师:请同学们仔细观察并思考,这几个图形有什么共同特征?
生:(观察思考回答)这些图形都是由几个简单的基本平面图形拼出来的。 师:对,我们就把像这样由两个或两个以上平面图形组合而成的图形叫做组合图形。(板书:组合图形)
(设计意图:“数学是思维的体操”,作为小学生思维能力训练的主阵地,数学课堂应开启学生的发现之旅,让学生练就一双善于发现的眼睛,同时游戏活动激发了学生学习的积极性和探究欲望。)
2、寻找图形,再揭课题
师:现实生活中存在着大量的组合图形,你能从我们生活中哪些物体的表面找到组合图形?
生:教室窗户由一个小长方形和两个大长方形组成、房子侧面由一个三角形和一个长方形组成、……
师:真不错!同学们都是生活的有心人,其实组合图形就在我们身边。
师:基本图形的面积计算同学们都是游刃有余!今天的关键是想求组合图形的面积,我们应该怎么办呢?
生:只要把组合图形中几个简单的平面图形的面积加在一起就行了。
师:真棒!这节课我们就一起来学习求组合图形的面积。(添加板书:的面积) 3、观察图形,估算面积
师:淘气家新买了住房,想把新房的客厅铺上地板,新房的客厅地板的面积有多大呢?同学们能帮他算算吗?(拿出老师发给同学们的客厅平面图)。
师:你能估一估这个不规则图形的面积吗?说说你是怎样想的? 生:进行估算。汇报。
(设计意图:这一环节的设计主要是想培养学生的估算意识。同时让学生理解这个图形不是简单图形,不能直接估计它的面积,让学生在估算的时候,潜移默化地运用添补和分割的转化思想,也为下一步计算组合图形面积做一个很好的铺垫)
4、独立探索,计算面积。
师:同学们都说出了自己估算的理由,那你估算的数据接近真实的数据吗?请同学们观察手中的客厅平面图试着寻找出计算这个图形的方法。
学生独立活动:解决组合图形面积计算问题。 5、合作交流,探索方法。 (1)小组合作,交流方法
师:老师刚才发现同学们的方法都很有自己独到的见解,那现在就请小组内同学互相交流一下自己的想法?
学生小组内互相交流,老师深入到小组当中去参与他们的活动,并给予适当的指导。(设计意图:直接让学生凭借已有的经验探索计算组合图形面积的方法,给了学生更大的自主探索的空间。)
(2)全班共享,提炼方法
师:哪个小组的同学愿意先来汇报你们的想法?
生:在图形里面画一条线,分成一个长方形和一个正方形,分别算出长方形和正方形的面积,再算面积之和。
师: 真好,这条线叫辅助线,是我们数学学习的好帮手,我们一般将它画成虚线,还有不同的方法吗?
学生汇报,课件适时出示不同的计算方法,在探讨的过程中引导学生给不同的.计算方法命名。
师小结:刚才同学们在汇报的过程出现了两种方法,一种是分割法,一种是添补法,另一种是割补法,那这几种方法有什么特点呢?请小组内的同学讨论一下好吗?
小组内讨论并汇报。 师小结:
分割法:当我们用分割法时,分割的图形越简洁,其解题方法就越简单,要考虑到分割的图形与所给条件的关系。有些图形分割后找不到相关的条件就不行了。用分割法计算时,要先算出各部分的面积,最后把它们加起来。(板书:分割法求和)
添补法:当我们添补上一块之后,能根据给定的条件求出添补之后图形的面积,那我们就可以尝试一下,否则这种方法就是行不通的。用添补法计算,记得把添上的这部分面积减去。(板书:添补法求差)
割补法:要求割下来的这部分能正好拼上。这种方法,既有分割,又有添补,(板书:割补法灵活计算)
3
师:同学们再观察一下,这些方法看似不同,但其实它们都有一个共同的特点,你能发现吗?
师小结:不论是分割或添补,目的都是——把不规则的图形——转化成——已学过的基本图形。(板书:转化) (3)比较反思,选择方法
师:通过同学们刚才的回答,老师发现你们可以灵活的运用解题的方法真是太好了,那在本题当中你更喜欢哪一种方法呢?说说你的理由。
师小结:求一个组合图形面积的时候,因为分割、添补的方法不同,计算步骤也不同,但最后的计算结果应该是相同的。虽然求组合图形面积的方法是多样的,但我们还要根据所给的条件,灵活地选择合理、简便的方法进行计算。(板书:合理 、简便)
(设计意图:这里体现了多种学习方式并存,首先,学生通过自己独立思考,得出解决问题的方法;然后通过小组和全班交流,使学生学会了别人的方法;最后,从这些方法中,比较、反思、知道最简便的方法。使学生在不断完善认识的过程中,学会倾听、学会吸纳他人的意见,享受积极思考获得的快乐。引导学生交流,引起思维的碰撞,使他们体会到解决问题方法的多样性。】)
三、 应用拓展,提高能力
1、练一练1,书中第1题下面的图形可以分成哪些已学过的图形?
(作业设计意图:每一幅图都有多种分法,课堂上应避免学生分得过于复杂化,鼓励学生选择合理 、 简便的分法。)
2、练一练2,书中第2题,认真观察图,选择有用的数据,你想怎样计算?把你的方法在小组里交流。指名汇报。对于不同的算法,师生共同分析,提升比较简便的方法,加以指导。
(作业设计意图:这道题是对上一题的补充,拓展,同学们都能用分割法把这道解出来,但是用添补法到底能不能解决这道时,同学们就会发出疑问,可是当老师适当进行点拨之后,就会是另外一种情况,整体代法的介入不仅是对这道题的一个有效的补充,而且也为六年级求圆的面积埋下伏笔,同时也充分体现了算法多样化的教学理念。)
3、练一练3,书中第3题,计算这张硬纸板还剩多大的面积?
(作业设计意图:通过两个层次的分割,使学生明白在组合图形的分割中,需要根据所给的条件进行合理的分割,分割的图形越简洁,计算起来越简便。)
4、练一练4,书中第4题,学生自己独立思考并计算,然后说说自己的想法。
(作业设计意图:习题由浅入深、形式多样、难易适度,把数学与应用紧密结合在一起,不仅发展了学生的空间观念,而且培养了学生灵活解决实际问题的能力,获得了更多的解决问题的策略,还通过上面的两道解决实际问题的练习,使学生感受到数学就在我们身边,生活中处处有数学。)
5、思考,计算下面图形中阴影部分的面积。多媒体出示。
四、总结收获,反思提升
师:同学们通过本节课的学习,你有什么收获呢? 引导学生说说学会了哪些?怎样学会的?还有哪些问题?。
(设计意图:总结的目的是让学生对本节课的内容进行一下回顾,让学生体会到独立思考和相互学习都很重要,做到在数学方法和数学思想方面都有所收获,有所提升。)
五、独立思考、完成作业 长江作业《组合图形的面积》
六、板书设计:
组合图形的面积
转化
分割法:求和
添补法:求差(特例除外) 割补法:灵活计算 合理 简便
(设计意图:本节课重点是掌握求组合图形面积的计算方法,设计这样的板书不仅可以直观地、简明扼要地展示本节课求面积的方法,便于学生理解、把握和选择,而且明显看出都是把组合图形转化为基本图形,感受“转化”这一数学思想方法,揭示了知识的内在规律及相互间的联系与区别,使学生在数学思想与方法上得到发展。)
五年级上册数学教学设计15
教学目标
1.通过自主探索、合作交流,自主构建、理解小数的除法计算法则,并能正确地进行计算。
2.使学生在经历探索计算方法的过程中,进一步体会转化思想的价值,感受数学思考的严谨性。
3.通过学习活动,培养对数学学习的积极情感。
教学重难点:
会笔算除数是整数的小数除法、
教学过程
一、创设情境,设疑导入
谈话:同学们,我们学习了小数的加、减、乘以及小数除以整数的除法,今天我们继续研究有关小数的计算。
(出示场景图)在动物乐园里有两只蜗牛欢欢、乐乐正在树林里游戏呢,我们一起去瞧瞧!(呈现:欢欢每小时爬行3米,一共爬行6.12米;乐乐每小时爬行4.2米,一共爬行7.98米。)
提问:要知道谁爬行的时间少一些?要先求什么?怎样列式呢?
根据学生回答,板书:6.12÷3,7.98÷4.2。
再问:你能估计一下,他们各自的时间大约是多少吗?
谈话:它们爬行的时间到底是多少呢,还需要进行精确的计算。先请大家算出欢欢爬行的时间。
学生练习后,提问:怎样计算除数是整数的小数除法?计算时要注意什么?
谈话:那么,怎样求出乐乐的爬行时间呢?
引导:7.98÷4.2和我们以前学过的小数除法算式有什么不同?
揭示课题:除数是小数的除法。
二、合作交流,探索方法
1.探索计算7.98÷4.2的思路。
除数是小数的除法是我们遇到的新问题,能不能把它转化成我们以前学过的知识来解决呢?先请同学们想一想,然后在小组里互相说一说。
学生在小组里活动,教师巡视。
学生中可能出现以下两种情况:
(1)分别把7.98米和4.2米转化成用“分米”作单位的数量,再进行计算;
(2)分别把7.98米和4.2米转化成用“厘米”作单位的数量,再进行计算。
交流第一种思路时,提问:把“米”作单位的数转化成把“分米”作单位的数,就是把被除数和除数同时乘──10。这样就把除数是小数转化成了怎样的除法?(相机板书:7.98÷4.2→79.8÷42)
<<<123>>>
交流第二种思路时,提问:把“米”作单位的数转化成“厘米”作单位的数,就是把被除数和除数同时乘──100。这样就把除数是小数的除法转化成了怎样的除法?(板书:7.98÷4.2→798÷420)
讨论:上面的两种思路有什么共同的地方?(板书:除数是小数——除数是整数)
追问:这两种转化都是可以的,这样转化的依据是什么?
小结:在数学学习中当面对一个新问题时,我们往往把新问题转化成会解答的旧问题,从而解决新问题。由此看来,转化是我们解决问题的一种重要的思想方法。
2.探索竖式计算的过程。
通过大家的努力,我们已经把要研究的新问题转化成了自己熟悉的旧问题。那么,怎样用竖式算出结果呢?
提问:如果把7.98÷4.2转化成除数小数的除法,就要把被除数和除数的小数点都向右移动几位?为什么这时的被除数是79.8?(板书)
再问:如果把7.98÷4.2转化成整数除法,就要把被除数和除数的小数点都向右移动几位?为什么这时的除数是420?(板书)
要求:选择一个自己喜欢的一个竖式,算出结果,并和同学交流。
指两名学生板演,评讲并反馈选择每种解法的人数。
提问:转化成798÷420也是可以算的,为什么选择这种转化方法的人很少呢?
小结:请同学们闭上眼睛,我们一起再来把7.98÷4.2竖式的转化、计算过程在眼前展示一遍。你觉得在这个过程中最重要的是什么?
说明:用竖式计算环节,虽然出现了不同的方法,但结果相同。在尊重学生选择的基础上,引导学生通过比较进行算法优化,让学生体会把除数转化成整数的除法算式比较方便。学生在这一过程中,再次体会计算策略,而且经历了由直观算理到抽象算法的过渡和演变过程,从而达到对算理的深层理解和算法的切实把握。
三、练习巩固,深化拓展
1.专项练习。
出示:把下列除法式子转化成除数是整数的小数除法,并想一想商的小数点的位置。
<<<123>>>
让学生说一说每一道题可以转化成怎样的除法算式,商的小数点在哪里。
2.先估再算。
下面各题,请同学们先估一估、再计算,看谁能把每一道题都算对。
出示:
5.76÷1.8= 7.05÷0.94= 0.672÷4.2=
学生练习后,组织反馈。
说明:估算是提高计算正确率的有效方法之一。上面的环节留给学生足够的`思维空间,在判断、改错、计算的同时,将估算、验算等方法有机地结合在一起,既有利于培养学生的估算能力、反思能力,获得良好的数感,又有利于学生逐步养成把估算、计算、检验相结合的良好习惯,从而提高计算水平与能力。
4.总结计算方法。
提问:“除数是小数的除法”可以怎样计算?计算时要注意什么?
5.拓展练习。
(1)比一比,看谁算的既快又正确。
0.12÷0.25 0.12÷2.5 0.012÷0.25
提问:你能很快算出上面各题的得数吗?自己先试一试,再把你的算法和同学交流。
学生中可以出现两种算法:① 先用竖式算出第一题的商,再直接写出第二、三题的商;② 把第一题的被除数和除数同时乘4,使除数等于1,并直接用0.12×4算出得数,再直接写后面两题的得数。
着重引导学生理解第二种算法的思考过程,并鼓励学生在计算一些比较特殊的除法算式时,可以根据算式的特点,用比较简便方法进行计算。
小结:计算有时要根据具体问题、题目之间的关系,灵活地进行计算。
说明:在学生理解除数是小数的算理,掌握计算方法之后,安排拓展性练习,引导学生根据具体情况灵活确定计算方法,既有利于培养学生良好的审题习惯和灵活计算的学习品质,又能使不同层次的学生都能得到充分的发展,使计算课充满思维的张力和不断探索的活力。
四、全课小结,回顾反思
提问:这节课你学习了什么?怎样计算除数是小数的除法?为什么要把除数是小数的除法转化为除数是整数的除法?计算时要注意哪些问题?
【五年级上册数学教学设计】相关文章:
数学上册教学设计11-28
小学数学五年级上册教学设计05-10
人教版小学五年级上册《数学广角》教学设计与反思五年级上册数学广角教学实录02-14
五年级上册数学商的近似数教学设计06-30
数学五年级上册《小数加法和减法》教学设计02-02
五年级上册数学《解简易方程》教学设计01-23
五年级上册数学组合图形的面积教学设计02-02
五年级上册《美术》教学设计03-29
五年级上册白鹭教学设计01-13