分数的基本性质教学设计通用【15篇】
作为一名辛苦耕耘的教育工作者,就有可能用到教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么应当如何写教学设计呢?以下是小编为大家收集的分数的基本性质教学设计,欢迎阅读与收藏。
分数的基本性质教学设计1
教学目标
1、学生能理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的性质之间的联系。
2、学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。
3、培养学生观察、比较、抽象概括的逻辑思维能力,渗透“事物之间是相互联系的”辩证唯物主义观点。
教学重、难点:
理解分数基本性质的含义,掌握分数基本性质的推导过程。运用分数的基本性质解决实际问题。
教学过程:
一、复习旧知,了解学习起点
二、创设情境,激趣引入
课件动画显示:蓝猫、菲菲、霸王龙最喜欢吃淘气做的饼。有一天淘气做了3块大小一样的饼分给蓝猫、菲菲、霸王龙。蓝猫说:“我功劳最大,我要吃一大块。”菲菲说:“我要吃两块。”霸王龙抢着说:“我个头最大,我要吃3块。”淘气想了想便动手切饼满足了他们的要求,并向他们提问:“刚才,我把3个同样大小的饼,平均分成2份、4份、6份,分别给了你们1块、2块、3块,你们知道谁吃的多吗?”淘气的问题,立刻引起了他们的争论。同学们,你们知道他们谁吃得多吗?
三、探究新知,揭示规律
1.动手操作,形象感知。
(1)折。请学生拿出3张同样大小的圆形纸,把每张圆形纸都看做单位“1”,用手分别平均折成2份、4份、6份。
(2)画。在折好的圆形纸上,分别把其中的1份、2份、3份画上阴影。
(3)剪。把圆中的阴影部分剪下来。
(4)比。把剪下的.阴影部分重叠,比一比结果怎样。
2.观察比较,探究规律。
(1)通过动手操作,谁能说一说动画片中蓝猫、菲菲、霸王龙各吃了一个饼的几分之几?(板书。)
(2)你认为他们谁吃的多?请到讲台上一边演示一边讲一讲。
学生汇报后,教师用电脑演示。
把3块同样大小的饼分别平均分成2份、4份、6份,依次表示。把平移、重叠,明显地看出块饼、块饼、块饼大小相等。通过分饼、观察、验证得出结论:“蓝猫、菲菲、霸王龙分的饼一样多。”
(3)既然他们3个吃的同样多,那么、的大小怎样?我们可以用什么符号把他们连接起来?(板书。)
(4)聪明的淘气是用什么办法既满足蓝猫、菲菲、霸王龙的要求,又分得那么公平呢?这就是我们今天研究的内容“分数的基本性质”。(板书课题。)
(5)这3个分数的分子、分母都不同,为什么分数的大小却相等?你们能找出它们的变化规律吗?请同学们4人为一组,讨论这几个问题。(课件出示讨论题。)
讨论题:
①它们之间有什么关系?它们的什么变了?什么没有变?
②从左往右看,是按照什么规律变化的?从右往左看,又是按照什么规律变化的呢?
(6)学生汇报,师生讨论情况。
师:这3个分数是相等的关系。可以写成,它们的分子、分母变了,而分数的大小没有变。
师:从左往右看,由得到,是把的分子、分母都乘以2,也就是把分的份数和表示的份数都扩大2倍,就得到。同理的分子、分母都乘以3,就得到,而分数的大小不变。(板书:都乘以相同的数。)
从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析,比较,,得出:分数的分子和分母都除以相同的数,分数的大小不变。
(7)抓住焦点,辨中求真。
的分子、分母能否同时乘以或者除以零呢?围绕这个问题展开讨论、辩论。通过讨论、争辩,使学生认识到“因为分数的分子、分母都乘以0,则分数成为”。
分数的基本性质教学设计2
一、学习目标:
1、学生能理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的规律之间的联系。
2、学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。
3、培养学生观察、比较、抽象、概括的逻辑思维能力,渗透“事物之间是相互联系的”辨证唯物主义观点。
二、重、难点:
理解和掌握分数的基本性质。
三、学习过程:
一、导入
(1)3张同样的正方形或长方形纸片,(如下图)平均分成2份、4份、8份,涂上颜色,分别用分数表示涂色部分。
(2)你发现了什么?
二、学习新知
1、师板书 = =
2、观察三组分数,它们的分子和分母是怎样变化的?
分小组讨论,并填写
1 ( ) 2 1 ( ) 4
2 ( ) 4 2 ( ) 8
4 ( ) 2 2 ( ) 1
8 ( ) 4 4 ( ) 2
总结:分数的分子和分母同时 或 相同的数,分数的大小
3、应用
根据分数的基本性质,我们可以写出很多相等的分数
⑴的分子和分母同时乘2,等于( );同时乘4,等于( );
同时乘5,等于( );同时乘7,等于( )
总结: =( )=( )=( )= ( )
⑵= 说出你这样填的理由
= 说出你的理由
4、巩固练习
⑴第80页 (直接做在课本上)
⑵.在下面的括号里填上适当的数。
在下面的()里填上适当的'数,在○里填上“×”号或“÷”,使等式成立
⑶
请你当法官(说明理由)
⑷下面的分数化成分母是12,而大小不变的分数
⑸下面的分数化成分子是6,而大小不变的分数
5、拓展练习
判断
1、分数的分子和分母同时加上或者减去相同的数,分数的大小不变。( )
2、把 的分子增加1,分母增加3,分数的大小不变。( )
3、把 的分子扩大2倍,分母缩小2倍,分数的大小不变。( )
思考:一个分数的分母不变,分子乘以3,这个分数的大小有什么变化吗?如果分子不变,分母除以5呢?
分数的基本性质教学设计3
教学目标
1、经历探索分数的基本性质的过程,理解分数的基本性质。
2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
教学重点:
理解掌握分数的.基本性质。
教学难点:
归纳性质
教学设计
(一)创设情境,引起学生参与兴趣
1、猴王变戏法(学生模仿复习)
除法式子变形
分数与除法变形
2、教师出示三只可爱的小猴图片,奖励听故事:
有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成两块,分给第一只小猴一块,第二只小猴见到说:“太小了,我要两块。”猴王就把第二块饼平均切成四块,分给第二只小猴两块。第三只小猴更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切6块,分给第三只小猴三块。
同学们,你知道哪只猴子分得的多吗?(哪只猴子分得的多?让学生发表自己的意见)
3、教师出示三块大小一样的饼,通过师生分饼,观察验收后得出结论:三只猴子分得的饼一样多。聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道有什么规律吗?
(二)探究新知
1、动手操作、形象感知
请同学们拿出三张相同形状同样大的纸,把每张纸都看作一个整体。动手折出平均分的份数2份、4份、6份,动笔把其中的1份、2份、3份画上阴影,再把阴影部分剪下来,将剪下的阴影部分重叠,比一比记录下结论。
分数的基本性质教学设计4
教学目标:
知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小不变的分数;培养学生观察比较、抽象概括及动手实践的能力,进一步发展学生的思维。
过程与方法:经历探究分数基本性质的过程,感受“变与不变”,“转化”等数学思想方法。情感态度与价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。
教学重点:理解和掌握分数的基本性质,会运用分数的基本性质。
教学难点:自主探究出分数的基本性质
教学准备:PPT课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。
教学流程:
一、故事导入激趣引思
引言:细心的同学一定听出来了,刚刚老师播放的是哪部动画片的主题歌?对,我们今天的学习就从西游记的故事说起。
讲故事:话说唐僧师徒四人去西天取经,一路上历经磨难。一天,他们走得又累又饿,幸好路过一个村庄,化缘得到三块同样大小的饼。唐僧心想:三块饼,四个人不太好分呀!但是很快他就想到了一个分饼的方案,他对徒弟们说:我准备将第一块饼,平均分成2份,八戒吃其中的二分之一;将第二块饼平均分成4份,沙和尚吃其中的四分之二;将第三块饼平均分成8份,悟空吃其中的八分之四,你们同意这样的分配方案吗?师父的话音未落,猪八戒便跳出来说:“我不同意这样的分法,师父你太偏心了,凭什么猴哥吃那么多有八分之四,而我却吃那么少才二分之一。同学们,请你们判断一下,猪八戒说的对吗,师父真的偏心吗?
生发表见解。
二、自主合作探索规律
1、反馈引导:1/2=2/4=4/8。“三个徒弟分得的饼一样多---等式---仔细瞧瞧这组分数等式的分子分母相同么?但是它们的大小却?再用变化的.眼光瞧瞧,(师画正反向两箭头)我们发现分数的分子分母改变了,什么却没有变?师贴板帖分数可真与众不同呵!
2、提出探究任务:那如果我让们动手做或者联系生活实际想,像这样大小相等的分数,只有一组吗?你们能不能找出一些给老师看看?找之前请位同学为我们读一读小组合作学习要求:
(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。
(2)思考:在写分数的过程中你们发现了什么规律?
组内商量一下然后开始行动!
3、小组研究教师巡视
4、全班汇报
交流评价(教师相机板书)圆纸片汇报长方形纸汇报正方形纸汇报及联系一组人数说发现规律把每组数从左往右或者从右向左仔细观察你能发现分子分母的怎样的变化规律?(可以举例说演绎推理深入)随机更换贴图
板书课题:分数的基本性质打出幻灯
5、反思规律看书对照找出关键词要求重读共同读
6、引证规律:3/4=12/16刚刚动手做我们验证了这组大小相等的分数的正确性并由此发现了分数的基本性质那你能否利用分数与除法的关系以及整数除法中商不变性质,再一次说明分数的基本性质。
三、自学例题运用规律
过渡:同学们刚刚的精彩表现展示出了你们强大的学习能力,所以在接下来的一段时间里,老师请你们自学课本96页的例2并完成相应“练一练”。现在开始
生自学
集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。
四、多层练习巩固深化
1、判断对错并说明理由
2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8
2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不变的分数
思考:分数的分母相同,能有什么作用?
3、圈分数游戏圈出与1/2相等的分数
4、对对碰与1/2,2/3,3/4生生组组师生互动
五、课堂小结课堂作业
结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,
作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。
分数的基本性质教学设计5
教学目标
1. 让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2. 根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
3. 培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。
教学重点使学生理解分数的基本性质。
教学难点让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教学过程
一、故事情景引入
同学们,每年的中秋节你们都会吃什么呢?对了,月饼。中秋吃月饼是我们中国传统风俗。去年的中秋节,易老师的邻居李奶奶家里,发生了一件有趣的事情,大家想不想知道?
好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。
同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。
讨论完了请举手。
生甲:“我觉得不公平,小红分得多。”
生乙:“我觉得小明分得多。”
生丙:“我觉得公平,他们三个分得一样多。”
师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”
二、新授
师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”
请你们把这三张圆片叠起来,比一比大小,看看怎么样?
生:“三张圆片一样大。”
1.师: “ 下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”
首先,请在第一张圆片上表示出它的1/3;
再在第二张圆片上表示出它的2/6;
然后在第三张圆片上表示出它的3/9。
好了,大家动手分一分。(教师巡视指导)
2. 师:“分完了的请举手?
老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)
下面请哪位同学说一说,你是怎么分的?”
生:“把第一个圆片平均分成三份,取其中的一份,就是它的`三分之一。”
生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”
师:“那九分之三又是怎么得到的呢?大家一起说。”
生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。 ”
(学生说的同时,教师操作,分完后把圆片贴在黑板上。)
3. 师:“同学们,观察这些圆的阴影部分,你有什么发现?”
小结:原来三个圆的阴影部分是同样大的。
师:“ 现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)
生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”
师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”
生甲:“通过图上看起来,这三个分数应该是一样大的。”
生乙:“这三个分数是相等的。”
师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)
4. 研究分数的基本规律。
师:“我们仔细观察这一组分数,它的什么变了,什么没变?”
生甲:“三个分数的分子分母都变了,大小没变。”
师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。
第一个分数从左往右看,跟第二个分数比,发生了什么变化?”
生乙:“它的分子分母都同时扩大了两倍。”
师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。
再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)
教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”
学生发言
小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。分数的基本性质。
5. 深入理解分数的基本性质。
师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)
师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到108页。看看书上是怎么说的,是你说得好,还是书上说得好,为什么?
齐读分数的基本性质,并用波浪线表出关键的词。
生甲:我觉得“零除外”这个词很重要。
生乙:我觉得“同时”“相同”这两个词很重要。
师:想一想为什么要加上“零除外”?不加行不行?
让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。
教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)
三、应用
1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。
2.学生练习课本例题2,两名学生在黑板上做。
3.学生自己小结方法。
4.按规律写出一组相等的分数。
分数的基本性质教学设计6
教学目标:
知识与技能:掌握分数的基本性质对于学生来说非常重要。分数的基本性质包括:分数的大小与分子、分母的关系,分数的化简和扩大,分数的比较大小等。通过学习分数的基本性质,可以帮助学生更好地理解和运用分数,提高他们的数学能力。同时,分数的基本性质与整数除法中商不变性质有着密切的关系,这也有助于学生对整数除法的理解和运用。在学习中,学生需要掌握如何将一个分数化简为分母相同而大小不变的分数。这需要学生观察比较分数的大小,抽象概括规律,并进行实际操作。通过这样的练习,可以培养学生的逻辑思维能力和数学解决问题的能力。因此,学生在学习分数的基本性质时,应注重理解概念,掌握方法,多进行练习,提高自己的数学素养。
过程与方法:
在探索分数基本性质的过程中,我们体会到了数学思想方法中的“变与不变”以及“转化”的重要性。这个过程激发了我们的求知欲,也让我们体会到了数学思维的乐趣。通过互相交流和合作,我们不仅增进了对分数的理解,还培养了团队合作的意识。这种积极主动的学习态度将成为我们探索更多数学知识的动力,让我们更加享受数学带来的乐趣。
教学重点:
理解和掌握分数的基本性质,会运用分数的基本性质。
教学难点:
自主探究出分数的基本性质
教学准备:
PPT课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。
教学流程:
一、故事导入激趣引思
引言:好的,我来修改一下:大家是否能猜出刚刚老师播放的是哪首经典动画片的主题曲呢?没错,我们今天的学习将从中国古典名著《西游记》的故事开始。
讲故事:唐僧师徒四人行至一村庄,路过一家饼铺,慈悲心化缘得到三块同样大小的饼。唐僧想着如何公平地分配这三块饼,便提出了一个方案:将第一块饼平均分成2份,让猪八戒吃其中的一半;将第二块饼平均分成4份,让沙和尚吃其中的一半;将第三块饼平均分成8份,悟空吃其中的一半。唐僧的提议引起了猪八戒的.不满,他认为这样分配偏心,为什么悟空可以吃到一半,而他只能吃到一半。唐僧听了猪八戒的意见后,考虑了一下,觉得确实不太公平。于是,他重新想了一个更公平的分饼方案,让每个人都能公平地分享这三块饼。
生发表见解。
二、自主合作探索规律
1、三个徒弟平均分得的饼一样多。我们来看一下这组分数等式:1/2=2/4=4/8。观察一下这些分数的分子和分母,它们是相同的吗?虽然分数的分子和分母不同,但它们的值却相等。再换个角度看,我们发现分数的分子和分母发生变化,但它们的比值保持不变。分数真是一种独特的数学形式呢!
2、
(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。
(2)思考:在写分数的过程中你们发现了什么规律?
组内商量一下然后开始行动!
3、小组研究教师巡视
4、全班汇报
交流评价(教师相机板书)圆纸片汇报长方形纸汇报正方形纸汇报及联系一组人数说发现规律把每组数从左往右或者从右向左仔细观察你能发现分子分母的怎样的变化规律?(可以举例说演绎推理深入)随机更换贴图
板书课题:分数的基本性质打出幻灯
5、反思规律看书对照找出关键词要求重读共同读
6、当我们将3除以4得到的结果3/4,与12除以16得到的结果12/16进行比较时,我们发现它们是相等的。这说明了分数的一个基本性质:即分子和分母同时乘以(或除以)同一个非零数时,分数的值不变。这个性质也可以通过整数除法中商不变的性质来解释:在分数中,当分子和分母同时乘以(或除以)同一个非零数时,相当于整数除法中被除数和除数同时乘以(或除以)同一个非零数,商的值也不变。这再次强调了分数的基本性质,帮助我们更好地理解和运用分数的概念。
三、自学例题运用规律
过渡:同学们展现出了强大的学习能力,在接下来的学习中,老师希望你们能够自主学习课本96页的例2,并完成相应的练习。现在开始自主学习吧!祝你们学习顺利!
生自学
集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。
四、多层练习巩固深化
1、判断对错并说明理由
2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8
2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不变的分数
思考:分数的分母相同,能有什么作用?
3、圈分数游戏圈出与1/2相等的分数
4、对对碰与1/2,2/3,3/4生生组组师生互动
五、课堂小结课堂作业
结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。
分数的基本性质教学设计7
【教学内容】:
【教学目标】:
1、使学生理解和掌握分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2、通过猜想、验证、归纳、总结等活动,让学生经历分数的基本性质的探究过程,体会举具体事例、数形结合的思考方法,感受抽象、推理的基本数学思想。
3、在自主探究与合作交流的过程中,感受数学知识之间的联系,激发学生探究学习的兴趣,提高学生发现问题的能力。
【教学重点】:经历质疑、猜想、验证、观察、归纳的学习过程,探究分数的基本性质。
【教学难点】:理解和掌握分数的基本性质。
【教学方法】:
本节课我综合采用了谈话法,情境创设法、引导探究法、直观演示法,组织学生经历观察,猜测,得出结论。
【学法指导】:
为了有效的达成上述教学目标,秉着新课程标准的精神指导,在整个教学活动中力求充分体现学数学就是做数学,数学教学就是数学活动的教学的理念,以学生为主体,以学生发展为本。在本节课教学中,我主要采用观察发现法、动手操作法、举例验证法。引导学生静心倾听、认真操作、积极思考、大胆表达,通过动手实践、自主探究、合作交流等多种方式获得广泛的数学活动经验。
【教学准备】:
1、媒体准备:白板
2、资源准备:PPT
【资源运用】:
1、导入——课件出示问题-——唤醒旧知
2、探究新知——PPT课件——突破重点、分解难点
3、拓展延伸
【教学过程】:
一、联系旧知,质疑引思。
1、在自然数的范围内,可以找到两个大小相等但各个数位上数字又都不相同的自然数吗?
2、在小数的`范围内,可以找到两个大小相等但各个数位上数字又都不相同的小数吗?
3、在分数的范围内,可以找到两个大小相等但分子和分母又都不相同的分数吗?
谁能说一个与《分数的基本性质》教学设计
【唤醒学生已有知识经验而且引发学生的数学思考,为主动探究新知积聚动力。】
二、自主操作,验证猜想
1、初步验证
(1)提出问题
谁能说一个与《分数的基本性质》教学设计
如果让你证明他们确实和《分数的基本性质》教学设计
(2)汇报方法
2、深入验证:
(1)在纸上写上一组你认为可能相等的分数;
(2)用你喜欢的方法来证明。
(3)学生操作。
(4)汇报交流。
3、概括性质,深化理解
(1)在操作的过程中,你有什么发现?分子分母怎样变化分数的大小才不变?
(2)归纳概括,总结规律,揭示课题。
(3)根据我们以前学过的分数与除法的关系,以及整数除法中商不变的性质,来说明分数的基本性质吗?
4、运用规律,完成例2。
(1)理解题意
(2)要把他们化成分母是12而大小不变的分数,分子应该怎么变化?变化的根据是什么?
(3)独立完成,交流汇报
【给学生提供开放的探究空间,满足学生的探索欲望。】
三、知识应用,巩固提升
1、判断
(1)分数的分子、分母同时乘以或除以一个数,分数的大小不变。
(2)两个分数的分子、分母都不相同,这两个分数一定不相等。
(3)《分数的基本性质》教学设计
2、五年级有《分数的基本性质》教学设计
3、把《分数的基本性质》教学设计
才能使分数的大小不变?
四、回顾总结,完善认知
通过本节课的学习,你有什么收获?
【教学反思】:
1、课前准备不足,我用的20xx版做的,结果上课电脑是xxxx年版本的,展台没有试,影响教学流程。
2、教学机智不足,没有关注学情,总想到20分钟的课,时间短,有些赶,知识落实不够扎实。
3、课堂提问语言不够准确精炼,课堂评价不够丰富、准确。例如开课语及结束语言有歧义。
分数的基本性质教学设计8
教学内容:苏教版小学数学第十册第95页至97页。
教学目标:
知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。
情感目标:让学生在学习过程当中养成互相帮助、团结协作的良好品德。
教学准备:圆形纸片、彩笔、各种卡片。
教学过程:
一、创设情境,激发兴趣
孙悟空有3根一模一样的甘蔗,小猴子贝贝、佳佳、丁丁看见了,一哄而上,叫嚷着要吃甘蔗。孙悟空说: “好,贝贝分第一根甘蔗的,佳佳分第二根甘蔗的,丁丁分第三根甘蔗的。”贝贝、佳佳听了,连忙说:“孙大圣,不公平,我们要分得和丁丁的同样多。”孙悟空真的分得不公平吗?(学生思考片刻)
【通过学生耳熟能详的人物对话,给学生设计一个悬念,抓住学生的好奇心理,由此激发学生的学习兴趣。】
二、动手操作 、导入新课
师:我们也来分分看。(学生拿出准备好的圆形纸片。)师:我们把三张纸片看成三块饼,大家比比看,每人的三块饼大小相等吗?请拿出第一块饼,我想要一块,而且大小要是第一块饼的一半,你能做到吗?你给我的为什么是这块饼的一半呢?用分数怎么表示呢?我现在想要两块,而且大小要跟刚才给我的饼一样大,你又能做到吗?用分数怎样表示呢?我如果想要四块,大小跟前两次给我的一样,你还能做到吗?这次用分数又该怎样表示呢?这三个分数大小相等吗?为什么呢?这节课,我们就来研究这个数学问题。
【通过学生的动手操作,初步感知三个分数的大小相等,为寻找原因设置悬念,再次激发学生的学习兴趣。】
三、观察对比, 由“数”变 “式”
你们三次给我的饼大小相等吗?那么这三个分数大小怎样?可以用怎样的式子表示?(==)(从这里你能看出,孙悟空分甘蔗,分得公平吗?)
四、概括分析,由“式”变 “语”
⒈观察一下这个式子,3个分数有什么不同?有什么地方相同?分数的大小为什么会不变呢?要弄清楚这个问题,我们必须先研究分数的分子、分母是怎样变化的。
⒉先从左往右看,是怎样变为与它相等的的?
(1)分母乘2,分子乘2。
根据分数的'意义,""表示把单位"1"平均分成2份,取其中的1份,而现在把单位"1"平均分成4份,也就是把原两份中的每一份又平均分成2份, 所以现在平均分成了2×2=4(份),现在要得跟原来的同样多,必须取几份?[1×2=2(份)]==
即原来把单位"1"平均分成2份,取1份,现在把平均分的份数和取的份数都扩大2倍,就得到。与的大小相等,分数值没变。
(2)由到,分子、分母又是怎样变化的?(把平均分的份数和取的份数都扩大了4倍。)==
(3)谁能用一句话说出这两个式子的变化规律?
⒊再从右往左看
(1) 是怎样变化成与之相等的的?
原来把单位"1"平均分成4份,取其中的2份,现在把同样的单位"1"平均分成2份,即把原来的每两份合并成 1份,现在要取得跟原来的同样多,只需取几份?[2÷2=1(份)]也就是现在把平均分的份数和取的份数都缩小了2倍,得到,分数的大小没有变。
==
(2) 又是怎样变成的?(把平均分的份数和取的份数都缩小了4倍。)
==
(3)谁能用一句话说出这两个式子的变化规律?
⒋综合以上两种变化情况,谁能用一句话概括出其中的规律?你觉得有什么要补充的吗?(不能同时乘或除以0)为什么?
⒌这就是今天我们所学的“分数的基本性质”(板书课题,出示“分数的基本性质”)。
(1)理解概念。
学生读一遍,你认为哪几个字特别重要?(相同的数、0除外)相同的数,指一些什么数?为什么零除外?
(2)瘃木鸟诊所。(请说出理由)
分数的分子和分母同时乘或者除以相同的数,分数的大小不变。( )
分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。( )
分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。( )
⒍小结。
从判断题中我们可以看出,分数的基本性质要注意什么?学到这儿,大家想一想,我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?
【此过程主要由学生通过观察、比较,得出这三个分数大小相等的规律,由此牵引到其他的有同等规律的分数中,从而引出分数的基本性质:分子、分母是同时变化的,是同向变化的(是扩大都扩大,是缩小都缩小),是同倍变化的(扩大或缩小的倍数相同)。只有这样变化,分数的大小才不会变。】
五、巩固练习
⒈卡片练习:
⒉做P96“练一练”1、2。
⒊趣味游戏:
数学王国开音乐会,分数大家族的节目是女声大合唱,只有几分钟就要演出了,请大家赶紧帮合唱队的成员按要求排好队。
要求:第一排是分数值等于的,第二排是分数值等于的,还有一位同学是指挥,他是谁?你是怎样想的?
【通过练习,让学生加深对分数的基本性质的理解,为下节课分数的基本性质的应用打好坚实的基础。】
六、课堂总结
这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?
七、布置作业
做P97练习十八2。
分数的基本性质教学设计9
教材分析
1.分数基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变规律,与这部分知识紧密联系,是学习这部分内容的基础。
2.教材安排了两个学习活动,让学生寻找相等的分数,通过活动使学生初步体验分数的大小相等关系,为观察发现分数的基本性质提供的丰富的学习资料,然后引导学生分别观察这两组相等的分数,寻找每组分数的分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳出:分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变。
学情分析
学生已明确商不变规律,分数与除法的关系等知识,这些都为本课学习做了知识上的铺垫。五年级学生已经初步养成了合作学习的习惯,并具有了一定的分析和解决问题的能力,因此能够在教师的引导下完成“质疑—探索——释疑——应用”这一完整的学习过程。
因此在教学中,我主要采用引导学生探索以及小组合作学习相结合的方法,让学生探索出分数的基本性质,并会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,能有效地提高教学效率。
教学目标
经历探索分数基本性质的过程,理解分数基本性质。
能运用分数基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
教学重点和难点
理解分数基本性质,能运用分数基本性质转化分数。
教学过程
一、复习导入
二、探究新知
实践操作,探究规律
观察发现:初步概括分数基本性质
括归纳分数基本性质
三、课堂练习
四、课堂小结
出示复习题口答卡片, 复习商不变的规律、分数与除法的关系。1、 讲述唐僧分饼的故事:“……贪吃的猪八戒抢着说要吃这个饼的9/12,孙悟空说要吃这个饼的6/8,沙僧说要吃这个饼的3/4。同学们可知道谁吃的饼最多?”
提出问题: 这些分数都相等吗?
观察这组相等的分数,你发现了什么?把你的发现说给同伴听。
分子、分母都乘或除以一个数,这个数可以是0吗?为什么?
1、课本P43的“试一试”2、数学游戏:说出相等的分数3、课本P44的“练一练”第1~2、4
通过这节课的'学习、你学会了那些知识
口答
小组讨论
拿出准备好的圆形纸片,折一折,画一画、涂一涂
小组讨论、交流
小组讨论、交流
做练习,完成后集体交流。
说说,读分数基本性质
复习旧知,为学习新知识作铺垫。
将例1改编成故事 提出问题,让学生对故事中的人物进行直观评价,为后续探究营造良好氛围。
让学生通过实践操作,激发学生参与学习探究的兴趣,通过合作探究,初步感知有些分数的分子、分母不同,但分数的大小却相等。
引导学生通过不同形式的观察,逐步总结出存在的规律,这样由浅入深,循序渐进,有利于学生探究学习知识。
在学生初步发现规律的基础上,进一步理解分数的基本性质,并对分数的基本性质进行全面概括。
让学生利用分数的基本性质解决问题,使学生对分数的基本性质理解的更深刻,同时体验解决问题的乐趣。
对本节课的所学知识的回顾,及所学知识点的总结。
板书设计(需要一直留在黑板上主板书)分数基本性质被除数和除数同时扩大或缩小相同的倍数(零除外),商不变,这就是商不变的规律分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变,这叫做分数基本性质。
教学反思:
分数的基本性质在小学阶段是数运算的又一次质的飞跃与扩展,是重要的一个环节。我在引导学生观察探究中,重视学生的主动参与,多次组织学生小组讨论交流,让每个小组成员都能充分的说说自己的看法,相互交流,相互启迪,以感知分数的分子、分母是按一定的规律变化而分数大小不变。体现了理解与掌握数与数之间联系、变化的观点。
在本节课中,由于我对学困生关注度不高,,使得他们在分数基本性质应用的过程中产生了困难。小组合作探究中的小组学习亦要不断地完善。
分数的基本性质教学设计10
教学内容:人教版小学数学第十册第107页至108页。
教学目标:
1、知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
2、能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。
3、情感目标:让学生在学习过程中养成互相帮助、团结协作的良好品德。
教学准备:长方形纸片、彩笔、各种分数卡片。
教学过程
一、创设情境,激发兴趣
1.课件示故事。同学们,今天是快乐的,老师祝愿同学们节日快乐!在我们欢庆自己的节日时,花果山圣地也早已是一派节日喜庆的气氛。
【六一节到了,猴山上张灯结彩,小猴们享受着节日的快乐。猴王给小猴们做了三块他们爱吃的饼。它先把第一块饼平均切成四块,分给第一只小猴贝贝一块。第二只小猴佳佳见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给第二只小猴两块。第三只小猴丁丁急了,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给第三只小猴丁丁三块。贝贝、佳佳见了,连忙说:“猴爷爷,不公平,不公平,我们要分得和丁丁的同样多。”】
“同学们,猴王真的分得不公平吗?”
二、动手操作、导入新课
同学们,这个故事告诉了我们什么?猜想一下猴王分得公平吗?为什么公平?我们平常怎样去做?让我们也来分分看。请每组拿出课前准备的三张长方形纸片,共同来分一分,并完成操作报告(课件出示操作报告)。请小组长分工一下,明确记录的同学。
任选一小组的同学台前展示实验报告,并汇报结论。
教师根据学生汇报板书:14=28=312
2.组织讨论。
(1)通过操作我们发现三只猴子分得的饼同样多,表示它们分得饼的`分数是相等关系。那么,这三个分数什么变了,什么没有变?让学生小组讨论后答出:它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?学生通过观察演示得出结论教师板书:34=68=912。
3.引入新课:黑板上二组相等的分数有什么共同的特点?学生回答后板书:分数的分子和分母, 分数的大小不变。虽然他们的分子和分母变化了,但是它们的大小却不变。那么他们的分子和分母变化有规律吗?我们今天就来共同探讨这个变化规律。
三、比较归纳,揭示规律。
请每组拿出探究报告,任意选择黑板上的二组相等分数中的一组,共同讨论、探究,并完成探究报告。
1.课件出示探究报告。
2.分组汇报,归纳性质。
(1)从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。
(根据学生回答板书:同时乘上 相同的数)
(2)从右往左看,分数的分子和分母又是按照什么规律变化的?
(根据学生的回答板书:除以 )
(3)有与这一组探究的分数不一样的吗?你们得出的规律是什么?
(4)综合刚才的探究,你发现什么规律?
根据学生的回答,揭示课题,
(……这叫做板书:分数的基本性质)
对这句话你还有什么要补充的?(补充“零除外”)
讨论:为什么性质中要规定“零除外”?
(红笔板书:零除外)
(5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。
师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。
3、智慧眼(下列的式子是否正确?为什么?)
(1)35=3×25=65 (生:35的分子与分母没有同时乘以2,分数的大小改变。)
(2)512=5÷512÷6=12 (生:512的分子除以5,分母除以6,除数的大小不同,分数的大小也不同)
(3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,没有同时乘以或除以,分数的大小不相等。)
(4)25=2×x5×x=2x5x (生:x在这里代表任何数,当x=0时,分数的大小改变。)
4、示课件讨论:现在你知道猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?用分数表示为?如果要五块呢?
三、回归书本,探源获知
1、浏览课本第107—108页的内容。
2、看了书,你又有什么收获?还有什么疑问吗?
3、师生答疑。
你会运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质吗?
4、自主学习并完成例2,请二名学生说出思路。
四、多层练习,巩固深化。
1、热身房。35=3×()5×()=9()
824=8÷()24÷()=()3
学生口答后,要求说出是怎样想的?
分数的基本性质教学设计11
教学内容:
苏教版数学五年级下册第60~61页例1、例2,试一试及练习十一1~3题。
预设目标:
1、使学生经历探索分数基本性质的过程,初步理解和掌握分数的基本性质,知道它与商不变规律之间的联系。
2、使学生能应用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象、概括能力,体验数学学习的乐趣。
教学重点:
探索、发现、归纳和理解分数的基本性质。
教学过程:
一、导入
猜谜:你有我有他也有,黑身子黑腿黑脑袋,灯前月下伴你走,就是从来不开口。
二、学习新知
1、提供例证
(1)观察两个算式:1÷32÷6,问这两个算式的商相等吗?你的依据是什么?你能接着往下再写一个除法算式吗?
板书:1/3=2/6=3/9(得出三个相等的分数)
(2)学生折纸找与1/2相等的分数。
你能先对折,涂色表示它的1/2吗?你能通过继续对折,找出和1/2相等的其他分数吗?
展示与1/2相等的分数,并逐步板书:1/2=2/4=4/8=8/16
2、诱导探索
提问:这些分数的分子、分母都不同,但是它们的大小都是一样的,这里隐藏着什么规律呢?分数的分子、分母怎样变化分数的大小不变呢?
3、探究新知
(1)独立思考或小组交流。
(2)探究验证。
你能从(1/2=2/4、1/2=4/8、1/2=8/16)这三组分数中任意选一组具体说说分数的分子、分母怎样变化以后,分数的大小不变?
教师根据学生的回答进行板书。
4、揭示结论:出示分数的基本性质的内容,并揭示课题。
5、深究结论:
(1)在分数的基本性质中,你认为哪些字词比较重要,为什么?
(2)齐读并理解记忆分数的基本性质。
三、多层练习
1、填一填。(在○里填运算符号,在□里填数或字母)。
4/5=4×6/5○□=24/□20/70=20○□/70÷5=□/14
5/8=5○□/8○67/12=7○□/12○□
2、判断。
3/4=3+4/4+4()12/15=12÷n/15÷n()
5/25=5×5/25÷5()5/6=25/30()
四、课堂作业:
1、第62页“练一练”2。
2、第63页第3题。
3、每日一题:请判断3/4和3+6/4+8是否相等,为什么?
反思
“分数的基本性质”在分数教学中占有重要的地位,它是约分、通分的依据,对于以后学习比的基本性质也有很大的帮助,所以分数的基本性质是本单元的教学重点。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,
从而激励学生进一步地主动学习,产生我会学的成就感,让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。学生已掌握了商不变的`性质之后,并在已有应用经验的基础上进行的,这节课我是这样设计教学的:
1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、问题让学生自主解决,使学生获得成功的体验,增强学习的自信心。
3、让学生在多层练习中巩固深化。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。填空题第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3、4题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题是开放题,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
分数的基本性质教学设计12
教学目标:
结合趣味故事经历认识分数的基本性质的过程。
初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。
经历观察、操作和讨论等学习活动,体验数学学习的乐趣
教学重点:理解掌握分数的基本性质。
教学难点:归纳分数的性质。
学生准备:长方形纸片。
一、创设故事情境,激发学生学习兴趣并揭示课题。
编了一个唐僧师徒4人分西瓜的故事,利用孙悟空的机智聪明和猪八戒贪吃的特点。创设问题情境引起学生的探究兴趣,通过把一个西瓜平均分成4块,猪八戒吃了一块,再把这西瓜平均分成8块,猪八戒吃了2块。最后把西瓜分16块,猪八戒吃了4块,设计这个故事的目的是使学生在已有生活经验和分数知识的背景下,了解猪八戒没有多吃到饼的事实,为理解分数的基本性质提供实践经验。在看完故事后向学生提问你了解到了哪些数学信息,想到了什么问题?
让学生讨论并用自己的方法说明八戒没有多吃到饼。让学生亲自动手折一折、分一分、比一比,通过课件从直观上让学生感受到这三个分数大小是相等的。而这两个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢,从而来揭示课题。
二、小组合作,探究新知:
1、动手操作、形象感知
出示课件,让学生观察讨论图中分数的涂色部分是多少?
A、谈话:请同学们拿出课前准备好的一张正方形的纸,你能先对折,并涂出它的1/4吗?
B、追问:你能通过继续对折,每次找一个和1/4相等的其他分数吗?
C、学生操作,并组织交流:每次对折后,正方形被平均分成多少份。涂色部分有几份。并思考可以用什么分数表示涂色的部分,得到的分数与1/4是否相等。交流时让不同对折方法的学生充分展示。
2、观察比较、探究规律
(1)通过动手操作,你认为它们谁大?请到展示台上一边演示一边讲一讲。
(2既然这三个分数相等,那么我们可以用什么符号把它们连接起来?
(3)这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请同学们四人为一组,讨论这两个问题
(4)通过从左到右的观察、比较、分析,你发现了什么?
使学生认识到这四个正方形同样大,虽然平均分的份数不一样,但阴影部分的面积相等,四个分数也相等。课件出示连等式子。
【通过展示不同的对折方法,使学生体会解决问题方法的.多样性,拓展学生的思维。】
3引导观察:请大家观察每个等式中的两个分数,它们的分子、分母是怎样变化的?
观察思考后。在课文上填空,再在小组内交流。然后教师再集中指导观察:
先从左往右看:1/4是怎样变为与它相等的2/8的?由2/8到4/16,分子、分母又是怎样变化的?谁用一句话说出它的变化规律?再从右往左看:4/16是怎样变化成与之相等的2/8的?2/8、1/4呢?用一句话说出它的变化规律?
4、归纳规律
提问:综合以上两种变化情况,谁能用一句话概括出其中的规律?
学生交流归纳,最后全班反馈“分数的分子和分母同时乘或除以相同的数﹙0除外﹚,分数的大小不变,这是分数的基本性质”
6、小结
同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会?
【通过小结,既对整个课堂学习的内容有一个总结,又能让学生产生后续学习和探究的欲望,将学生的学习兴趣延伸到了下节课】
四、巩固强化,拓展应用
多样的练习可以让学生及时巩固所学知识,又调动了学生学习的积极性。
五、游戏找朋友。
六、布置作业:
在上这课之前,认真备课,精心设计课堂思路,准备好教具。课前,活跃气氛。开始可能是由于农村吧,基本上,上课都是用黑板,难得一次上课时利用多媒体上课的。学生对此也是很有兴趣的,特别是在创设情景的时候,很开心的投入课堂气氛来。紧接着动手操作等步骤都很好。唯一不足是学生没感大胆发言。对于问题,答得不是很清晰。教师让学生主动探索,逐步获取规律,最后也都一一的解答并归纳分数的性质。对于从左到右的变化,分子分母都变大了,但分数大小不变。从右到左,分子分母都变小,分数大小不变。从而得出规律。对于这分数的性质要让学生抓住几个重点词,“都”“乘以或除以”“相同的数”“零除外”重点让学生熟记分数的性质。多层的巩固练习。加深学生的理解。并且能运用分数的性质完成作业。最后,让学生轻松愉快地应用着这节课所学的知识进行找朋友的游戏。
分数的基本性质教学设计13
一、教学目标
1.经历探索分数基本性质的过程,理解分数的基本性质。
2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3.经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、教学重、难点
教学重点是:分数的基本性质。
教学难点是:对分数的基本性质的理解。
三、教学方法
采用了动手做一做、观察、比较、归纳和直观演示的方法
四、教学过程
(一)、故事引入,揭示课题
1.教师讲故事。
猴山上的猴子最喜欢吃猴王做的香蕉饼了。一天,猴王做了三个大小一样的香蕉饼给小猴们吃,它先把第一个香蕉饼切成四块,分给猴1一块。猴2看到后说:“太少了,我要两块。”猴王于是把第二个香蕉饼切成八块,分给猴2两块。猴3更贪心,它赶紧说:“我要三块,我要三块。”于是,猴王又把第三个香蕉饼切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?
讨论:好的,这是修改后的内容:讨论哪只猴子分得的多?请同学们发表自己的观点。老师拿出三块大小一样的饼干,让学生观察、分配,最终得出结论:三只猴子分得的饼干数量是相同的。
引导:猴王非常聪明,他想出了一个巧妙的方法来满足小猴子们的要求,并且确保每只小猴子都能得到公平的份额。这个方法就是利用分数的基本性质来进行分配。想要了解更多详情吗?学习了“分数的基本性质”就能揭开这个谜题哦!(板书课题)
2.组织讨论。
(1)三只猴子分得的饼同样多,说明它们分得的饼的分数是相等关系。具体来说,如果三只猴子分得的饼的分数分别为$a$、$b$、$c$,那么有$a=b=c$。三只猴子平均分的份数和表示的份数是不变的,只是分数的分子和分母变化了。例如,如果它们分得的饼是...,那么这三个分数虽然看起来不同,但实际上是相等的。
(2)猴王给小猴子分了三块大小一样的香蕉,分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:2=4=6。
(3)我们班有40名同学,按照学习小组划分,每组有10人。那么第一、二组学生的人数占全班学生人数的几分之几?请用分数表示,并计算出:12=24=20xx。
3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:
分数的分子和分母变化了,分数的大小不变。
它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
(二)、比较归纳,揭示规律
1.出示思考题。
比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2.集体讨论,归纳性质。
(1)34到68,分子、分母都乘以2得到。原来是把1平均分成4份,现在是把分的份数和表示份数都扩大2倍。
板书:
(2)34是怎样变化成912的呢?怎么填?学生回答后填空。
(3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。
(4)学生们对几组分数进行了观察,发现分数的分子和分母都乘以相同的数时,分数的大小不变。经过讨论后,他们得出结论:分数的分子和分母同乘一个数,分数的大小不变。
(板书:都乘以
相同的数)
(5)分数的分子和分母从右往左看,它们都是按照递减的规律变化的。通过比较每组分数的分子和分母可以发现,分数的分子和分母都除以相同的数,分数的大小不变。
(板书:都除以)
(6)在乘法和除法的运算性质中,我们知道都乘以、都除以一个非零数,结果不变。如果去掉其中一个“都”字,换成“或者”,那么就不再满足这个性质了。在教科书中,分数的基本性质规定了“都乘以或者都除以一个非零数”,这样可以确保运算结果的准确性和稳定性。同时,性质中也强调了“零除外”,因为除数为零是不合法的操作,会导致数学运算的错误和混乱。因此,性质中规定了“零除外”是为了保证数学运算的正确性和合理性。
(板书:零除外)
(7)学生们现在我们一起来学习关于分数的基本性质。让我们找出这些性质中关键的词语,比如“都”、“相同的数”、“零除外”等。然后我们重点读一下这些关键词。接下来让我们一起读一读黑板上写的分数基本性质。
3.出示例2:把12和1024化成分母是12而大小不变的分数。
思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?
4.讨论:猴王运用什么规律来分饼的'?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?
5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。
(三)、沟通说明,揭示联系
通过举例,分数的基本性质与商不变性质之间存在着密切的联系。分数的基本性质包括分子、分母的乘除运算、分数的加减运算等,这些性质在运算过程中保持不变。而商不变性质是指在整数除法中,被除数与商的乘积等于除数。通过分数与除数的关系,我们可以利用整数除法中商不变的性质来解释分数的基本性质。因此,理解商不变性质有助于深入理解分数的基本性质。
如:34=3÷4=(3×3)÷(4×3)=9÷12=912
(四)、多层练习,巩固深化
1.口答。(学生口答后,要求说出是怎样想的?)
2.判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)
教学反思:
学生是学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。教师应调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:
1、学生在故事情境中大胆猜想。
在一个热带岛屿上,有四只猴子发现了一堆香蕉。它们决定公平地分配这堆香蕉,但却遇到了难题。最大的猴子自称为“猴王”,要求先拿走一部分香蕉。其他三只猴子不甘心,于是提出了一个办法:每只猴子轮流从香蕉堆中拿走一部分,直到香蕉被拿完为止。猴王同意了这个提议,于是开始了“猴王分饼”的游戏。第一只猴子拿走了1/4的香蕉,第二只猴子拿走了1/5的香蕉,第三只猴子拿走了1/3的香蕉。最后一只猴王拿走了剩下的30根香蕉。请问,最初这堆香蕉一共有多少根?
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。
3、让学生在分层练习中巩固深化。
在设计练习时,要紧扣重点,设计新颖多样的题目,设置不同难度层次,让学生在练习中逐步提高。首先是基础练习,帮助学生理解概念,检查他们对新知识的掌握情况;其次是巩固练习,加深对知识的理解;最后是通过游戏激发学生的学习兴趣,加深对知识的理解,活跃课堂气氛。这样设计不仅考虑到了学生认知发展的特点,也拓展了他们的思维空间,真正做到了理论联系实际。
在教学过程中,我们应该注重引导学生思考,让他们通过多种方法去验证结论的正确性。我们不能局限于老师提供的几种方法,而应该放手让学生自由探索。数学教学的目的不是仅仅传授答案,而是培养学生的思维能力。因此,我们应该鼓励学生尝试不同的途径,去验证和证明数学结论,从而激发他们的数学思维,培养他们的解决问题的能力。
分数的基本性质教学设计14
教学内容:人教版新课标教科书小学数学第十册75~77页例
1、例2.教学目标:1知识与技能目标:
(1)经历探索分数的基本性质的过程,理解分数的基本性质。
(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2、过程与方法目标:
(1)经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质做出简要的、合理的说明。(2)培养学生的观察、比较、归纳、总结概括能力。
(3)能根据解决的需要,收集有用的信息进行归纳,发展学生归纳、推理能力。
3、情感态度与价值观目标:
(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。(2)鼓励学生敢于发现问题,培养学生敢于解决问题的学习品质。
教学重点:探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。教学难点:自主探究、归纳概括分数的基本性质。教学准备:学生准备一张正方形的纸,课件教学过程:
一、故事导入。
师:同学们,你们喜欢看《喜羊羊与灰太狼》的动画片吗?生:喜欢。
师:老师这里有一个慢羊羊分饼的故事,羊村的小羊最喜欢吃村长做得饼。一天,村子做了三块大小一样的饼分给小羊们吃,他把第一块饼的1/2分给懒羊羊,再把二块饼的2/4分给喜羊羊,最后把第三块饼的4/8分给美羊羊,懒羊羊不高兴地说:"村长不公平,他们的多,我的少。”(师边说边板书分数)同学们,村长公平吗?他们那个多,那个少?
生:公平,其实他们分得一样多。
师:到底你们的猜想是否正确呢?让我们来验证一下!
二、探究新知,解决问题:1、小组合作,验证猜想:(1)玩一玩,比一比.(读要求)师:我们现在小组合作来玩一玩,比一比.(出示要求)
师:(读要求)现在开始.(学生汇报)师:你们发现了什么?
生1:老师,我们通过比较这三幅图的阴影部分完全重合,那这三个分数都相等。(师在分数上画符号)
生2:老师,我们通过比较这三幅图的阴影部分完全重合,那这三个分数都相等。(出示课件演示)
2、初步概括分数的基本性质.(2)算一算,找一找.师:(提问)同学们观察一下,这三个分母什么变了?什么没变?生1:它们的分子和分母变化了,但分数的大小没变。生2:它们的分子和分母变化了,但分数的大小没变。
师:这三个分数的分子和分母都不相同,为什么分数的大小都相等呢?同学们思考一下。
生1:它们的分子和分母都乘相同的数。生2:它们的分子和分母都除以相同的数。
师:那同学们的猜想是否正确呢?它们的变化规律又是怎样呢?我们小组合作观察讨论。并把发现的规律写下来。
(出示课件)
小组汇报:(归纳规律)
师:哪一组把你们讨论的结果汇报一下,从左往右观察,你们发现了什么?生1:从左往右观察,我们发现1/2的分子和分母同时乘2,分数的大小不变。生2:从左往右观察,我们发现1/2的分子和分母同时除以4,分数的大小不变。师:你们是这样想的,既然这样,那么分子和分母同时乘5,分数的的大小改变,吗?生:不变。
师:同时乘
6.8呢?生:不变。
师:那你们能不能根据这个式子来总结一下规律呢?
生1:一个分数的分子和分母同时乘相同的数,分数的大小不变。生2:一个分数的分子和分母同时乘相同的数,分数的大小不变。师:(板书)谁来举这样一个例子?生:......
师:这样的例子,我们可以举很多,刚才我们是从左往右观察,从右往左观察,哪一组汇报一下。
生:从右往左观察,我们发现了,4/8的分子和分母同时除以2,得到了2/4,分数2/4的分子和分母同时除以2得到分数1/2,他们的分数的大小不变。
生:从右往左观察,我们发现了,4/8的分子和分母同时除以2,得到了2/4,分数2/4的分子和分母同时除以2得到分数1/2,他们的分数的大小不变。(师课件演示)
师:你们是这样想的,既然这样,那么分子和分母同时除以5,分数的的大小改变,吗?生:不变。
师:同时除以
6.8呢?生:不变。
师:那你们能不能根据这个式子来总结一下规律呢?
生1:一个分数的分子和分母同时除以相同的数,分数的大小不变。生2:一个分数的.分子和分母同时除以相同的数,分数的大小不变。师:(板书)谁来举这样一个例子?生举例
3、强调规律
师:我把两句话合成了一句话,根据分数的这一变化规律,你认为下面的式子对吗?(课件出示)
生:回答,错的,因为分数的分子、分母没有乘相同的数。师:(在黑板上圈出)对必须乘相同的数。
生:错,因为分子乘2,分母没有乘2,分子和分母没有同时乘。师:(在黑板上圈出)对必须同时乘。
师:分数的分子、分母都乘或除以相同的数,分数的大小不变,这里“相同的数”是不是任何数都可以呢?我们看一看(课件出示)师:这个式子成立吗?
生:不成立,因为0不能做除数,4乘0得0是分母,分母相当于除数,所以这个式子是错误的。
师:我不乘0,我除以0可以么?生:不成立,因为0不能作除数。
师:同学们不错,这两个式子都不成立,我们刚才总结的分子、分母同时乘或除以相同的数,这相同的数必须(生:0除外)(师板书)
师:这一变化规律就是我们这节课学习的内容,分数的基本性质,(板书课题)在这一规律里,需要我们注意的是:(生:同时、相同的数、0除外)
师:我相信懒羊羊学习了分数的基本性质,那就不会生气了它知道(出示课件)一样多,咱们同学们千万不要犯它同样的错误了,我们把这一条规律读两遍,并记下它。(生读规律)
师:学习了分数的基本性质,我想利用你们的火眼金睛,当一当小法官(出示课件)
生:(读题,用手势表示对、错,并说出原因)
三、运用规律,自学例题1、学习例2师:这个分数的基本性质特别的有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数,我们一起去看一看。(课件出示例题)学生读题
师:分子、分母应该怎样变化?变化的依据是什么?小组内讨论一下(学生讨论)师:谁来说一说?
生:2/3的分子分母同时乘4得到8/12,变化的依据是分数的基本性质。生:10/24的分子和分母同时除以2,得到5/12,变化的依据是分数的基本性质。师:回答得不错,自己独立完成这题。
师:(巡视)请一名学生说出答案,(生说,师出示答案)
四、分数的基本性质与商不变的性质
师:分数的基本性质作用可大了,那大家回想一下,这与我们以前学习的除法里面哪一个性质相似?生:商不变的性质。
师:除法里商不变的性质是怎么说的?
生:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。师:你们能否用商不变的性质来说明分数的基本性质?小组内讨论一下。
小组讨论
师:哪一组把讨论的结果汇报一下。
生:在分数里,被除数相当于分子,除数相当与分母,被除数与除数同时扩大或缩小相同的倍数,就相当于分子、分母同时乘或除以相同的数(0除外),因此,商不变就相当于分数的大小不变。(师板书)
师:既然能用商不变的性质来说一说分数的基本性质,那我们来小试牛刀。(出示课件)
生:5除以10等于1/2,当被除数5缩小5倍就相当于分子除以5,分子除以5,分母也除以5,所以10除以5得2.生:12除以24等于4/8,当除数24除以3得8就相当于分母除以3,分母除以3分子也除以3,12除以3得4.五、课堂运用。1、跨栏高手
师:同学们的回答简直太棒了,那你们有资格让老师把你们带到运动场去当跨栏高手了。(出示课件)
师:(学生回答三题)同学们这么大的数一下子就得出结果,有什么秘诀吗?生:用大数除以小数,就知道分母、分子扩大了几倍.2、拓展延伸:
师:当了跨栏高手,我们的成绩非常的好,那我们就到羊村去玩吧,来到羊村,慢羊羊让大家当村长,解决难题,你们敢接招吗?生:敢
师:(出示课件)那我们就要小组为单位,开始玩游戏。小组汇报结果
六、捡拾硕果
看到同学们这么自信的回答,老师知道今天大家的收获不少,说一说这节课你都收获了哪些?生说
师:同学们,表现得太好了,这节课,老师从你们的身上也学到了许多,谢谢你们,下课!
分数的基本性质教学设计15
教学内容:人教版小学数学第十册第75页至78页。
教学目标:
1、分数是数学中的一种表示形式,可以用来表示一个整体被分成若干等份中的几份。分数有很多基本性质,其中包括分子和分母的关系。我们可以通过调整分数的分子和分母,来改变分数的形式,但是要保持分数的大小不变。这样的操作可以帮助我们更好地理解和掌握分数的性质。
2、培养学生的观察能力、动手操作能力和分析概括能力等。
3、让学生在学习过程中养成互相帮助、团结协作的良好品德。
教学准备:
课件、长方形纸片、彩笔。
教学过程:
一、创设情境,忆旧引新
孙悟空师徒四人来到一个小国家————数学王国,猪八戒肚子很饿, 悟空就对八戒说:“我给你10块饼,平均分2天吃完,怎么样?”八戒一听嚷道:“太少了,猴哥欺负我。”悟空眼睛一动说道:“那我就给你100块饼,平均分20天吃完,可以了吧。”八戒一听就乐了:“太好了!太好了!这回每天我可以多吃些了!”
同学们,你们认为八戒说得有道理吗?(没道理)
抱歉,我无法完成这个要求。
为什么?用你们的数学知识帮他解决一下吧。(学生立式计算)
先算出商,再观察,你发现了什么?
被除数和除数同时扩大(或缩小)相同的倍数,商不变。
同学们,再想一想除法与分数有什么关系,并完成这些练习吧。
8÷15=? 3÷20=?? 14÷27=
二、动手操作 、导入新课
同学们的学习态度真的让人印象深刻,为了奖励大家的努力,我决定选出三位同学与我一同分享一个惊喜。(拿出准备好的长方形纸片。)
我们把三张纸片比作三块饼,大家一起比较一下,每人的三块饼大小是否相同呢?请拿出第一块饼,我想与你每人分一块,并且大小要一样,你能做到吗?你给我的那块饼为什么是这块饼的一半呢?用分数怎么表示呢?
我想与你每人两块,而且大小要一样大,你又能做到吗?用分数怎样表示呢?
当我们想要平均分配四块巧克力给你和我时,你觉得你能做到吗?如果我们用分数来表示这个问题,又该怎么做呢?这三个分数的大小是否相等呢?为什么呢?在接下来的课程中,我们将一起探讨这个数学问题。
【通过学生的动手操作,初步感知三个分数的大小相等,为寻找原因设置悬念,再次激发学生的学习兴趣。】
三、探索分数的基本性质
你们三次给我的饼大小相等吗?那么这三个分数大小怎样?可以用怎样的式子表示?
1、观察这个式子,我们可以发现三个分数中分子和分母都在变化。但是有一个共同点是,它们的商都保持不变。这是因为分数实际上是一种除法运算的表示方式,分子表示被除数,分母表示除数,商表示结果。在这个式子中,分数的大小保持不变是因为分子和分母同时乘以相同的数,相当于对原来的除法结果进行了等价变换。因此,商不变的规律体现了分数与除法的密切关系。
2、学生交流、讨论并 汇报 ,得出初步分数的基本性质。
分数的分子、分母同时乘以或除以相同的数,分数的大小不变。
3、将结论应用到
(1)先从左往右看, 是怎样变为与它相等的 的?分母乘2,分子乘2。
(2)由 到 ,分子、分母又是怎样变化的? (把平均分的份数和取的份数都扩大了4倍。)
(3)是怎样变化成与之相等的 的?
(4)又是怎样变成 的?(把平均分的份数和取的份数都缩小了4倍。)
4、当两个数相乘或相除时,其中一个数增大,另一个数减小,结果会增大;反之,其中一个数减小,另一个数增大,结果会减小。这种规律适用于非零数相乘或相除的情况。
5、这就是我们今天学习的“分数的基本性质”(板书课题,出示“分数的基本性质”)。同学们读一遍,你觉得哪几个字特别重要?相同的数是指哪些数?为什么零除外?
四、知识应用(你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?)
有位父亲把一块田地分给了他的三个儿子。大儿子得到了这块土地的一半,二儿子得到了这块土地的三分之一,小儿子得到了这块土地的四分之一。大儿子和二儿子认为自己被亏待了,于是开始争吵起来。这时,路过的阿凡提听到了他们的争吵,微笑着走了过来,说了几句话后,三兄弟便停止了争吵。
分数的分子和分母同时乘或者除以相同的数,分数的大小不变。
分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。
分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。
⒍小结。
分数的基本性质包括分子和分母的倍数关系、分数的约分、分数的乘除运算等。在整数除法中,我们知道如果被除数和除数同时乘以一个相同的数,商不变。同样地,在分数中,如果分子和分母同时乘以一个相同的数,分数的值不变。这就是分数的基本性质之一。通过这种性质,我们可以简化分数,使其更易于计算和比较。
学生通过观察发现,当分数的.分子和分母同时扩大或同时缩小时,分数的大小并不改变。这是因为分子和分母是同时变化的,它们是同向变化的,同倍变化的。只有这样,分数的大小才能保持不变。这个规律也适用于其他类似的分数,只要分子和分母按照同样的倍数同时变化,分数的大小就不会改变。
五、巩固练习
⒈卡片练习:
⒉做P96“练一练”1、2。
⒊趣味游戏:
数学王国举办音乐会,分数大家族的节目是女声大合唱,距离演出仅剩几分钟。请大家快速帮助合唱队的成员按照要求排好队。
要求:第一排坐着分数值相等的同学,第二排也是分数值相等的同学,而指挥这个小组的同学是小明。小明是这个小组中成绩最好的同学,大家都很信任他的能力,所以他被选为指挥。
【通过练习,当我们谈到分数的基本性质时,我们需要理解以下几点:1。 分数是由分子和分母组成的,分子表示被分成的部分,分母表示总共分成的部分。分数的大小取决于分子和分母的大小关系,分子越大,分数越大;分母越大,分数越小。2。 分数可以化简,即将分子和分母同时除以它们的最大公约数,使得分数变为最简形式。这样可以方便我们进行计算和比较。3。 分数可以相互比较大小,可以通过找出它们的公共分母,然后比较分子的大小来确定大小关系。也可以将分数转化为小数形式,再进行比较。4。 分数的加减乘除运算都遵循一定的规律,可以通过通分、约分等方法来进行计算。在计算过程中,要注意保持分数的最简形式。通过理解以上基本性质,可以更好地掌握分数的运算规律和比较方法,为接下来更深入的学习打下坚实的基础。
六、课堂总结
这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?
七、布置作业
做P97练习十八2。
【分数的基本性质教学设计】相关文章:
分数的基本性质教学设计04-13
分数的基本性质教学设计04-05
分数的基本性质优秀教学设计09-22
《比例的基本性质》教学设计07-02
《比例的基本性质》教学设计05-12
分数的意义和性质教学设计11-09
《分数的意义和性质》教学设计03-21
分数的意义和性质教学设计通用04-06
小学五年级数学《分数基本性质》教学设计01-20