我要投稿 投诉建议

《植树问题》教学设计

时间:2024-05-21 16:25:56 教学设计 我要投稿

《植树问题》教学设计

  作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教学设计,借助教学设计可以提高教学效率和教学质量。教学设计要怎么写呢?下面是小编整理的《植树问题》教学设计,希望对大家有所帮助。

《植树问题》教学设计

《植树问题》教学设计1

  教学目标:

  1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。

  2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。

  教学重点:建立并理解“点数=间隔数+1”的数学模型。教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。

  教学准备:课件。

  教学过程:

  一、情境出示,设疑激趣

  教师:同学们,我们都有一双勤劳的双手,它不仅能写,能画,其实我们的手指中还隐藏了许多数学知识!现在请大家伸出你们的左手,这里有几根手指呢?预设:5根

  教师:那手指与手指间的空隙叫什么呢?预设:间隔

  教师:在数学上,我们通常把两个手指间的空隙叫做间隔。大家观察一下,5根手指之间有几个间隔呢?预设:4个间隔

  教师:现在再看,现在伸出了几根手指呢?预设:4根间隔

  教师:4根手指之间有几个间隔呢?预设:3个间隔

  教师:5根手指之间有4个间隔,4根手指之间有3个间隔,你们发现手指数和间隔数之间有数量关系了吗?预设1:手指数比间隔数多1。

  预设2:间隔数比手指数少1.

  教师:那你能不能用数学式子来表示手指数与间隔数的关系呢?

  预设1:手指数=间隔数+1。

  预设2:间隔数=手指数-1.

  教师:连手上都有这么多数学奥秘,看来数学真是无处不在!这节课我们就来研究跟“间隔”有关的植树问题。(板书课题)

  二、引入新知,经历过程,感受方法

  教师:请看,请大家默读一下:(课件出示问题)。引例:同学们准备在全长20米的小路一边植树。每隔5米栽一棵(两端要栽)那么这条路的一边将被树隔成了几段?教师:告诉我们哪些条件?(提问)要求什么问题?(提问)

  教师:同学们先用尝试用线段图来表示他们之间的关系。(学生动手并提问完成)

  教师:这里的有几个间隔?

  预设:4个

  教师:那你们能不能用一个数学式子来表示?预设:20÷5=4

  教师:20表示什么?5表示什么?4表示什么?(分别提问)预设:20表示这条路的长度(一般我们把它称为总长),5表示每隔5米栽一棵(我们一般把它称为间隔长),4表示有4个间隔。

  教师:4个间隔相当于4段,所以我们数学上通常把有几段称为段数。所以4后面的单位是段。因此我们就得到了公式:全长÷间隔长=段数(提问)。根据除法算式中的'关系,间隔长该怎么求?(提问)段数该怎么求?(提问)

  教师:那现在如果我想在这条路上种树,一共需要几棵树苗呢?

  预设:5棵。

  教师:怎么列数学关系式?(提问)预设:4+1=5(棵)

  教师:为什么这样列呢?

  预设:因为两端都栽。

  教师:你们都跟他一样吗?所以你发现了树的棵树与段数之间的关系了吗?(提问推出棵树与段数的两个公式)

  教师:刚才我们是在20米长的路上种树,那现在如果在100米长的路上种树呢?你还会吗?请看例1(课件出示例1)。大家在书本上完成。

  例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?(请同学上台展示)

  三、利用新知,解决问题

  教师:连例题都难不倒你们!同学们真是太聪明了!可是,在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?大家请看(出示生活中的图片实例)可见植树问题的应用领域是非常广泛的,下面就请大家应用刚才学的知识帮老师解决几个问题。

  教师:今年的圣诞节刚结束,为了度过一个美好的圣诞节,张老师前几天在家可花了不少的心思!你们看——(分别出示3道练习)

  练习1.我买了装礼物的袜子,像这样每两只袜子之间隔0.5米,挂成一排长8米(两端都挂),一共买了几只袜子?教师:现在老师要把题目难度加大。(做完的同学可以把你的想法跟同桌说说)

  练习2.我又买了21只铃铛,挂成一排,长6米(两端都挂),每两只铃铛之间要隔几米?

  练习3.我还买了像圣诞树的衣服来装扮,15人排成一排,迎接圣诞老人(两端都排),每两个人之间隔2米,这个队伍有几米呢?

  四、回顾思考,全课总结

  教师:通过这一节的学习,你有什么收获?思考:假如只栽一端或两端都不栽,那又会是什么情形呢?同学们课后去探究吧!

  五、逆向思考,拓展新知

  教师:最后老师有一个难度很大的题目想留给同学们回家思考!请看:

  练习4.在圣诞节这天,老师看见100位圣诞老人一起来给我们送礼物,他们并列排成两队(两端都排),每前后两个圣诞老人之间相距1米,则这个队伍排了有多长?六、布置作业

《植树问题》教学设计2

  教材分析:

  植树问题”是人教版新课程标准实验教材五年级上册“数学广角”的内容。教材将“植树问题”分为两端都栽、只栽一端、两端都不栽、环形情况以及方阵问题等几个层次,这节课主要是教学两端都栽的植树问题,通过教学向学生渗透复杂问题从简单入手的思想。教材以学生比较熟悉的植树活动为线索,让学生选用自己喜欢的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等数学探索的过程,并启发学生透过现象发现其中的规律,建立数学模型,再利用规律回归生活,解决生活实际问题。

  学情分析:

  从学生的思维特点看,五年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

  设计理念:

  新课程标准要求,“数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力”。因此在设计这节课时,我主要运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。

  一、通过观看图片为起点,以学生熟悉的手为素材,让学生感知间隔以及植树与数学的联系。

  二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。

  三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。

  四、多角度的应用练习巩固,拓展学生对植树问题的认识。

  教学目标:

  一、知识与技能性:

  1.利用学生熟悉的生活情境,通过动手操作、小组合作的实践活动,让学生发现间隔数与植树棵数之间的关系。

  2.通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。

  3.能够借助图形,利用规律来解决简单植树的问题。

  二、过程与方法:

  1.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

  2.渗透数形结合的思想,培养学生借助图形解决问题的意识。

  3.培养学生的合作意识,养成良好的交流习惯。

  三、情感态度与价值观

  通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

  教学重难点:

  一、教学重点

  1、引导学生在观察、操作和交流中探索并发现两端都栽的情况下间隔数与棵数的规律,并能运用规律解决实际问题.

  2、运用规律解决类似的.实际问题的方法。

  二、教学难点

  理解间隔与棵树之间的规律(棵数=间隔数+1、间隔数=全长÷间隔长)并能运用规律解决抽象的植树问题。

  教学方法:

  1、采用手指引出间隔,让学生理解间隔,引出与间隔有关的植树问题

  2、分组探究,发现规律,建立数学模型

  3、运用规律,解决问题

  4、回归生活,实际应用

  教学准备

  PPT课件 多媒体设备

  教学过程

  一、新授

  1.照片引发的思考

  师:植树是一个非常有意义的活动,它不仅能够绿化环境,净化空气,使我们在劳动中得到锻炼,而且,在植树的过程中还蕴含着很多很多的数学问题,怎么样有兴趣探讨吗?

  在学习之前先学习一下和植树问题相关的知识 出示图片(让学了解间隔和间距)

  师:课件:在100米长的小路一边种树,每隔5米种一棵。(两端都栽)一共需要栽多少棵? (指名大声朗读)

  师:(生读完)说说吧学校植树都有哪些要求(指名回答)

  师:每隔5米种一课

  师:每隔五米指的是什么(点名回答)

  生:间隔

  师:这个词不错(板书间隔)。间隔指的是什么?

  生:两棵树之间的距离

  师:学校要求两棵树之间的距离是多少?

  生:5米

  师:还有哪些要求吗?

  生:两端都要栽。

  师:这个要求也很重要(板书两端都要栽)

  说说是什么意思?

  生:两头都要栽

  师:你能用手比划比划吗?

  生:能

  师:还有什么要求吗?

  生:在100米的小路的一边

  师:强调一边就是一行

  让学生试着独自完成提前的题卡(老师巡视找到不一样的结果20、21、22让他们写在黑板上)

  师:做完了吗

  生:做完了

  师:做完了,看黑板,同样的要求出现了三种不同的答案,同意20的举手21的举手22的举手!那学校到底该买多少树苗呢?

  三、合作探究、寻找规律

  1、小组探究,给予充分的时间。

  那咱们就4个人一个小组探究一下这个问题,听要求,画一画,摆一摆或者模仿实际种一种!开始吧(这时教师下去指导巡视)

  师:大家往前看,大家探究出来结果了吗?

  学校到底需要买多少棵树?谁来说?(点名回答)

  生:我们小组讨论的结果是21棵。

  师:同学们对于这个小组讨论的结果21棵你们同意吗?

  生:同意

  师:大家都是正确的

  你们小组使用什么样的方法得出结论的呢?

  生:画线段

  师:愿意展示给大家看吗?

  大家注意听,看看这位同学的方法和你们的方法有什么不一样的地方?

  生:总结先画一条线段表示100米,100除以5是20个间隔

  师:是20个间隔吗?你带着同学数一数。20个间隔没错,那一定是21棵树吗?

  生:最后一棵没加上

  师:你把什么当成小树啦?

  生:线段上的小端点

  师:数一数是21个吗?

  生:是

  师:听明白了吗?有什么想问问他的吗?

  还有没有其他的方法?

  生:摆铅笔,2根1个间隔3根2个间隔4根3个间隔5根4个间隔

  师:为什么加一呀

  生:最一开始的一根或者最后一根没算

  师:也就是学校要求两端都要栽

  师:当做两端都要栽的问题时 间隔数+1=棵数

  师:把复杂的问题简单化这种思想很可贵,发现规律,其他的组也是这么考虑的吧!

  看看这一规律的发现过程出示ppt

  棵数=间隔数+1

  间隔数=全长÷间隔长

  师:请同学们很自豪的把自己总结的规律读一遍。

  一共需要多少棵树苗。(学生操作、思考、教师巡视)

  师:有答案了吗?谁愿意展示一下你的劳动成果,你是怎样想的?你能在黑板上来“改一改”吗?

  师:6棵树几个间隔7棵呢99棵呢200棵呢

  8间隔几棵树呢50个间隔呢1000个间隔呢

  师:植树问题不仅能解决植树问题还能解决生活中的实际问题比如说安路灯

  在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50m安一盏。一共要安装多少盏路灯?(找同学朗读)能解决吗?巡视过程中找41,82两个答案

  师:同学们算完了吗?看大屏幕(展示两个答案)你们同意那个?强调两旁 乘2

  这个同学的错误正好提醒了我们做这类题的时候一定要注意两旁 两旁需乘2同意吗同学们?

  师:今年雾霾挺严重的刚刚还因为雾霾放了假所以呀

  北辰区政府为了减少尾气排放,减少污染,方便市民出行,为北辰人民新开设一条公交线路604路,从新河桥到东站后广场共有18站,相邻两站的距离大约是700米,这条线路大约是多少千米?

  能解决吗?写在题卡上 做完了同桌互相检查(老师下去辅导)

  师:谁说说你是怎么样算的?

  生:18-1求出间隔数

  700×17=11900(米)

  11900米=11.9千米

  师:都对了吗?

  生:做对了

  师:你们家里都有钟表吗?听过钟声吗?你听当当这是几时?

  生:2时

  师:当当当,这是几时?几个间隔?在钟声里面也有数学问题一起看看谁能大声朗读?(出示ppt)广场上的大钟5时敲响5下,8秒敲完。 12时敲12下,需要多长时间敲完?

  师:能试着解决吗》做在题卡上,有困难了放在我们小组内解决,看看能不能解决。(巡视)同学们有结果了吗?哪个小组愿意汇报?

  生:5-1=4 (个) 8÷4=2 (秒)12-1=11(个)11×2=22(秒)

  师:同学们说得真好

  总结:这节课大家都有什么收获?

  两端都要植:棵数=间隔数+1

  间隔数=棵数-1

  板书设计:

  植 树 问 题

  两端都栽 棵树 间隔数

《植树问题》教学设计3

  教学目标:

  1.认识棵数,知道什么是间隔数、。

  2.理解在线段上植树(两端都栽)的情况中“棵树=间隔数+1”的关系。

  3.能将植树问题推广到生活中的其他问题,学会通过画线段图来分析题意。

  教学重点:

  探究植树的棵数和间隔数之间的关系,并能用发现的规律解决实际问题

  教学难点:

  灵活运用“两端都栽”情况下植树的棵数和间隔数之间的规律解决生活中的实际问题

  导学指要:

  1.通过五指初步感知棵数与间隔数之间的关系,理解间隔、间隔数、间距的含义。

  2.通过老师用画线段的方法模拟种树情境理解解决问题的方法,再采用合作学习的方式利用学具摆、数、画等方法,进一步明确棵数与间隔数之间的规律。

  3.学习植树问题在生活中的运用。

  教具:课件一套学具9套自学提示卡一张

  预设教学流程:

  一、创设情境生成学习目标

  1、教学“间隔”定义

  师:我们班在各方面都十分优秀,俗话说的好:耳听为虚、眼见为实,今天让来听课的老师也看看我们班的风采好吗?

  生:好

  师生问好

  师:我们人有两件宝贝,是双手和大脑,今天这节课,我们就要用到这两样宝贝,动脑去思考:手与我们这堂数学课有什么关系呢?手上有哪些数学问题呢?好,现在我们就去探讨。

  师:请你伸出你的'右手,观察你有几根手指?几个手指缝?它们存在什么样的关系呢?

  生:……………………

  师:减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的关系呢?

  生:……

  师:再减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的关系呢?

  生:……

  师:通过刚才的观察,想一想,手指和手指缝之间存在着怎样的关系呢?

  生:……手指比手指缝多1,手指缝比手指少1。

  师:这两根手指之间的手指缝,用数学语言来说就叫间隔,间隔的个数就叫间隔数。

  板书:间隔数

  2、在生活中找间隔

  师:和你的同桌说说:什么是间隔数?

  生:……

  师:我们再来体验,请一排的前三名同学站起来,这一排同学有多少个间隔?

  生:…………….

  师:请这一排的前四名同学站起来,用你们的手指告诉老师,这一组同学的间隔数是多少?

  生:……………

  师:今天将利用数学知识来解决“植树问题”。

  板书课题:植树问题

  二、探究规律实现目标

  1、多媒体出示学校操场

  A师:这里是哪里?

  学校打算在100米的跑道上植树,来美化我们的学校。可不是随便种的哦,学校可是有要求的。

  出示例题1:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?、

  师:读一读,在题中你读到哪些信息?谁来说一说?

  生:……………………

  师:全长100米表示什么?每隔5米栽一棵表示什么意思?一边表示什么?

  师:什么是两端都要栽?

  生:……………………..

  (此环节要全方位理解题意)

  师:今天这节课我们重点来研究两端都栽的植树问题,板书:两端都栽

  师:题目都理解了,请大家动笔尝试算一算,一共需要多少棵树苗?

  B生动笔算

  师:谁来说说你是怎样列式的?

  生:……..

  板书:100÷5=20xx+1=21(棵)

  100÷5=20xx+2=22(棵)

  100÷5=20xx+1=21(棵)

  21x2=42棵

  师:学校可犯糊涂了,有这么多种结果,到底该买多少棵呢?接下来我们来验证下吧

  请同学们利用画一画,数一数,算一算,到底该买多少棵树苗?

  C学生小组合作,教师巡视,并有目的的选取学生

  D在实物投影上展示学生的作品

  学生展示并板演

  用画线段的方法解决的棵数与间隔数的关系

  反馈黑板上的题目,注意利用错误资源教师提问:100÷5=20求的是什么?为什么还要加1呢?

  2、再次课件演示得出结论

  那你们获得的结论是什么呢?在两端都栽的情况下棵数与间隔数之间有什么关系呢?

  棵数=间隔数+1

  师小结:

  你们真了不起,你们发现了植树问题中非常重要的一个规律棵数=间隔数+1

  3、应用规律解决问题

  师:应用这个规律,我们来解决在一条全长100米的小路一边植树,每隔4米栽一棵,(两端都栽)一共需要多少棵树苗?

  在一条全长1000米的小路一边植树,每隔5米栽一棵,(两端都栽)一共需要多少棵树苗?

  生:……………

  师:同学们真的很了不起。通过把复杂的问题简单化,发现了“两端都栽”求棵数的解题规律,你们能够独立解决植树问题了吗?

《植树问题》教学设计4

  教学内容:

  四年级下册第117、118页例1

  教学目标:

  1.利用生活中的问题,通过实践活动让学生发现段数与植树棵数之间的关系,并能利用规律来解决简单的植树问题。

  2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

  3.渗透数形结合的思想,培养学生借助图形解决问题的意识。

  4、 通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

  教学重难点:

  1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

  2.培养学生从实际问题中发现规律,应用规律解决问题的能力。

  3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。

  教学、具准备:课件、尺子等。

  教学过程:

  一、游戏问答,认识“间隔”

  1.同学们,我们先做个游戏请你们伸出一只手张开手指,仔细观察。

  2、 把你的'手放好,我们进行快速问答:五个手指几个空?4个手指几个空?2个手指几个空?3个手指几个空?一个手指几个空?

  3、 这4个“空”也可以说成4个“间隔”,5个手指之间有4个间隔, (全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)

  4、今天我们就一起来研究生活中跟间隔密切相关的数学问题。

  二、创设问题情境:

  1、最近我们的学校发生了很多的变化,新修建的操场旁有一条小路需要同学们发挥聪明才智来绿化、美化我们,现在请你来当设计师,你对自己有些信心吗?现在我们一起来了解一下设计的内容和要求。

  2、多媒体出示题目:学校操场边有一段长20米的小路,学校打算在小路一边植树(两端都栽)、并且每两棵树之间的距离都相等。请按照要求设计一份植树方案。并说明设计理由、

  3、从屏幕中你获得了哪些信息?你认为在设计时需要特别注意什么?你能解释什么是两端吗?

  (总长20米两端都栽间距相等)

  4、在分组探讨前,请先商量好准备每隔几米栽一棵,然后动动手、动动脑,看用什么方法能够又快又好的解决这个问题。(同桌合作)

  5、学生活动,教师巡视指导。

  三、探讨新知:

  1、谁能展示一下你的设计才能,注意说明白你是每隔几米栽一棵?一共需要多少棵树?你是怎样获得这个结果的?

  2、学生交流汇报(画线段图法、计算法)

  3、 教师介绍讲解概念:总长、间距、段数、棵数(并随机板书)

  4、用多媒体演示线段图的推理过程。

  在设计方案、交流方法的过程中,老师发现有的同学没有画线段图,而是直接列出了算式,他们一定找到了规律,我们现在也一起来找一找这个规律是什么。

  总长20米,间距10米,有几段几棵。

  总长20米,间距5米, 有几段几棵。

  总长20米,间距4米, 有几段几棵。

  总长20米,间距2米, 有几段几棵。

  5、学生交流,教师总结并板书:

  棵数总比段数多1,段数总比棵树少1。

  总长÷间距=段数段数+1=棵数

  6、当总长是20米时,我们可以用线段图来解决,当路段变长是1000米、20xx米时,就不能这样做了,就需要用发现的规律来解决这样的问题。

  7、 多媒体出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端都栽)。一共需要栽多少棵树苗?

  (1)了解题目内容。

  (2)学生独立思考,全班交流。

  8、刚才我们所提到的手指数和间隔数分别相当于植树问题中的哪个数量呢?生活中不止是植树问题包含着间隔现象,在其他方面也广泛存在,你能举出这样的例子吗?(锯木头、路灯、表面上的间隔和数字……)

  9、下面我们就一起来解决生活中类似的问题:(独立思考解决,全班交流)

  ①同学们做早操,某行从第一人到最后一人的距离是24米,每两人之间相距2米,这一行有多少人? (独立思考解决,全班交流)

  ②李老师从一楼去某班教室,每走一层楼有24个台阶,共走了48个台阶。你知道李老师去几楼吗? (独立思考解决,全班交流)

  ③5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共应该设置几个车站?(独立思考解决,全班交流)

  ④在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一座。一共要安装多少座路灯?

  听老师读题你自己再读一读,你发现这道题与我们刚才所解决的问题有什么不同?有什么特别需要注意的词语?(2千米 两旁)学生独立思考后,全班交流方法。

  四、拓展例题,训练思维:

  1、多媒体出示例1:同学们在全长()米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要栽21棵树苗、

  (1)了解题意,解决问题。(21-1=20段20×5=100米)

  (2)学生质疑:为什么用21-1=20 算出的是什么?为什么要减1?

  (3)我们所解决的这个问题跟刚才我们解决的例1有什么不同?

  (不论是要算出棵数还是总长都要先知道段数,然后根据问题列出算式)

  2、思维训练:

  ①第一个同学到第二个同学之间的距离差不多是1米,那么,第一个同学到第五个同学的距离是多少米?

  ②园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  3、出示刘翔的图片,展示刘翔竞赛的过程引出问题:中间共有10个栏,栏间距离为12、2米,请你们算出从第一栏架到最后一个栏架有多少米吗?

  五、课堂总结:今天我们一起探讨学习了植树问题中两端都栽的情况,谈一谈你的收获有哪些。其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等 ,这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

《植树问题》教学设计5

  教学目标:

  1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。

  2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。

  教学重点:建立并理解“点数=间隔数+1”的数学模型。

  教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。

  教学准备:课件。

  教学过程:

  一、情境出示,设疑激趣

  教师:同学们,我们都有一双勤劳的双手,它不仅能写,能画,其实我们的手指中还隐藏了许多数学知识!现在请大家伸出你们的左手,这里有几根手指呢?

  预设:5根

  教师:那手指与手指间的空隙叫什么呢?

  预设:间隔

  教师:在数学上,我们通常把两个手指间的空隙叫做间隔。大家观察一下,5根手指之间有几个间隔呢?

  预设:4个间隔

  教师:现在再看,现在伸出了几根手指呢?

  预设:4根间隔

  教师:4根手指之间有几个间隔呢?

  预设:3个间隔

  教师:5根手指之间有4个间隔,4根手指之间有3个间隔,你们发现手指数和间隔数之间有数量关系了吗?

  预设1:手指数比间隔数多1。

  预设2:间隔数比手指数少1.

  教师:那你能不能用数学式子来表示手指数与间隔数的关系呢?

  预设1:手指数=间隔数+1。

  预设2:间隔数=手指数-1.

  教师:连手上都有这么多数学奥秘,看来数学真是无处不在!这节课我们就来研究跟“间隔”有关的植树问题。(板书课题)

  二、引入新知,经历过程,感受方法

  教师:请看,请大家默读一下:(课件出示问题)。

  引例:同学们准备在全长20米的小路一边植树。每隔5米栽一棵(两端要栽)那么这条路的一边将被树隔成了几段?

  教师:告诉我们 哪些条件?(提问)要求什么问题?(提问)

  教师:同学们先用尝试用线段图来表示他们之间的'关系。(学生动手并提问完成)

  教师:这里的有几个间隔?

  预设:4个

  教师:那你们能不能用一个数学式子来表示?

  预设:20÷5=4

  教师:20表示什么?5表示什么?4表示什么?(分别提问)

  预设:20表示这条路的长度(一般我们把它称为总长),5表示每隔5米栽一棵(我们一般把它称为间隔长),4表示有4个间隔。

  教师:4个间隔相当于4段,所以我们数学上通常把有几段称为段数。所以4后面的单位是段。因此我们就得到了公式:全长÷间隔长=段数(提问)。根据除法算式中的关系,间隔长该怎么求?(提问)段数该怎么求?(提问)

  教师:那现在如果我想在这条路上种树,一共需要几棵树苗呢?

  预设:5棵。

  教师:怎么列数学关系式?(提问)

  预设:4+1=5(棵)

  教师:为什么这样列呢?

  预设:因为两端都栽。

  教师:你们都跟他一样吗?所以你发现了树的棵树与段数之间的关系了吗?(提问推出棵树与段数的两个公式)

  教师:刚才我们是在20米长的路上种树,那现在如果在100米长的路上种树呢?你还会吗?请看例1(课件出示例1)。大家在书本上完成。

  例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?

  (请同学上台展示)

  三、利用新知,解决问题

  教师:连例题都难不倒你们!同学们真是太聪明了!可是,在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?大家请看(出示生活中的图片实例)可见植树问题的应用领域是非常广泛的,下面就请大家应用刚才学的知识帮老师解决几个问题。

  教师:今年的圣诞节刚结束,为了度过一个美好的圣诞节,张老师前几天在家可花了不少的心思!你们看——(分别出示3道练习)

  练习1.我买了装礼物的袜子,像这样每两只袜子之间隔0.5米,挂成一排长8米(两端都挂),一共买了几只袜子?

  教师:现在老师要把题目难度加大。(做完的同学可以把你的想法跟同桌说说)

  练习2.我又买了21只铃铛,挂成一排,长6米(两端都挂),每两只铃铛之间要隔几米?

  练习3.我还买了像圣诞树的衣服来装扮,15人排成一排,迎接圣诞老人(两端都排),每两个人之间隔2米,这个队伍有几米呢?

  四、回顾思考,全课总结

  教师:通过这一节的学习,你有什么收获?

  思考:假如只栽一端或两端都不栽,那又会是什么情形呢?同学们课后去探究吧!

  五、逆向思考,拓展新知

  教师:最后老师有一个难度很大的题目想留给同学们回家思考!请看:

  练习4.在圣诞节这天,老师看见100位圣诞老人一起来给我们送礼物,他们并列排成两队(两端都排),每前后两个圣诞老人之间相距1米,则这个队伍排了有多长?

  六、布置作业

《植树问题》教学设计6

  教材分析:

  “植树问题”在实际生活中应用比较广泛,它通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,通过学生的动手操作、自主探究来发现现实生活中它们的规律,,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。教学目标:

  1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

  2.掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。

  教学重难点:

  掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。

  教具学具:

  绳子、挂图、泡沫、小树、题卡

  教学过程:

  一.创设情境,导入新课

  1.小游戏:

  点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种情况:4个、3个、2个)(解释“间隔”的意思)

  通过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)点评:通过游戏激趣,引出“间隔”、“间隔数”的概念教学,由于有绳子打结作铺垫,抽象概念得到了具体化,同时间接渗透了间隔与间隔数两者之间的关系,为探究新知打下良好的.基础。

  2.导入新课:今天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)

  二.新课探究:

  1出示例题:(同学们,今年我们海南迎来了一件大喜事:海南国际旅游岛建设发展规划纲要获批了,为了响应海南国际旅游岛建设的号召)寰岛小学决定美化校园,要在长50米的塑胶跑道的一侧每隔5米植一棵树,一共需要准备多少棵树苗?

  点评:所选例题具有很强的开放性,同时以“海南国际旅游岛建设”引入例题,体现了数学与生活紧密联系,让学生在轻松愉快的生活化的课堂环境中学习数学。

  2.分组动手操作(分八小组,每组6人),在泡沫上“植树”,

  要求:(1)计算一共需要准备多少棵树苗

  (2)思考棵数与间隔数的关系。

  点评:学生亲自动手操作,并通过仔细观察、交流讨论,有效促进学生思维活动的体验以及情感的体验过程,提高了学生分析问题和解决问题的能力,把感性认识上升为理性认识。

  3.汇报结果:

  (1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1

  (2)只种一端:50÷5=10(棵)结论:棵数=间隔数

  (3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1

  4、总结(学生汇报教师书写):

  (1)两端都种:棵数=间隔数+1

  (2)只种一端:棵数=间隔数

  (3)两端都不种:棵数=间隔数-1

  点评:孔子说:“吾听吾忘,吾见吾记,吾做吾捂!”学生在动手操作的过程中,仔细观察,用心思考,在操作的过程中充分体验,充分交流,加深对植树问题三种情况的理解。结论的得出也就水到渠成了。

  三、课堂练习

  1、做一做:

  (1)园林工人要在全长800米的公路一侧植树,每隔4米栽一棵(两端都要栽)。一共需要多少棵树苗?

  (2)李家庄小学从校门口的门柱到教学楼的墙根,有一条长120米的笔直的校道,在校道的一边每隔5米种一棵椰子树,一共种了多少棵椰子树?

  2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。

  (1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

  (2)插彩旗(20分):学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

  (3)上楼梯(20分):小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

  (4)公交站(30分):5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

  (5)锯木头(30分):一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

  (6)街道上(50分):在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

  (7)滑冰场(50分):圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (8)钟表上(50分):广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

  (9)电线杆(100分):在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

  (10)广告牌(100分):在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

  点评:设计形式新颖、有梯度、富有情境化和生活趣味的练习题,激发了学生的学习兴趣,充分调动了学生的解决问题的积极性,同时充分地体现了数学与生活的紧密联系,使数学回归生活,

  四、全课小结:这节课我们学习了什么内容?你还有什么疑问?(植树问题的三种情况)

  五、板书设计

  植树问题

  两端都种:棵数=间隔数+1

  只种一端:棵数=间隔数

  两端都不种:棵数=间隔数-1

  例题:寰岛小学决定美化校园,要在长50米的塑胶跑道的

  一侧每隔5米植一棵树,一共需要准备多少棵树苗?

  两端都种:50÷5+1=11(棵)

  只种一端:50÷5=10(棵)

  两端都不种:50÷5-1=9(棵)

  (1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

  (2)插彩旗:学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

  (3)上楼梯:小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

  (4)公交站:5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

  (5)锯木头:一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

  (6)街道上:在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

  (7)滑冰场:圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (8)钟表上:广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

  (9)电线杆:在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

  (10)广告牌:在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

  教学后记:

  本节课旨在通过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,积极性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:

  一、动手操作、合作交流、探究规律:

  本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的形成,提高了学生的思维水平,完善了学生的认知结构。

  二、练习的设计独特、新颖、有梯度:

  本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的积极性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)

  三、充分体现学生的主体作用及教师的主导作用:

  本节课,我通过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。

《植树问题》教学设计7

  单元教学目标:

  1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。

  2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学时数:4课时

  数学广角植树问题(一)

  第一课时教学内容:

  教科书第117页118页的例1、例2

  教学目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,让学生感悟分的段数与植树棵树之间的关系。

  2、通过小组合作、交流、使学生能理解段数与植树棵树之间的规律。

  3、通过实践活动激发热爱数学的情感,感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点、难点:

  教具:

  挂图、直尺

  教学过程:

  一、创设情境,引入课题

  1、每位小朋友都有一双灵巧的小手,它不但会写字,画画、干活,在它里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手,请每一位学生高举起右手,并将五指伸直,关拢。

  师:现在请每位小朋友将五指张开,数一数,张开后有几个空格?(4个)

  师:在数学上,我们把这个空格叫间隔。刚才,我们把五指张开,有4个空格,也就是4个间隔。

  2、举例说出生活中的间隔到处可见,比如:在马路边种树,每两棵树之间有一段距离,我们就把这一段距离叫做一个间隔,楼梯、锯木头等。

  3、大家清楚地看到,5个手指之间有4个间隔,那么,将手指换成小树,5棵小树之间有几个间隔(4个),6棵呢?7棵呢?

  今天,我们就来学习有趣的植树问题。

  (一)出示:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  1)同桌相互讨论。

  2)有线段图表示你的'方法

  3)学生汇报

  4)引导总结:

  两端要栽的时候,比较间隔数和棵数,你得出什么规律?(生:棵树比间隔数多1)

  你能用一个式子表示两端都栽的棵数和间隔数的关系吗?

  板书:棵数=间隔数+1

  5)在线段图上,又有怎样的关系呢?

  点数=间隔数+1

  6)这个问题应是:1005=20(个)间隔数

  20+1=21(棵)棵数

  巩固练习

  (一)书第118页的做一做独立完成,指名反馈。

  (二)出示:大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?

  1)读题,理解题。

  2)分组看图讨论。

  3)尝试列式计算。

  4)交流:603=200间隔数

  两端不栽树:20-1=19(棵)

  192=38(棵)

  5)质疑:

  为什么减1?为什么乘2?

  比较例1与例2的不同?小组讨论,再交流

  例1两端要栽树,所以棵数比间隔大1:例2两端不栽树,所以棵数比间隔少1。

  巩固练习二:

  教科书第119页做一做1、2题

  学生独立完成,集体反馈。

  三、本课小结:

  通过今天的学习,你有什么收获?

《植树问题》教学设计8

  【教学背景】“植树问题”是人教版四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、只栽一端、两端都不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。

  【教学内容】数学广角(一):两端都栽、只栽一端、两端都不栽的植树问题,教材第117至119页例1、例2及相应的“做一做”。

  【教学目标】

  知识与技能:通过观察、操作及交流活动,探索并认识不封闭线路上间隔排列中的简单规律,并能将这种认识应用到解决类似的实际问题之中。培养学生观察能力、操作能力以及与他人合作的能力。

  过程与方法:主要让学生通过观察、操作、交流等活动探索新知。

  情感、态度与价值观:在解决问题的过程中,感受数学与现实生活的密切联系。

  【教学重、难点】引导学生在探索中发现规律,培养学生的归纳能力及概括能力,从而初步认识植树问题,会解决相关的实际问题。

  【教学准备】课件、

  一、创设情境,揭示课题。

  1、教师出示几幅有关北方沙尘暴的图片,引出植树的话题。

  学生看完视频和照片说一说有什么感受?

  治理沙尘暴最有效的办法是植树造林。你们看,我们学校的学生家长和老师,都积极投身到植树造林的活动中。看到这一排排整齐的小树,如果我们从数学的角度来分析,这里面还有很多有趣的数学问题。这节课我们就来研究——植树中的数学问题。(板书课题:植树中的数学问题)

  【设计意图:通过播放沙尘暴视频及照片,让学生深刻体验到数学问题来源于生活,激发学生的学习兴趣,及时渗透环保教育】

  二、引导探究,发现规律。

  (出示情境)为了绿化校园,学校要在一条全长20米的小路一边种树。每隔5米植一棵。想一想,要植多少棵树?(学生自由读题)

  (1)理解什么是每隔5米植一棵?下一棵怎么栽?

  (2)介绍什么是一个间隔?学生指一指每一个间隔。

  (3)教师出示学具分析题,学生可以借助学具摆一摆再列算式算一算。(学生小组合作动手操作)

  【设计意图:把课本中的例1在100米长的路上种树,改为在20米长的路上种树。这样降低了探究的难度,便于学生观察、思考。同时通过情境图和开放性的提问,为下一环节的探究作好准备。】

  ①组织反馈交流

  师:你给大家介绍一下你是怎么想的?(学生可能只出现只植两端)教师及时引导在我们实际植树活动中会遇到什么情况?

  可能会遇到建筑物,遇到建筑物怎么了?植不了树了,可能会在哪些地方遇到建筑物?看来不仅有这一种植法,还有其他可能,请同学们再动手摆一摆算一算。(学生继续操作)

  ②学生汇报其他两种植法。

  学生说一说自己的方法,在哪里遇到建筑物,植了几棵树?

  ③比较三种植法有什么不同?(强调在20米的小路一边间隔是5米植树只有这三种情况)并板书:两端都植、只植一段、两端都不植。

  【设计意图:本环节先通过想象提问,为学生如何去探究起到提示作用。接着采取较开放的形式,自主确定每棵之间长度,通过对每一种方案动手摆一摆,列式计算,初步感知每种方案的计算方法。再接着让学生观察每一种方案,使学生从中得出,虽然确定的每棵之间长度不同,而计算方法是相同的。最后教师又让学生想象、观察,针对实际背景的不同,应选择相应的种树方案。整个环节在教师的积极引领下,充分突出了学生的主动参与,使学生经历了在操作中思考,在观察中比较,在交流中评价概括。】

  (4)理解三种不同的植法中为什么都有20÷5=4这个算式?(学生说一说并上来指一指4在哪里?)

  20÷5=4原来都是在算有几个间隔数。强调虽然植法不同但他们的间隔数却都相等,都有这样的4个间隔。

  【设计意图:学生通过数形结合理解在植树问题中,求出间隔数非常关键。】

  (5)理解4个间隔加1为什么等于5棵树?介绍一一对应的数学思想。

  学生先想一想,再一起来看一看。

  重点强调:1棵树对于1个间隔,1棵树对于1个间隔,4棵树就对应了4个间隔,最后1棵树没有对应的间隔就多了1棵树,所以是4棵树加1棵树等于5棵树。

  找一学生再来说一说,同桌两人说一说。

  (6)学生独立尝试借助一一对应的数学思想解决另外两种植法。

  【设计意图:让学生体会一一对应的思想,并深入去理解其他两种植法中也蕴含的'一一对应思想,把一一对应的思想与植树规律结合在一起,得出的规律就有水到渠成的效果很好地突破难点。】

  小结:刚才我们在理解这几个算式时用到了一个重要的数学思想,叫做一一对应,一一对应的数学思想可以使复杂的数学问题变得非常简单。

  (7)寻找三种不同的植法棵数与间隔数之间的关系。

  观察这三种不同的植法,植的棵树和间隔数之间有这样的关系?你可以看图来想一想也可以借助算式来思考。同桌两人商量商量。

  学生汇报,教师板书。

  小结:通过刚才的学习我们知道了有这三种不同的植法,但他们的间隔数都相等,看来在植树问题中求出间隔数非常重要,我们还知道了他们棵数与间隔数之间的关系,分别是两端都植是棵树等于间隔数加1,只植一端是棵树等于间隔数,两端都不植是棵树等于间隔数减1。你们学会了吗?老师来考考你。

  【设计意图:新知结束后带着学生一起回顾所学的知识,如此设计是基于学生的思维状态,让学生对当堂课的知识和收获做一个回顾,就是学生整理知识思路、内化知识的过程,能起到画龙点睛的作用,更能培养学生的归纳能力。】

  精讲精练:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端都要栽)。一共要栽多少棵?学生独立完成。

《植树问题》教学设计9

  设计理念:

  笛卡儿说过:“数学是使人变聪明的一门科学”,而数学思想则是传导数学精神,形成科学世界观不可缺少的条件。数学思想方法反映着数学概念、原理及规律的联系和本质,是学生形成良好知识结构的纽带,是培养学生能力的桥梁。新课标下的每册教材都通过“数学广角”来进一步渗透数学学习的思想方法。在植树问题的教学中,主要是向学生渗透一种在数学学习上、在研究问题上都很重要的思想——化归思想。

  在设计上结合新课标的要求,根据教学内容的特点及学生的认知基础,通过解决矛盾冲突的植树问题,让学生在借助图、式分析题意的过程中,体验到植树问题的另一类型。再通过学生的合作探究,建构(两端不种)植树问题的模型,发现解决这类问题的规律,接着运用模型解决生活中的类似问题,渗透“化归思想”。教学中注重于培养学生运用所学知识,举一反三,解决实际问题的能力,也注重于让学生体验知识、经验获得的过程,培养学生借助图示解决问题的意识以及渗透“化归思想”。

  教学目标:

  1、知识与能力目标:

  通过探究发现一条线段上两端都不种的植树问题“棵数=间隔数-1”的规律。

  2、过程与方法目标:

  使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3、情感态度与价值观目标:

  让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。

  教学重点:

  理解“两端都不种”的植树问题的规律

  教学难点:

  应用“两端不种”的植树方法去解决生活中类似的问题

  教学过程:

  一、创设情境,发现问题

  同学们学过植树的知识吗?请大家来帮忙解决下面这个问题

  房屋间的距离是60米,要在两间小屋之间植树,每隔10米种1棵,需要多少棵树?

  误区:60÷10=6(个)

  6+1=7(棵)

  两端不种树还是这样来求棵数吗?这就是我们本节课要学的知识(两端不种)的植树问题

  (设计意图:矛盾的冲突更能引发学生探索的兴趣。学生在已经学过两端都种的植树规律的前提下很大程度上会受到误导把棵数求成间隔数+1,这样引起学生认识上的矛盾从而体会更深刻。)

  二、化繁为简,经历猜测、验证的过程探索规律

  师:怎么来求棵数呢?与上节课的知识有什么联系,又有什么区别

  讨论:相同之处都是先求出间隔数;不同之处求棵数的方法不一样

  师:我们来大胆猜测一下“两端不种”的植树时怎样求棵数?

  猜测:棵数=间隔数+1

  是不是这样呢,我们来验证一下(植树)

  两端不种

  棵数=间隔数+1

  (设计意图:让学生经历猜测与验证的过程探索出规律建立起数学模型,为下一环节的例题深入学习与应用规律做好了铺垫)

  二、深入学习应用“两端不栽”的规律

  1.师:同学们太了不起了,通过举简单的例子,自己又发现了“两端不栽”的'规律:棵树=间隔数-1。我们再回到刚才的问题,你会做了吗?

  2.例2大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米。一共要栽几棵树(学生独立完成)

  ②师:同学们讨论一下解决这道题要注意什么?

  课件闪烁:将“两旁栽树”,“两端不用栽”

  学生展示:60÷3=20(个)

  20-1=19(棵)

  19×2=38(棵)

  答:一共要栽38棵树。

  小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。

  (设计意图:通过例2探索让学生更深入的理解植树中“两端不栽”这种情况的处理及方法)

  三、回归生活,实际应用

  1.为了迎接我校的十周年校庆,要在校园里相距20米的两棵树间每隔4米挂上彩旗,需要准备多少面彩旗?

  20÷4=5(个)

  5—1=4(面)(面数=间隔数-1)

  问:为什么要—1?这相当于今天学习的植树问题中的那种情况?

  2.张老师从一楼到四楼去上数学课,学校每层有26级楼梯,张老师一共走了几级楼梯?

  4-1=3(层)(层数=楼数-1)

  3×26=78(级)

  (问你们家住几楼呀?如果你们家的楼房也是每层26级楼梯,你回到家一共要走几级楼梯?)

  3一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?(次数=段数-1)

  5-1=4(次)(次数=段数-1)

  4×8=32(分)

  (设计意图:生活中有‘两端不种’植树问题的原型,也有植树问题的变式练习,让学生充分感受数学就在生活当中)

  四、全课总结

  通过今天的学习,你有哪些收获?

  (设计意图:让学生回顾本节知识达到及时巩固的作用)

  五、板书设计

  植树问题(两端不种)

  棵数=间隔数生活中

  间隔数=全长÷间隔长挂彩旗:面数=间隔数-1、

  学生展示:60÷3=20(个)上楼:层数=楼数-1

  20-1=19(棵)锯树木:次数=段数-1

  19×2=38(棵)

  答:一共要栽38棵树。

  (设计意图:简要的板书让学生容易抓住本课的重点知识,一目了然。)

《植树问题》教学设计10

  教学目标分析(结合课程标准说明本节课学习完成后所要达到的具体目标):

  知识技能目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔 数与植树棵数之间的关系;

  2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单 的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律, 并应用规律来解决问题的能力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、通过实践活动激发热爱数学的情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描述):

  通过平时的观察,我发现四年级学生的思维仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。但这种能力不是那么强,在学习中很难独立的完成学习任务,但学生的合作意识已经有了很大的提高。能在学习中在教师的引导下积极参与学习,完成学习任务。适当的鼓励是激励学生学习,克服困难的最好方法。在生活经验方面,学生们看到过“道路两旁每隔一定距离会种有树”,但是,在这样的现象中包含哪些数学概念他们是不清楚的,需要教师针对此予以明确;在数学知识方面,他们知道“依此类推”和“除法的意义”,像“100米的小路,每隔5米栽一棵”,他们可以通过计算和画图的方法解决,只是对这些量之间存在的数量关系还有待进一步探究。

  教学过程(按照教学步骤和相应的活动序列进行描述,要注意说明各教学活动中所需的'具体资源及环境):

  一、创设情景,激发兴趣

  1、猜谜导入揭题

  师:“两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。”(手)

  师:对,我们都有一双灵巧的手,请你们伸出右手,五指张开,用数学的眼光看一看,你发现了什么?

  数一数,5个手指之间有几个空格?在数学上,我们把空格叫做间隔,也就是说,5个手指之间有4个间隔?间隔数为4。(师伸出4根手指、3根手指、2根手指)现在有几个间隔?

  师:生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)

  【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有的关系,使学生感受数学与生活的密切联系,在不知不觉中展开对数学问题的探索,激发探求植树问题的欲望。

  二、经历探究,发现规律

  1、激趣引入,启发探究积极性

  (课件出示)出示江口小学为绿化环境的招聘启事及设计要求

  招聘启示

  学校将进行校园环境美化,特诚聘环境设计师一名。要求设计植树方案一份,择优录取。

  江口小学

  20xx.6

  设计要求:

  在一条长20米的小路一边等距离植树,两端要栽。

  【设计意图】通过招聘启示让学生设计植树方案的出发点是让所有参与者都能平等的、积极主动的参与到学习的全过程中,在参与中学习和构建新的知识、形成能力。

《植树问题》教学设计11

  一、教学内容:

  人教版《义务教育课程标准实验教科书数学》四年级下册“数学广角” 第117—118页。

  二、教材目标:

  1.通过生活中的事例,知道 “植树问题”的三种不同的情况,理解与掌握间隔数与棵数之间的关系和变化规律。

  2.通过具体问题的解决过程,经历观察、比较、发现、概况等数学活动,培 养学生的研究意识和探究能力,感悟化繁为简、数形结合等数学思想方法。

  3.能运用规律或研究方法解决相关的实际问题,感受数学在生活中的广泛应 用,培养学生的应用意识和解决实际问题的能力。

  三、教学重点:引导学生经历规律的获得过程、建立数学模型,并用所学的方法解决一些简单的实际问题。

  四、教学难点:理解间隔数 与棵数之间的关系;解决与植树问题具有相同数学模型的实际问题。

  五、教学准备:学习单、多媒体课件、小树和小路模型。

  六、 教学过程:

  (一) 问题导入:

  出示谜语:两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。让学生猜一猜:这会是什么呢?

  教师组织学生认识手中的间隔,并认识它们存在的规律“间隔数+1”

  (二)探究新知:

  1.队列问题:

  出示学生排着整齐的队伍去植树的图片,引导学生发现学生队伍中存在间隔,通过学生站一站,数一数等形式总结人数和间隔数的'关系,再次对应“间隔数+1”

  并出示课题。

  2.植树问题:

  (1)体会“化繁为简”思想:

  问题导入:同学们到达目的地,又遇到难题了:在全长1260米的小路的一边植树,每隔5米植一棵,按怎样的方案植,又需要多少棵树呢?

  突出矛盾:数字太大,不易思考,引导学生转换较小的数。

  明确思想:当遇到复杂的问题,可以转化成简单的问题,这就是“化繁为简”的数学思想。(板书:化繁为简)

  (2)设计三种植树方案:

  引导学生用学具摆一摆或用线段画一画的形式,同桌两人合作设计植树方案。

  ①学生活动,教师巡视。

  ②汇报、展示:

  ③小结:组织学生对不同方案进行命名,突出其主要特征。

  教师板书:两端都种、只种一端、两端不种

  (3)探究规律:

  ①求间隔数:

  教师引导学生发现植树过程中的间隔,总结植树棵数和间隔数的关系,再次对应“间隔数+1” 。

  在没有植树的棵数时,探究间隔数与全长、间隔的关系。

  组织学生独立思考,借助学具、线段图等形式探究规律

  a:学生思考并摆学具或画线段或列算式。

  b:汇报:

  ②探究间隔数与棵数的关系:

  开放间隔的长度:(出示课件)在20米的小路的一边植树,每隔 米植一棵,一个需要棵树?

  小组合作完成探究,活动要求:

  1)自己选择适合的间隔长度,四人小组合作完成记录表。

  2)小组选择一种植树方式进行探究。

  3)可以借助摆学具、画线段、数手指或列算式的方式。

  a:学生小组活动,教师巡视。

  b:学生汇报发现规律,教师板书。

  c:升华:

  三种情况结果不同,但是在求解过程也存在着相同,都是先计算20÷5,这就意味着解决植树问题的关键是明确间隔数。

  d:应用:

  老师检查同学们的植树情况,他从第1棵树走到第20棵树时,一共走了多少米?

  (三)巩固提升:

  1.选一选:

  下面每一题相当植树问题的哪一种情况?

  (1)音乐中的“五线谱”( )

  (2)衣服上的纽扣( )

  (3)成语“一刀两断”()

  (4)自鸣钟九点报时的钟声( )

  A.两端都种 ; B.只种一端; C.两端不种。

  2. 广场上的大钟5时敲响5下,4秒敲完。12时敲12下,需要 秒。 3. 小法官:

  (1)学校的教学楼每层有24个台阶,老师从1楼开始一共走了72个台阶,判断:现在老师走到了3楼。( )

  (2)一根10米长的木头,把它平均分成5段,锯一次需2分钟。判断:锯完一共需要10分钟。( )

  4.学校一条大路的一边共插了20面彩旗。

  (1)如果使两面彩旗中间放一盆花,一共要放多少盆花?

  (2)如果要使两盆花之间有一面彩旗,一共要放多少盆花?

  (四)课堂总结:

  师:今天我们学习了什么?你有什么收获?

  生活中还有哪些类似植树问题的现象呢?无论哪些问题,我们都能用今天的方法和策略进行解决,这就是数学的奥秘。

  教学反思

  通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的情况。

《植树问题》教学设计12

  教学目标:

  1、知识与技能:通过合作探究,动手实践,让学生在做数学的过程中经历由现实问题到构建数学模型的过程,理解并掌握植树棵数与段数之间的关系。

  2、过程与方法:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、初步探究、合作交流的能力,并培养学生针对不同问题的特点灵活解决问题的能力。

  3、情感态度价值观:让学生在探索、构建模型、用模型的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。

  教学重难点:

  引导学生在观察、操作和交流中探索并发现段数与棵数的规律。并能运用规律解决实际的问题。

  教学准备:课件,纸条,小刀。

  教学过程:

  课前热身:

  师:在上课之前,老师了解了一下,发现我们班很多同学都喜欢唱歌,现在离上课还有一点时间,我们一起来唱《幸福拍手歌》好吗?(播放课件视频,齐唱。)

  师:如果感到幸福你就拍拍手,是双手创造了我们幸福的生活。老师也相信,只要我们在用双手辛勤地创造着,就一定会收获到幸福,今天我们就一起用双手去创造,去收获。

  一、创设情境,生成问题。

  1、猜谜激趣。

  师:同学们喜欢猜谜语吗?我现在要给同学们出一个哑语,谜底是一个成语,同学们看仔细。(师找一个学生配合,用小刀切断纸条。)

  生:一刀两断。

  教师板书:1刀2段,并画出线段图表示。

  师:切两刀呢?(生猜测,师演示,指名画线段图)

  学生回答:三刀呢?五刀呢?(自己画出线段图验证。)100刀呢?

  师:你发现了什么规律?

  学生说,教师板书:刀数=段数-1。

  2、提出问题。

  师:同学们真聪明,可以帮我一个忙吗?出示设计要求:

  在操场边,有一条20米长的小路,学校计划在小路的一边种树,请按照5米一棵的要求,设计一份植树方案。

  师:从这份要求上,你能获得哪些信息?

  (20米长的小路,一边,每隔5米种一棵。)

  师:每隔5米是什么意思?

  (每两棵树之间的距离是5米,每两棵树之间的距离相等。)

  二、探索交流,解决问题。

  1、设计方案,动手种树。

  师:了解了已知条件,请同学们以同桌为一个小组,设计一份植树方案。可以用这条线段代表20米的小路。(师课前给学生准备画有20厘米线段的纸张)用你们喜欢的图案表示树,把你们设计的方案画一画。(小组活动)

  2、反馈交流。

  师:很多小组都已经完成了,先请同学们来说一说,根据你们的方案,需要种几棵树?(5棵,4棵,3棵)

  师:为什么同样的一段路,同样的要求,种的棵数却不一样呢?你们的方案分别是怎样的?来展示一下你们的设计方案。(小组展示设计方案,交流设计思路)

  师:这三种设计方案是不是都合理呢?怎样来检验一下?(参照设计要求,检验设计的合理性。)既然都合理,比较一下,这三种方案的相同点是什么?

  生:两棵树间的间隔都一样,他们的.间隔个数都相同。

  师:那它们的不同点又在哪里?

  根据学生的回答板书:

  (1)两端都栽。

  (2)只栽一端。

  (3)两端都不栽。

  师:就一个要求,同学们就能设计出这么多不同的方案,真有创造力!看来你们都有成为环境设计师的资格。

  3、合作探究,总结规律。

  师:刚才我们借助借助线段图,找到了刀数与段数的关系,回忆一下刚才的方法,你能不能用同样的方法,去探究一下棵数与段数的关系?

  小组合作探究,教师巡视指导。

  4、交流规律。

  小组汇报,其他小组补充。教师根据汇报情况板书:

  两端都栽:棵数=段数﹢1

  只栽一端:棵数=段数

  两端都不栽:棵数=段数-1

  5、验证规律。

  师:我们再用线段图验证一下我们发现的规律。

  (1)画一条18厘米长的线段,两端都种,每隔3米种一棵,几段几树?

  (2)画一条20厘米长的线段。只种一端,每隔2米种一棵,几段几树?

  (3)画一条15厘米长的线段,两端都不种,每隔5米种一棵,几段几树?

  6、强化规律。

  请前排同学到台前扮演小树,模拟种树的三种情况,记忆种树的规律。

  师:刚才同学们用勤劳的双手和智慧的大脑,不仅设计了合理的植树方案,还探究出了植树的规律,真是太棒了,你们幸福吗?拍拍手吧!

  师:其实啊,植树问题也不只是与植树有关,生活中还有很多的现象与植树问题类似,我们把这类问题统称为“植树问题”。(板书课题)

  你能举出一些类似的例子吗?(指名说一说,如,路灯,栏杆,队形……)

  三、巩固练习,运用规律。

  师:要解决植树问题,首先要确定它是三种情况中的哪一种。下面我们来运用这些规律解决一些问题。(课件逐一出示)

  1、同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要栽多少棵树苗?

  2、动物园的大象馆和猩猩馆相距60米,绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?

  3、为庆祝六一,学校要在教学楼前小路的两旁插上小旗子,每4米插一面,20米内可以插多少面小旗子?

  4、提高题。园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (1)先判断属于哪种情况,独立解决。

  (2)小组交流。

  (3)汇报。

  师:运用自己发现的规律去解决了问题,是不是一件幸福的事?我们拍拍手吧!

  四、回顾整理,反思提升。

  师:回忆一下,在我们这节课的学习中,是什么帮助了我们去发现了那么多规律?(线段图)线段图是我们在学习中经常用到的一种工具,同学们一定要把它当成好朋友噢。这节课老师感到很快乐,我收获了幸福,你们收获了什么?

  指名说一说。

  你认为谁的表现最值得你去学习?

  板书设计:

  植树问题

  两端都栽:棵数=段数﹢1

  只栽一端:棵数=段数

  两端都不栽:棵数=段数-1

《植树问题》教学设计13

  一、教学内容

  教科书P117例1

  二、教学目标

  1、利用熟悉的生活情境,通过动手操作等实践活动,理解并掌握“两端都要种”的植树问题中间隔数与植树棵数之间的规律。

  2、在合作探究中解决问题,建构数学模型,感受数学的简化思想和应用价值。

  3、渗透数形结合的思想,培养学生借助线段图来解决问题的意识。

  三、教学重点、难点

  1、重点:通过探究,发现两端都栽的情况中“棵数=间隔数+1”

  2、难点:利用规律来解决生活中的实际问题。

  四、教学准备

  小棒、课件、练习本、表格

  五、教学过程

  (一)创设情境,引入学习

  1、每个人都有一双灵巧的小手,知道吗,在你的手上,还藏着数学知识呢?请伸出左手找找看,你找到了吗?

  (预设生:有5根手指生:有4个空)

  像刚才同学们所提到的2根手指间的空格,在数学上我们叫做间隔(板书间隔)

  2、生活中很多地方也存在着间隔,你能找到吗?

  (预设生1:树木之间有间隔生2:队伍之间生3:栏杆之间也有)指名3人

  3、老师也收集了一些(播放课件)

  过渡:看来与间隔有关的事物太多了,很有研究的必要,今天这节课我们就来研究与间隔有关的植树问题。(板书课题)

  (二)合作探究“两端都栽”的规律

  1、①课件出示请看题“学校准备在一条长20米的小路一旁栽树,每隔5米栽一棵(两端都栽),一共需要多少棵树苗?

  谁能响亮的读题?

  ②从题中你了解到了哪些数学信息?

  预设生1这条小路总长20米生2每隔5米种一棵(5米就是我们所说的间隔长)生3:两端都栽(什么是两端都栽?2人说)(板书两端都栽)生4:一旁

  ③能试着列列算式来解决吗?把你的想法列在练习本上。(指名板演)

  (预设生1:20÷5+2=6(棵)生2:20÷5+1=5(棵))

  还有不一样的吗?也上来写写

  说一说你的想法

  ④我发现你们虽然意见不统一,但是有一步却是相同的,找到了吗?20÷5是什么意思?

  指名2人说(板书总长÷间隔长=间隔数)齐读1次

  2、①到底哪种答案是正确的,你有什么方法来验证一下,同桌一起讨论一下。

  (预设生1:用手掌中的间隔现象来说明生2:用小棒来模拟种一种

  生3:画线段图来验证一下)

  方法有很多,但是画线段图是最常见、最一般的方法。

  ②你打算怎么画,能介绍一下吗?

  生介绍,师板画

  介绍,我们可以取任意长代表5米,这样5米5米地画,一直画到20米,(出示课件)几个间隔,几棵小树?(4个间隔5棵数)

  通过线段图,我们清楚的看出正确答案应该是20÷5+1=5(棵))

  3、①如果老师将总长和间隔长进行变换,你能自己迅速画出线段图得出间隔数和棵数吗?

  两端都栽的情况下

  同桌合作完成表格第2、3两行。

  ②展示1个学生的作品,课件出示

  观察大屏幕上的数据,想一想在两端都栽的情况下,棵数与间隔数存在怎样的规律?

  指名3人说(在说时强调条件是两端都栽的情况下)(板书棵数=间隔数+1间隔数=棵数-1)加上条件再齐读一次

  4、验证规律

  ①在两端都栽的情况下,是不是棵数与间隔数都存在这种规律呢?想自己再来验证一下吗?

  ②请在表格的`剩余两行自设总长和间隔长画一画线段图(注意你所设制的总长必须要能被间隔长整除)想一想怎样才能提高速度,间隔数太多了好不好?

  ③同桌再次合作,教师巡视

  ④汇报,教师记录结果

  ⑤通过这些数据,你有什么要说的吗?为什么棵数总比间隔数多1?

  700个间隔,几棵树?1000棵数几个间隔?

  (三)练习生活,拓展应用

  生活中有很多类似问题也能用植树问题的规律来解决,比如装路灯,设车站,做楼梯,锯木头等等,一起去看看吧!

  1、在一条全长400米的街道两旁挂灯笼,每隔8米挂一个(两端都挂),一共需要多少个灯笼?女生读题学生独立列式,说一说你的理解

  2、刘翔一共要跨10个栏,每两个栏之间的间隔长是10米,求从第一个栏到最后一个栏一共有多长?男生读题刚才求的是棵数,现在求的是(总长)要求总长必须知道什么条件独立列式,汇报结果,说说理解。

  3、你看过钟表吗?

  你听——当当,这是几时;当当当这是几时,有几个间隔?

  在钟声里也有数学问题,一起去看看吧!

  出示广场上的大钟5时敲响5下,敲响第一下到第五下用了8秒,12时敲响了12下,需要多长时间?

  (四)课堂小结,留下悬念

  1、这节课同学们都表现得非常认真,积极,想一想在这节课上你有什么收获?

  2、收获那么多,老师真为你感到高兴,其实植树问题中还有很多数学问题,你比如说一头栽一头不栽,两头都不栽,在封闭图形上栽等等,他们又存在怎样的规律?就让我们带着对这些问题的思考迎接下节课的学习吧!

《植树问题》教学设计14

  教学内容:五年级(上册)第106页例1及练习二十四的1—5题

  教学目标:

  1.通过探究发现一条线段上两端要种植树问题的规律。

  2.向学生渗透化归的思想方法。

  3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点:

  使学生掌握“两端都要种的植树问题”的解题方法。

  教学难点:

  用发现的'规律解决生活的实际问题作为难点。

  教学过程:

  一、引入课题

  3月12日是什么节日呢?植树有什么好处呢?从而引出课题——植树问题。(板书课题:植树问题)

  二、引导探究,发现“两端都要栽”的规律

  让学生在一条长度为12厘米的线段上等距离的植树,通过植树的情况引出间隔和间隔数以及棵数与间隔数之间的关系。

  三、利用规律解决植树中的问题

  例1、同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要栽多少棵树苗?每隔4米呢?每隔10米呢?把小路延长到1000米呢?

  100÷5=20(段).........间隔数

  20+1=21(棵)...........棵数

  答:一共需要栽21棵树苗。

  小结:刚才,我们应用发现的规律,解决了实际问题。已经知道,“两端要种”棵数=间隔数+1.其实,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决.

  四、回归生活,实际应用

  1、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?

  2、在沿河路的一边,设有16个节能路灯(两端都设),相邻两根的距离平均是60米,这条路有多远?

  3、同学们做操比赛,第一行从左起第一人到最后一人的距离是14米,每两人之间相距2米,这一行有多少人?

  五、全课总结

  1、在生活中,你还见过那些植树问题呢?

  2、同学们今天的表现真不错,运用发现的规律解决了不少问题,你们有什么收获呢?

  六、布置作业:课本109页第5题。

  七、板书设计:

  植树问题

  两端要载棵数=间隔数+1

  100÷5=20(段).........间隔数

  20+1=21(棵)............棵数

  答:一共需要栽21棵树苗。

《植树问题》教学设计15

  一、教学目标:

  1、通过探究发现一条线段上两端要种植树问题的规律。

  2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  二、教学重点

  使学生掌握“两端都要种的植树问题”的解题方法。

  三、教学难点

  使学生掌握已知株距和全长求株数的方法,以及已知株数和株距求全长的方法。

  四、教学准备

  多媒体课件、小棒、直尺、卡片、探究表。

  五、课前互动

  1、同学们,我们先来说说顺口溜,好吗?一只青蛙一张嘴,两只眼睛四条腿;两只青蛙两张嘴,四只眼睛八条腿。会说吗?请继续……

  2、接下来,我们来说一个不一样的,有信心吗?两个手指一个隔(教师示范用手指展示出来,让学生也跟着做),三个手指两个隔,会说吗?请继续……学生说到五个手指四个隔时,引出“间隔,间隔数”的概念。(在数学上,我们把空格叫做间隔,也就是说,5个手指之间有4个间隔?间隔数为4。)

  3、随机请一行同学站起来,不断增减学生,让学生边观察边说,几个同学几个隔,老师发问,哪个间隔长,引出“间隔长”的概念。

  教学过程

  六、引入课题

  生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题—植树问题。(板书课题:植树问题)

  七、引导探究,发现“两端要种”的规律

  1、情景导入例题

  ①课件出示校园图片。

  植树不仅能净化空气,还能美化环境。这是我们学校的新校区,绿化校园是我们的一个重要任务。植树节那天,我们全体老师参与了植树活动,(出示综合楼前的小树图片)这是我设计的,你们想知道我是怎样设计的吗?(出示*场图片)这是我们学校的*场,*场外面是一条车道。现在要在车道一边种一行树,校长想在我们班选几名优秀环境设计师完成这项任务。你们想成为优秀环境设计师吗?

  出示示意图及题目:同学们在全长100米的车道一边植树,每隔5米栽一棵树(两端要种)。一共需要多少棵树苗?

  ②理解题意。

  a、指名读题,问:要求一共要栽多少棵树,首先应该考虑到哪些问题

  b、理解“两端”“一边”是什么意思?

  指名说一说,然后师实物演示:指一指哪里是这尺子的两端?一边又是什么意思?

  说明:如果把这根尺子看作是这条车道,在车道的两端要种就是在车道的两头要种。一边栽就是在车道的一旁栽。

  ③算一算,一共需要多少棵树苗?

  ④反馈。

  2、引发猜想

  师:三种意见(19棵、20棵、21棵),哪种是正确的呢?

  八、解决两端都种求总长度的实际问题

  同学们发现规律的能力可真不错。下面我们玩个站队的游戏。

  1、这一列共有几个同学?(4个同学现场站队)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?

  师:这个问题与刚才的类型有什么不同?学生试做,反馈。

  你运用哪个规律?(间隔长×间隔数=总长度)

  2、这一列共有10个同学呢?100个同学呢?

  3、这个规律,你能算算我们学校综合楼的长度吗?

  出示:学校综合楼前种树,每隔4米种一棵,一共种了15棵树。从第一棵到最后一棵一共多少米?学生口答。(示意选拔设计师)

  小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵数用间隔数+1;还知道通过棵数与间距求总长度。

  九、回归生活,实际应用

  其实,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

  1、出示:在一条全长2千米的.街道两旁安装路灯(两端也要安装),每个50米安一座,一共要安装多少座路灯?

  问:这道题是不是应用植树问题的规律解决的?学生读题,练习反馈。(示意选拔设计师)

  2请同学们认真听,伸出右手,用手指记下钟敲打的次数,你发现什么?(次数比间隔数多1)

  出示:广场上的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间?

  学生讨论,汇报。(示意选拔设计师)

  十、全课总结

  1、师:同学们今天的表现真不错,运用发现的规律解决了不少问题,你们看,老师把大家的发现编成了一首儿歌,我们一起来读读吧!

  小树苗,栽一栽,两端都栽问题来,间隔数多1是棵数,棵数少1是间隔数,怎样求出间隔数?

  全长除以间隔长度。

  2、师:植树问题中的学问还有很多,在以后的学习中,我们还会学到两端不栽,一端栽,封闭图形中的植树问题,这些都需要同学们在以后的学习中开动脑筋、积极思考才能找到解决问题的好办法。

《《植树问题》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【《植树问题》教学设计】相关文章:

植树问题教学设计06-09

《植树问题》教学设计教案11-12

植树问题教学设计范文05-04

《植树问题》优秀教学设计02-07

植树问题教学设计(精选20篇)09-01

《植树问题》教学设计优质课01-01

《植树问题》优秀教学设计(精选14篇)07-20

人教版《植树问题》教学设计(精选17篇)11-25

小学语文教学设计与反思《植树问题》10-17

《植树问题》教学设计

  作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教学设计,借助教学设计可以提高教学效率和教学质量。教学设计要怎么写呢?下面是小编整理的《植树问题》教学设计,希望对大家有所帮助。

《植树问题》教学设计

《植树问题》教学设计1

  教学目标:

  1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。

  2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。

  教学重点:建立并理解“点数=间隔数+1”的数学模型。教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。

  教学准备:课件。

  教学过程:

  一、情境出示,设疑激趣

  教师:同学们,我们都有一双勤劳的双手,它不仅能写,能画,其实我们的手指中还隐藏了许多数学知识!现在请大家伸出你们的左手,这里有几根手指呢?预设:5根

  教师:那手指与手指间的空隙叫什么呢?预设:间隔

  教师:在数学上,我们通常把两个手指间的空隙叫做间隔。大家观察一下,5根手指之间有几个间隔呢?预设:4个间隔

  教师:现在再看,现在伸出了几根手指呢?预设:4根间隔

  教师:4根手指之间有几个间隔呢?预设:3个间隔

  教师:5根手指之间有4个间隔,4根手指之间有3个间隔,你们发现手指数和间隔数之间有数量关系了吗?预设1:手指数比间隔数多1。

  预设2:间隔数比手指数少1.

  教师:那你能不能用数学式子来表示手指数与间隔数的关系呢?

  预设1:手指数=间隔数+1。

  预设2:间隔数=手指数-1.

  教师:连手上都有这么多数学奥秘,看来数学真是无处不在!这节课我们就来研究跟“间隔”有关的植树问题。(板书课题)

  二、引入新知,经历过程,感受方法

  教师:请看,请大家默读一下:(课件出示问题)。引例:同学们准备在全长20米的小路一边植树。每隔5米栽一棵(两端要栽)那么这条路的一边将被树隔成了几段?教师:告诉我们哪些条件?(提问)要求什么问题?(提问)

  教师:同学们先用尝试用线段图来表示他们之间的关系。(学生动手并提问完成)

  教师:这里的有几个间隔?

  预设:4个

  教师:那你们能不能用一个数学式子来表示?预设:20÷5=4

  教师:20表示什么?5表示什么?4表示什么?(分别提问)预设:20表示这条路的长度(一般我们把它称为总长),5表示每隔5米栽一棵(我们一般把它称为间隔长),4表示有4个间隔。

  教师:4个间隔相当于4段,所以我们数学上通常把有几段称为段数。所以4后面的单位是段。因此我们就得到了公式:全长÷间隔长=段数(提问)。根据除法算式中的'关系,间隔长该怎么求?(提问)段数该怎么求?(提问)

  教师:那现在如果我想在这条路上种树,一共需要几棵树苗呢?

  预设:5棵。

  教师:怎么列数学关系式?(提问)预设:4+1=5(棵)

  教师:为什么这样列呢?

  预设:因为两端都栽。

  教师:你们都跟他一样吗?所以你发现了树的棵树与段数之间的关系了吗?(提问推出棵树与段数的两个公式)

  教师:刚才我们是在20米长的路上种树,那现在如果在100米长的路上种树呢?你还会吗?请看例1(课件出示例1)。大家在书本上完成。

  例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?(请同学上台展示)

  三、利用新知,解决问题

  教师:连例题都难不倒你们!同学们真是太聪明了!可是,在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?大家请看(出示生活中的图片实例)可见植树问题的应用领域是非常广泛的,下面就请大家应用刚才学的知识帮老师解决几个问题。

  教师:今年的圣诞节刚结束,为了度过一个美好的圣诞节,张老师前几天在家可花了不少的心思!你们看——(分别出示3道练习)

  练习1.我买了装礼物的袜子,像这样每两只袜子之间隔0.5米,挂成一排长8米(两端都挂),一共买了几只袜子?教师:现在老师要把题目难度加大。(做完的同学可以把你的想法跟同桌说说)

  练习2.我又买了21只铃铛,挂成一排,长6米(两端都挂),每两只铃铛之间要隔几米?

  练习3.我还买了像圣诞树的衣服来装扮,15人排成一排,迎接圣诞老人(两端都排),每两个人之间隔2米,这个队伍有几米呢?

  四、回顾思考,全课总结

  教师:通过这一节的学习,你有什么收获?思考:假如只栽一端或两端都不栽,那又会是什么情形呢?同学们课后去探究吧!

  五、逆向思考,拓展新知

  教师:最后老师有一个难度很大的题目想留给同学们回家思考!请看:

  练习4.在圣诞节这天,老师看见100位圣诞老人一起来给我们送礼物,他们并列排成两队(两端都排),每前后两个圣诞老人之间相距1米,则这个队伍排了有多长?六、布置作业

《植树问题》教学设计2

  教材分析:

  植树问题”是人教版新课程标准实验教材五年级上册“数学广角”的内容。教材将“植树问题”分为两端都栽、只栽一端、两端都不栽、环形情况以及方阵问题等几个层次,这节课主要是教学两端都栽的植树问题,通过教学向学生渗透复杂问题从简单入手的思想。教材以学生比较熟悉的植树活动为线索,让学生选用自己喜欢的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等数学探索的过程,并启发学生透过现象发现其中的规律,建立数学模型,再利用规律回归生活,解决生活实际问题。

  学情分析:

  从学生的思维特点看,五年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

  设计理念:

  新课程标准要求,“数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力”。因此在设计这节课时,我主要运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。

  一、通过观看图片为起点,以学生熟悉的手为素材,让学生感知间隔以及植树与数学的联系。

  二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。

  三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。

  四、多角度的应用练习巩固,拓展学生对植树问题的认识。

  教学目标:

  一、知识与技能性:

  1.利用学生熟悉的生活情境,通过动手操作、小组合作的实践活动,让学生发现间隔数与植树棵数之间的关系。

  2.通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。

  3.能够借助图形,利用规律来解决简单植树的问题。

  二、过程与方法:

  1.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

  2.渗透数形结合的思想,培养学生借助图形解决问题的意识。

  3.培养学生的合作意识,养成良好的交流习惯。

  三、情感态度与价值观

  通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

  教学重难点:

  一、教学重点

  1、引导学生在观察、操作和交流中探索并发现两端都栽的情况下间隔数与棵数的规律,并能运用规律解决实际问题.

  2、运用规律解决类似的.实际问题的方法。

  二、教学难点

  理解间隔与棵树之间的规律(棵数=间隔数+1、间隔数=全长÷间隔长)并能运用规律解决抽象的植树问题。

  教学方法:

  1、采用手指引出间隔,让学生理解间隔,引出与间隔有关的植树问题

  2、分组探究,发现规律,建立数学模型

  3、运用规律,解决问题

  4、回归生活,实际应用

  教学准备

  PPT课件 多媒体设备

  教学过程

  一、新授

  1.照片引发的思考

  师:植树是一个非常有意义的活动,它不仅能够绿化环境,净化空气,使我们在劳动中得到锻炼,而且,在植树的过程中还蕴含着很多很多的数学问题,怎么样有兴趣探讨吗?

  在学习之前先学习一下和植树问题相关的知识 出示图片(让学了解间隔和间距)

  师:课件:在100米长的小路一边种树,每隔5米种一棵。(两端都栽)一共需要栽多少棵? (指名大声朗读)

  师:(生读完)说说吧学校植树都有哪些要求(指名回答)

  师:每隔5米种一课

  师:每隔五米指的是什么(点名回答)

  生:间隔

  师:这个词不错(板书间隔)。间隔指的是什么?

  生:两棵树之间的距离

  师:学校要求两棵树之间的距离是多少?

  生:5米

  师:还有哪些要求吗?

  生:两端都要栽。

  师:这个要求也很重要(板书两端都要栽)

  说说是什么意思?

  生:两头都要栽

  师:你能用手比划比划吗?

  生:能

  师:还有什么要求吗?

  生:在100米的小路的一边

  师:强调一边就是一行

  让学生试着独自完成提前的题卡(老师巡视找到不一样的结果20、21、22让他们写在黑板上)

  师:做完了吗

  生:做完了

  师:做完了,看黑板,同样的要求出现了三种不同的答案,同意20的举手21的举手22的举手!那学校到底该买多少树苗呢?

  三、合作探究、寻找规律

  1、小组探究,给予充分的时间。

  那咱们就4个人一个小组探究一下这个问题,听要求,画一画,摆一摆或者模仿实际种一种!开始吧(这时教师下去指导巡视)

  师:大家往前看,大家探究出来结果了吗?

  学校到底需要买多少棵树?谁来说?(点名回答)

  生:我们小组讨论的结果是21棵。

  师:同学们对于这个小组讨论的结果21棵你们同意吗?

  生:同意

  师:大家都是正确的

  你们小组使用什么样的方法得出结论的呢?

  生:画线段

  师:愿意展示给大家看吗?

  大家注意听,看看这位同学的方法和你们的方法有什么不一样的地方?

  生:总结先画一条线段表示100米,100除以5是20个间隔

  师:是20个间隔吗?你带着同学数一数。20个间隔没错,那一定是21棵树吗?

  生:最后一棵没加上

  师:你把什么当成小树啦?

  生:线段上的小端点

  师:数一数是21个吗?

  生:是

  师:听明白了吗?有什么想问问他的吗?

  还有没有其他的方法?

  生:摆铅笔,2根1个间隔3根2个间隔4根3个间隔5根4个间隔

  师:为什么加一呀

  生:最一开始的一根或者最后一根没算

  师:也就是学校要求两端都要栽

  师:当做两端都要栽的问题时 间隔数+1=棵数

  师:把复杂的问题简单化这种思想很可贵,发现规律,其他的组也是这么考虑的吧!

  看看这一规律的发现过程出示ppt

  棵数=间隔数+1

  间隔数=全长÷间隔长

  师:请同学们很自豪的把自己总结的规律读一遍。

  一共需要多少棵树苗。(学生操作、思考、教师巡视)

  师:有答案了吗?谁愿意展示一下你的劳动成果,你是怎样想的?你能在黑板上来“改一改”吗?

  师:6棵树几个间隔7棵呢99棵呢200棵呢

  8间隔几棵树呢50个间隔呢1000个间隔呢

  师:植树问题不仅能解决植树问题还能解决生活中的实际问题比如说安路灯

  在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50m安一盏。一共要安装多少盏路灯?(找同学朗读)能解决吗?巡视过程中找41,82两个答案

  师:同学们算完了吗?看大屏幕(展示两个答案)你们同意那个?强调两旁 乘2

  这个同学的错误正好提醒了我们做这类题的时候一定要注意两旁 两旁需乘2同意吗同学们?

  师:今年雾霾挺严重的刚刚还因为雾霾放了假所以呀

  北辰区政府为了减少尾气排放,减少污染,方便市民出行,为北辰人民新开设一条公交线路604路,从新河桥到东站后广场共有18站,相邻两站的距离大约是700米,这条线路大约是多少千米?

  能解决吗?写在题卡上 做完了同桌互相检查(老师下去辅导)

  师:谁说说你是怎么样算的?

  生:18-1求出间隔数

  700×17=11900(米)

  11900米=11.9千米

  师:都对了吗?

  生:做对了

  师:你们家里都有钟表吗?听过钟声吗?你听当当这是几时?

  生:2时

  师:当当当,这是几时?几个间隔?在钟声里面也有数学问题一起看看谁能大声朗读?(出示ppt)广场上的大钟5时敲响5下,8秒敲完。 12时敲12下,需要多长时间敲完?

  师:能试着解决吗》做在题卡上,有困难了放在我们小组内解决,看看能不能解决。(巡视)同学们有结果了吗?哪个小组愿意汇报?

  生:5-1=4 (个) 8÷4=2 (秒)12-1=11(个)11×2=22(秒)

  师:同学们说得真好

  总结:这节课大家都有什么收获?

  两端都要植:棵数=间隔数+1

  间隔数=棵数-1

  板书设计:

  植 树 问 题

  两端都栽 棵树 间隔数

《植树问题》教学设计3

  教学目标:

  1.认识棵数,知道什么是间隔数、。

  2.理解在线段上植树(两端都栽)的情况中“棵树=间隔数+1”的关系。

  3.能将植树问题推广到生活中的其他问题,学会通过画线段图来分析题意。

  教学重点:

  探究植树的棵数和间隔数之间的关系,并能用发现的规律解决实际问题

  教学难点:

  灵活运用“两端都栽”情况下植树的棵数和间隔数之间的规律解决生活中的实际问题

  导学指要:

  1.通过五指初步感知棵数与间隔数之间的关系,理解间隔、间隔数、间距的含义。

  2.通过老师用画线段的方法模拟种树情境理解解决问题的方法,再采用合作学习的方式利用学具摆、数、画等方法,进一步明确棵数与间隔数之间的规律。

  3.学习植树问题在生活中的运用。

  教具:课件一套学具9套自学提示卡一张

  预设教学流程:

  一、创设情境生成学习目标

  1、教学“间隔”定义

  师:我们班在各方面都十分优秀,俗话说的好:耳听为虚、眼见为实,今天让来听课的老师也看看我们班的风采好吗?

  生:好

  师生问好

  师:我们人有两件宝贝,是双手和大脑,今天这节课,我们就要用到这两样宝贝,动脑去思考:手与我们这堂数学课有什么关系呢?手上有哪些数学问题呢?好,现在我们就去探讨。

  师:请你伸出你的'右手,观察你有几根手指?几个手指缝?它们存在什么样的关系呢?

  生:……………………

  师:减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的关系呢?

  生:……

  师:再减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的关系呢?

  生:……

  师:通过刚才的观察,想一想,手指和手指缝之间存在着怎样的关系呢?

  生:……手指比手指缝多1,手指缝比手指少1。

  师:这两根手指之间的手指缝,用数学语言来说就叫间隔,间隔的个数就叫间隔数。

  板书:间隔数

  2、在生活中找间隔

  师:和你的同桌说说:什么是间隔数?

  生:……

  师:我们再来体验,请一排的前三名同学站起来,这一排同学有多少个间隔?

  生:…………….

  师:请这一排的前四名同学站起来,用你们的手指告诉老师,这一组同学的间隔数是多少?

  生:……………

  师:今天将利用数学知识来解决“植树问题”。

  板书课题:植树问题

  二、探究规律实现目标

  1、多媒体出示学校操场

  A师:这里是哪里?

  学校打算在100米的跑道上植树,来美化我们的学校。可不是随便种的哦,学校可是有要求的。

  出示例题1:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?、

  师:读一读,在题中你读到哪些信息?谁来说一说?

  生:……………………

  师:全长100米表示什么?每隔5米栽一棵表示什么意思?一边表示什么?

  师:什么是两端都要栽?

  生:……………………..

  (此环节要全方位理解题意)

  师:今天这节课我们重点来研究两端都栽的植树问题,板书:两端都栽

  师:题目都理解了,请大家动笔尝试算一算,一共需要多少棵树苗?

  B生动笔算

  师:谁来说说你是怎样列式的?

  生:……..

  板书:100÷5=20xx+1=21(棵)

  100÷5=20xx+2=22(棵)

  100÷5=20xx+1=21(棵)

  21x2=42棵

  师:学校可犯糊涂了,有这么多种结果,到底该买多少棵呢?接下来我们来验证下吧

  请同学们利用画一画,数一数,算一算,到底该买多少棵树苗?

  C学生小组合作,教师巡视,并有目的的选取学生

  D在实物投影上展示学生的作品

  学生展示并板演

  用画线段的方法解决的棵数与间隔数的关系

  反馈黑板上的题目,注意利用错误资源教师提问:100÷5=20求的是什么?为什么还要加1呢?

  2、再次课件演示得出结论

  那你们获得的结论是什么呢?在两端都栽的情况下棵数与间隔数之间有什么关系呢?

  棵数=间隔数+1

  师小结:

  你们真了不起,你们发现了植树问题中非常重要的一个规律棵数=间隔数+1

  3、应用规律解决问题

  师:应用这个规律,我们来解决在一条全长100米的小路一边植树,每隔4米栽一棵,(两端都栽)一共需要多少棵树苗?

  在一条全长1000米的小路一边植树,每隔5米栽一棵,(两端都栽)一共需要多少棵树苗?

  生:……………

  师:同学们真的很了不起。通过把复杂的问题简单化,发现了“两端都栽”求棵数的解题规律,你们能够独立解决植树问题了吗?

《植树问题》教学设计4

  教学内容:

  四年级下册第117、118页例1

  教学目标:

  1.利用生活中的问题,通过实践活动让学生发现段数与植树棵数之间的关系,并能利用规律来解决简单的植树问题。

  2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

  3.渗透数形结合的思想,培养学生借助图形解决问题的意识。

  4、 通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

  教学重难点:

  1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

  2.培养学生从实际问题中发现规律,应用规律解决问题的能力。

  3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。

  教学、具准备:课件、尺子等。

  教学过程:

  一、游戏问答,认识“间隔”

  1.同学们,我们先做个游戏请你们伸出一只手张开手指,仔细观察。

  2、 把你的'手放好,我们进行快速问答:五个手指几个空?4个手指几个空?2个手指几个空?3个手指几个空?一个手指几个空?

  3、 这4个“空”也可以说成4个“间隔”,5个手指之间有4个间隔, (全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)

  4、今天我们就一起来研究生活中跟间隔密切相关的数学问题。

  二、创设问题情境:

  1、最近我们的学校发生了很多的变化,新修建的操场旁有一条小路需要同学们发挥聪明才智来绿化、美化我们,现在请你来当设计师,你对自己有些信心吗?现在我们一起来了解一下设计的内容和要求。

  2、多媒体出示题目:学校操场边有一段长20米的小路,学校打算在小路一边植树(两端都栽)、并且每两棵树之间的距离都相等。请按照要求设计一份植树方案。并说明设计理由、

  3、从屏幕中你获得了哪些信息?你认为在设计时需要特别注意什么?你能解释什么是两端吗?

  (总长20米两端都栽间距相等)

  4、在分组探讨前,请先商量好准备每隔几米栽一棵,然后动动手、动动脑,看用什么方法能够又快又好的解决这个问题。(同桌合作)

  5、学生活动,教师巡视指导。

  三、探讨新知:

  1、谁能展示一下你的设计才能,注意说明白你是每隔几米栽一棵?一共需要多少棵树?你是怎样获得这个结果的?

  2、学生交流汇报(画线段图法、计算法)

  3、 教师介绍讲解概念:总长、间距、段数、棵数(并随机板书)

  4、用多媒体演示线段图的推理过程。

  在设计方案、交流方法的过程中,老师发现有的同学没有画线段图,而是直接列出了算式,他们一定找到了规律,我们现在也一起来找一找这个规律是什么。

  总长20米,间距10米,有几段几棵。

  总长20米,间距5米, 有几段几棵。

  总长20米,间距4米, 有几段几棵。

  总长20米,间距2米, 有几段几棵。

  5、学生交流,教师总结并板书:

  棵数总比段数多1,段数总比棵树少1。

  总长÷间距=段数段数+1=棵数

  6、当总长是20米时,我们可以用线段图来解决,当路段变长是1000米、20xx米时,就不能这样做了,就需要用发现的规律来解决这样的问题。

  7、 多媒体出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端都栽)。一共需要栽多少棵树苗?

  (1)了解题目内容。

  (2)学生独立思考,全班交流。

  8、刚才我们所提到的手指数和间隔数分别相当于植树问题中的哪个数量呢?生活中不止是植树问题包含着间隔现象,在其他方面也广泛存在,你能举出这样的例子吗?(锯木头、路灯、表面上的间隔和数字……)

  9、下面我们就一起来解决生活中类似的问题:(独立思考解决,全班交流)

  ①同学们做早操,某行从第一人到最后一人的距离是24米,每两人之间相距2米,这一行有多少人? (独立思考解决,全班交流)

  ②李老师从一楼去某班教室,每走一层楼有24个台阶,共走了48个台阶。你知道李老师去几楼吗? (独立思考解决,全班交流)

  ③5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共应该设置几个车站?(独立思考解决,全班交流)

  ④在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一座。一共要安装多少座路灯?

  听老师读题你自己再读一读,你发现这道题与我们刚才所解决的问题有什么不同?有什么特别需要注意的词语?(2千米 两旁)学生独立思考后,全班交流方法。

  四、拓展例题,训练思维:

  1、多媒体出示例1:同学们在全长()米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要栽21棵树苗、

  (1)了解题意,解决问题。(21-1=20段20×5=100米)

  (2)学生质疑:为什么用21-1=20 算出的是什么?为什么要减1?

  (3)我们所解决的这个问题跟刚才我们解决的例1有什么不同?

  (不论是要算出棵数还是总长都要先知道段数,然后根据问题列出算式)

  2、思维训练:

  ①第一个同学到第二个同学之间的距离差不多是1米,那么,第一个同学到第五个同学的距离是多少米?

  ②园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  3、出示刘翔的图片,展示刘翔竞赛的过程引出问题:中间共有10个栏,栏间距离为12、2米,请你们算出从第一栏架到最后一个栏架有多少米吗?

  五、课堂总结:今天我们一起探讨学习了植树问题中两端都栽的情况,谈一谈你的收获有哪些。其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等 ,这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

《植树问题》教学设计5

  教学目标:

  1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。

  2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。

  教学重点:建立并理解“点数=间隔数+1”的数学模型。

  教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。

  教学准备:课件。

  教学过程:

  一、情境出示,设疑激趣

  教师:同学们,我们都有一双勤劳的双手,它不仅能写,能画,其实我们的手指中还隐藏了许多数学知识!现在请大家伸出你们的左手,这里有几根手指呢?

  预设:5根

  教师:那手指与手指间的空隙叫什么呢?

  预设:间隔

  教师:在数学上,我们通常把两个手指间的空隙叫做间隔。大家观察一下,5根手指之间有几个间隔呢?

  预设:4个间隔

  教师:现在再看,现在伸出了几根手指呢?

  预设:4根间隔

  教师:4根手指之间有几个间隔呢?

  预设:3个间隔

  教师:5根手指之间有4个间隔,4根手指之间有3个间隔,你们发现手指数和间隔数之间有数量关系了吗?

  预设1:手指数比间隔数多1。

  预设2:间隔数比手指数少1.

  教师:那你能不能用数学式子来表示手指数与间隔数的关系呢?

  预设1:手指数=间隔数+1。

  预设2:间隔数=手指数-1.

  教师:连手上都有这么多数学奥秘,看来数学真是无处不在!这节课我们就来研究跟“间隔”有关的植树问题。(板书课题)

  二、引入新知,经历过程,感受方法

  教师:请看,请大家默读一下:(课件出示问题)。

  引例:同学们准备在全长20米的小路一边植树。每隔5米栽一棵(两端要栽)那么这条路的一边将被树隔成了几段?

  教师:告诉我们 哪些条件?(提问)要求什么问题?(提问)

  教师:同学们先用尝试用线段图来表示他们之间的'关系。(学生动手并提问完成)

  教师:这里的有几个间隔?

  预设:4个

  教师:那你们能不能用一个数学式子来表示?

  预设:20÷5=4

  教师:20表示什么?5表示什么?4表示什么?(分别提问)

  预设:20表示这条路的长度(一般我们把它称为总长),5表示每隔5米栽一棵(我们一般把它称为间隔长),4表示有4个间隔。

  教师:4个间隔相当于4段,所以我们数学上通常把有几段称为段数。所以4后面的单位是段。因此我们就得到了公式:全长÷间隔长=段数(提问)。根据除法算式中的关系,间隔长该怎么求?(提问)段数该怎么求?(提问)

  教师:那现在如果我想在这条路上种树,一共需要几棵树苗呢?

  预设:5棵。

  教师:怎么列数学关系式?(提问)

  预设:4+1=5(棵)

  教师:为什么这样列呢?

  预设:因为两端都栽。

  教师:你们都跟他一样吗?所以你发现了树的棵树与段数之间的关系了吗?(提问推出棵树与段数的两个公式)

  教师:刚才我们是在20米长的路上种树,那现在如果在100米长的路上种树呢?你还会吗?请看例1(课件出示例1)。大家在书本上完成。

  例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?

  (请同学上台展示)

  三、利用新知,解决问题

  教师:连例题都难不倒你们!同学们真是太聪明了!可是,在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?大家请看(出示生活中的图片实例)可见植树问题的应用领域是非常广泛的,下面就请大家应用刚才学的知识帮老师解决几个问题。

  教师:今年的圣诞节刚结束,为了度过一个美好的圣诞节,张老师前几天在家可花了不少的心思!你们看——(分别出示3道练习)

  练习1.我买了装礼物的袜子,像这样每两只袜子之间隔0.5米,挂成一排长8米(两端都挂),一共买了几只袜子?

  教师:现在老师要把题目难度加大。(做完的同学可以把你的想法跟同桌说说)

  练习2.我又买了21只铃铛,挂成一排,长6米(两端都挂),每两只铃铛之间要隔几米?

  练习3.我还买了像圣诞树的衣服来装扮,15人排成一排,迎接圣诞老人(两端都排),每两个人之间隔2米,这个队伍有几米呢?

  四、回顾思考,全课总结

  教师:通过这一节的学习,你有什么收获?

  思考:假如只栽一端或两端都不栽,那又会是什么情形呢?同学们课后去探究吧!

  五、逆向思考,拓展新知

  教师:最后老师有一个难度很大的题目想留给同学们回家思考!请看:

  练习4.在圣诞节这天,老师看见100位圣诞老人一起来给我们送礼物,他们并列排成两队(两端都排),每前后两个圣诞老人之间相距1米,则这个队伍排了有多长?

  六、布置作业

《植树问题》教学设计6

  教材分析:

  “植树问题”在实际生活中应用比较广泛,它通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,通过学生的动手操作、自主探究来发现现实生活中它们的规律,,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。教学目标:

  1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

  2.掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。

  教学重难点:

  掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。

  教具学具:

  绳子、挂图、泡沫、小树、题卡

  教学过程:

  一.创设情境,导入新课

  1.小游戏:

  点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种情况:4个、3个、2个)(解释“间隔”的意思)

  通过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)点评:通过游戏激趣,引出“间隔”、“间隔数”的概念教学,由于有绳子打结作铺垫,抽象概念得到了具体化,同时间接渗透了间隔与间隔数两者之间的关系,为探究新知打下良好的.基础。

  2.导入新课:今天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)

  二.新课探究:

  1出示例题:(同学们,今年我们海南迎来了一件大喜事:海南国际旅游岛建设发展规划纲要获批了,为了响应海南国际旅游岛建设的号召)寰岛小学决定美化校园,要在长50米的塑胶跑道的一侧每隔5米植一棵树,一共需要准备多少棵树苗?

  点评:所选例题具有很强的开放性,同时以“海南国际旅游岛建设”引入例题,体现了数学与生活紧密联系,让学生在轻松愉快的生活化的课堂环境中学习数学。

  2.分组动手操作(分八小组,每组6人),在泡沫上“植树”,

  要求:(1)计算一共需要准备多少棵树苗

  (2)思考棵数与间隔数的关系。

  点评:学生亲自动手操作,并通过仔细观察、交流讨论,有效促进学生思维活动的体验以及情感的体验过程,提高了学生分析问题和解决问题的能力,把感性认识上升为理性认识。

  3.汇报结果:

  (1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1

  (2)只种一端:50÷5=10(棵)结论:棵数=间隔数

  (3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1

  4、总结(学生汇报教师书写):

  (1)两端都种:棵数=间隔数+1

  (2)只种一端:棵数=间隔数

  (3)两端都不种:棵数=间隔数-1

  点评:孔子说:“吾听吾忘,吾见吾记,吾做吾捂!”学生在动手操作的过程中,仔细观察,用心思考,在操作的过程中充分体验,充分交流,加深对植树问题三种情况的理解。结论的得出也就水到渠成了。

  三、课堂练习

  1、做一做:

  (1)园林工人要在全长800米的公路一侧植树,每隔4米栽一棵(两端都要栽)。一共需要多少棵树苗?

  (2)李家庄小学从校门口的门柱到教学楼的墙根,有一条长120米的笔直的校道,在校道的一边每隔5米种一棵椰子树,一共种了多少棵椰子树?

  2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。

  (1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

  (2)插彩旗(20分):学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

  (3)上楼梯(20分):小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

  (4)公交站(30分):5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

  (5)锯木头(30分):一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

  (6)街道上(50分):在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

  (7)滑冰场(50分):圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (8)钟表上(50分):广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

  (9)电线杆(100分):在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

  (10)广告牌(100分):在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

  点评:设计形式新颖、有梯度、富有情境化和生活趣味的练习题,激发了学生的学习兴趣,充分调动了学生的解决问题的积极性,同时充分地体现了数学与生活的紧密联系,使数学回归生活,

  四、全课小结:这节课我们学习了什么内容?你还有什么疑问?(植树问题的三种情况)

  五、板书设计

  植树问题

  两端都种:棵数=间隔数+1

  只种一端:棵数=间隔数

  两端都不种:棵数=间隔数-1

  例题:寰岛小学决定美化校园,要在长50米的塑胶跑道的

  一侧每隔5米植一棵树,一共需要准备多少棵树苗?

  两端都种:50÷5+1=11(棵)

  只种一端:50÷5=10(棵)

  两端都不种:50÷5-1=9(棵)

  (1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

  (2)插彩旗:学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

  (3)上楼梯:小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

  (4)公交站:5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

  (5)锯木头:一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

  (6)街道上:在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

  (7)滑冰场:圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (8)钟表上:广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

  (9)电线杆:在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

  (10)广告牌:在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

  教学后记:

  本节课旨在通过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,积极性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:

  一、动手操作、合作交流、探究规律:

  本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的形成,提高了学生的思维水平,完善了学生的认知结构。

  二、练习的设计独特、新颖、有梯度:

  本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的积极性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)

  三、充分体现学生的主体作用及教师的主导作用:

  本节课,我通过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。

《植树问题》教学设计7

  单元教学目标:

  1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。

  2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学时数:4课时

  数学广角植树问题(一)

  第一课时教学内容:

  教科书第117页118页的例1、例2

  教学目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,让学生感悟分的段数与植树棵树之间的关系。

  2、通过小组合作、交流、使学生能理解段数与植树棵树之间的规律。

  3、通过实践活动激发热爱数学的情感,感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点、难点:

  教具:

  挂图、直尺

  教学过程:

  一、创设情境,引入课题

  1、每位小朋友都有一双灵巧的小手,它不但会写字,画画、干活,在它里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手,请每一位学生高举起右手,并将五指伸直,关拢。

  师:现在请每位小朋友将五指张开,数一数,张开后有几个空格?(4个)

  师:在数学上,我们把这个空格叫间隔。刚才,我们把五指张开,有4个空格,也就是4个间隔。

  2、举例说出生活中的间隔到处可见,比如:在马路边种树,每两棵树之间有一段距离,我们就把这一段距离叫做一个间隔,楼梯、锯木头等。

  3、大家清楚地看到,5个手指之间有4个间隔,那么,将手指换成小树,5棵小树之间有几个间隔(4个),6棵呢?7棵呢?

  今天,我们就来学习有趣的植树问题。

  (一)出示:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  1)同桌相互讨论。

  2)有线段图表示你的'方法

  3)学生汇报

  4)引导总结:

  两端要栽的时候,比较间隔数和棵数,你得出什么规律?(生:棵树比间隔数多1)

  你能用一个式子表示两端都栽的棵数和间隔数的关系吗?

  板书:棵数=间隔数+1

  5)在线段图上,又有怎样的关系呢?

  点数=间隔数+1

  6)这个问题应是:1005=20(个)间隔数

  20+1=21(棵)棵数

  巩固练习

  (一)书第118页的做一做独立完成,指名反馈。

  (二)出示:大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?

  1)读题,理解题。

  2)分组看图讨论。

  3)尝试列式计算。

  4)交流:603=200间隔数

  两端不栽树:20-1=19(棵)

  192=38(棵)

  5)质疑:

  为什么减1?为什么乘2?

  比较例1与例2的不同?小组讨论,再交流

  例1两端要栽树,所以棵数比间隔大1:例2两端不栽树,所以棵数比间隔少1。

  巩固练习二:

  教科书第119页做一做1、2题

  学生独立完成,集体反馈。

  三、本课小结:

  通过今天的学习,你有什么收获?

《植树问题》教学设计8

  【教学背景】“植树问题”是人教版四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、只栽一端、两端都不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。

  【教学内容】数学广角(一):两端都栽、只栽一端、两端都不栽的植树问题,教材第117至119页例1、例2及相应的“做一做”。

  【教学目标】

  知识与技能:通过观察、操作及交流活动,探索并认识不封闭线路上间隔排列中的简单规律,并能将这种认识应用到解决类似的实际问题之中。培养学生观察能力、操作能力以及与他人合作的能力。

  过程与方法:主要让学生通过观察、操作、交流等活动探索新知。

  情感、态度与价值观:在解决问题的过程中,感受数学与现实生活的密切联系。

  【教学重、难点】引导学生在探索中发现规律,培养学生的归纳能力及概括能力,从而初步认识植树问题,会解决相关的实际问题。

  【教学准备】课件、

  一、创设情境,揭示课题。

  1、教师出示几幅有关北方沙尘暴的图片,引出植树的话题。

  学生看完视频和照片说一说有什么感受?

  治理沙尘暴最有效的办法是植树造林。你们看,我们学校的学生家长和老师,都积极投身到植树造林的活动中。看到这一排排整齐的小树,如果我们从数学的角度来分析,这里面还有很多有趣的数学问题。这节课我们就来研究——植树中的数学问题。(板书课题:植树中的数学问题)

  【设计意图:通过播放沙尘暴视频及照片,让学生深刻体验到数学问题来源于生活,激发学生的学习兴趣,及时渗透环保教育】

  二、引导探究,发现规律。

  (出示情境)为了绿化校园,学校要在一条全长20米的小路一边种树。每隔5米植一棵。想一想,要植多少棵树?(学生自由读题)

  (1)理解什么是每隔5米植一棵?下一棵怎么栽?

  (2)介绍什么是一个间隔?学生指一指每一个间隔。

  (3)教师出示学具分析题,学生可以借助学具摆一摆再列算式算一算。(学生小组合作动手操作)

  【设计意图:把课本中的例1在100米长的路上种树,改为在20米长的路上种树。这样降低了探究的难度,便于学生观察、思考。同时通过情境图和开放性的提问,为下一环节的探究作好准备。】

  ①组织反馈交流

  师:你给大家介绍一下你是怎么想的?(学生可能只出现只植两端)教师及时引导在我们实际植树活动中会遇到什么情况?

  可能会遇到建筑物,遇到建筑物怎么了?植不了树了,可能会在哪些地方遇到建筑物?看来不仅有这一种植法,还有其他可能,请同学们再动手摆一摆算一算。(学生继续操作)

  ②学生汇报其他两种植法。

  学生说一说自己的方法,在哪里遇到建筑物,植了几棵树?

  ③比较三种植法有什么不同?(强调在20米的小路一边间隔是5米植树只有这三种情况)并板书:两端都植、只植一段、两端都不植。

  【设计意图:本环节先通过想象提问,为学生如何去探究起到提示作用。接着采取较开放的形式,自主确定每棵之间长度,通过对每一种方案动手摆一摆,列式计算,初步感知每种方案的计算方法。再接着让学生观察每一种方案,使学生从中得出,虽然确定的每棵之间长度不同,而计算方法是相同的。最后教师又让学生想象、观察,针对实际背景的不同,应选择相应的种树方案。整个环节在教师的积极引领下,充分突出了学生的主动参与,使学生经历了在操作中思考,在观察中比较,在交流中评价概括。】

  (4)理解三种不同的植法中为什么都有20÷5=4这个算式?(学生说一说并上来指一指4在哪里?)

  20÷5=4原来都是在算有几个间隔数。强调虽然植法不同但他们的间隔数却都相等,都有这样的4个间隔。

  【设计意图:学生通过数形结合理解在植树问题中,求出间隔数非常关键。】

  (5)理解4个间隔加1为什么等于5棵树?介绍一一对应的数学思想。

  学生先想一想,再一起来看一看。

  重点强调:1棵树对于1个间隔,1棵树对于1个间隔,4棵树就对应了4个间隔,最后1棵树没有对应的间隔就多了1棵树,所以是4棵树加1棵树等于5棵树。

  找一学生再来说一说,同桌两人说一说。

  (6)学生独立尝试借助一一对应的数学思想解决另外两种植法。

  【设计意图:让学生体会一一对应的思想,并深入去理解其他两种植法中也蕴含的'一一对应思想,把一一对应的思想与植树规律结合在一起,得出的规律就有水到渠成的效果很好地突破难点。】

  小结:刚才我们在理解这几个算式时用到了一个重要的数学思想,叫做一一对应,一一对应的数学思想可以使复杂的数学问题变得非常简单。

  (7)寻找三种不同的植法棵数与间隔数之间的关系。

  观察这三种不同的植法,植的棵树和间隔数之间有这样的关系?你可以看图来想一想也可以借助算式来思考。同桌两人商量商量。

  学生汇报,教师板书。

  小结:通过刚才的学习我们知道了有这三种不同的植法,但他们的间隔数都相等,看来在植树问题中求出间隔数非常重要,我们还知道了他们棵数与间隔数之间的关系,分别是两端都植是棵树等于间隔数加1,只植一端是棵树等于间隔数,两端都不植是棵树等于间隔数减1。你们学会了吗?老师来考考你。

  【设计意图:新知结束后带着学生一起回顾所学的知识,如此设计是基于学生的思维状态,让学生对当堂课的知识和收获做一个回顾,就是学生整理知识思路、内化知识的过程,能起到画龙点睛的作用,更能培养学生的归纳能力。】

  精讲精练:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端都要栽)。一共要栽多少棵?学生独立完成。

《植树问题》教学设计9

  设计理念:

  笛卡儿说过:“数学是使人变聪明的一门科学”,而数学思想则是传导数学精神,形成科学世界观不可缺少的条件。数学思想方法反映着数学概念、原理及规律的联系和本质,是学生形成良好知识结构的纽带,是培养学生能力的桥梁。新课标下的每册教材都通过“数学广角”来进一步渗透数学学习的思想方法。在植树问题的教学中,主要是向学生渗透一种在数学学习上、在研究问题上都很重要的思想——化归思想。

  在设计上结合新课标的要求,根据教学内容的特点及学生的认知基础,通过解决矛盾冲突的植树问题,让学生在借助图、式分析题意的过程中,体验到植树问题的另一类型。再通过学生的合作探究,建构(两端不种)植树问题的模型,发现解决这类问题的规律,接着运用模型解决生活中的类似问题,渗透“化归思想”。教学中注重于培养学生运用所学知识,举一反三,解决实际问题的能力,也注重于让学生体验知识、经验获得的过程,培养学生借助图示解决问题的意识以及渗透“化归思想”。

  教学目标:

  1、知识与能力目标:

  通过探究发现一条线段上两端都不种的植树问题“棵数=间隔数-1”的规律。

  2、过程与方法目标:

  使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3、情感态度与价值观目标:

  让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。

  教学重点:

  理解“两端都不种”的植树问题的规律

  教学难点:

  应用“两端不种”的植树方法去解决生活中类似的问题

  教学过程:

  一、创设情境,发现问题

  同学们学过植树的知识吗?请大家来帮忙解决下面这个问题

  房屋间的距离是60米,要在两间小屋之间植树,每隔10米种1棵,需要多少棵树?

  误区:60÷10=6(个)

  6+1=7(棵)

  两端不种树还是这样来求棵数吗?这就是我们本节课要学的知识(两端不种)的植树问题

  (设计意图:矛盾的冲突更能引发学生探索的兴趣。学生在已经学过两端都种的植树规律的前提下很大程度上会受到误导把棵数求成间隔数+1,这样引起学生认识上的矛盾从而体会更深刻。)

  二、化繁为简,经历猜测、验证的过程探索规律

  师:怎么来求棵数呢?与上节课的知识有什么联系,又有什么区别

  讨论:相同之处都是先求出间隔数;不同之处求棵数的方法不一样

  师:我们来大胆猜测一下“两端不种”的植树时怎样求棵数?

  猜测:棵数=间隔数+1

  是不是这样呢,我们来验证一下(植树)

  两端不种

  棵数=间隔数+1

  (设计意图:让学生经历猜测与验证的过程探索出规律建立起数学模型,为下一环节的例题深入学习与应用规律做好了铺垫)

  二、深入学习应用“两端不栽”的规律

  1.师:同学们太了不起了,通过举简单的例子,自己又发现了“两端不栽”的'规律:棵树=间隔数-1。我们再回到刚才的问题,你会做了吗?

  2.例2大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米。一共要栽几棵树(学生独立完成)

  ②师:同学们讨论一下解决这道题要注意什么?

  课件闪烁:将“两旁栽树”,“两端不用栽”

  学生展示:60÷3=20(个)

  20-1=19(棵)

  19×2=38(棵)

  答:一共要栽38棵树。

  小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。

  (设计意图:通过例2探索让学生更深入的理解植树中“两端不栽”这种情况的处理及方法)

  三、回归生活,实际应用

  1.为了迎接我校的十周年校庆,要在校园里相距20米的两棵树间每隔4米挂上彩旗,需要准备多少面彩旗?

  20÷4=5(个)

  5—1=4(面)(面数=间隔数-1)

  问:为什么要—1?这相当于今天学习的植树问题中的那种情况?

  2.张老师从一楼到四楼去上数学课,学校每层有26级楼梯,张老师一共走了几级楼梯?

  4-1=3(层)(层数=楼数-1)

  3×26=78(级)

  (问你们家住几楼呀?如果你们家的楼房也是每层26级楼梯,你回到家一共要走几级楼梯?)

  3一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?(次数=段数-1)

  5-1=4(次)(次数=段数-1)

  4×8=32(分)

  (设计意图:生活中有‘两端不种’植树问题的原型,也有植树问题的变式练习,让学生充分感受数学就在生活当中)

  四、全课总结

  通过今天的学习,你有哪些收获?

  (设计意图:让学生回顾本节知识达到及时巩固的作用)

  五、板书设计

  植树问题(两端不种)

  棵数=间隔数生活中

  间隔数=全长÷间隔长挂彩旗:面数=间隔数-1、

  学生展示:60÷3=20(个)上楼:层数=楼数-1

  20-1=19(棵)锯树木:次数=段数-1

  19×2=38(棵)

  答:一共要栽38棵树。

  (设计意图:简要的板书让学生容易抓住本课的重点知识,一目了然。)

《植树问题》教学设计10

  教学目标分析(结合课程标准说明本节课学习完成后所要达到的具体目标):

  知识技能目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔 数与植树棵数之间的关系;

  2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单 的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律, 并应用规律来解决问题的能力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、通过实践活动激发热爱数学的情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描述):

  通过平时的观察,我发现四年级学生的思维仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。但这种能力不是那么强,在学习中很难独立的完成学习任务,但学生的合作意识已经有了很大的提高。能在学习中在教师的引导下积极参与学习,完成学习任务。适当的鼓励是激励学生学习,克服困难的最好方法。在生活经验方面,学生们看到过“道路两旁每隔一定距离会种有树”,但是,在这样的现象中包含哪些数学概念他们是不清楚的,需要教师针对此予以明确;在数学知识方面,他们知道“依此类推”和“除法的意义”,像“100米的小路,每隔5米栽一棵”,他们可以通过计算和画图的方法解决,只是对这些量之间存在的数量关系还有待进一步探究。

  教学过程(按照教学步骤和相应的活动序列进行描述,要注意说明各教学活动中所需的'具体资源及环境):

  一、创设情景,激发兴趣

  1、猜谜导入揭题

  师:“两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。”(手)

  师:对,我们都有一双灵巧的手,请你们伸出右手,五指张开,用数学的眼光看一看,你发现了什么?

  数一数,5个手指之间有几个空格?在数学上,我们把空格叫做间隔,也就是说,5个手指之间有4个间隔?间隔数为4。(师伸出4根手指、3根手指、2根手指)现在有几个间隔?

  师:生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)

  【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有的关系,使学生感受数学与生活的密切联系,在不知不觉中展开对数学问题的探索,激发探求植树问题的欲望。

  二、经历探究,发现规律

  1、激趣引入,启发探究积极性

  (课件出示)出示江口小学为绿化环境的招聘启事及设计要求

  招聘启示

  学校将进行校园环境美化,特诚聘环境设计师一名。要求设计植树方案一份,择优录取。

  江口小学

  20xx.6

  设计要求:

  在一条长20米的小路一边等距离植树,两端要栽。

  【设计意图】通过招聘启示让学生设计植树方案的出发点是让所有参与者都能平等的、积极主动的参与到学习的全过程中,在参与中学习和构建新的知识、形成能力。

《植树问题》教学设计11

  一、教学内容:

  人教版《义务教育课程标准实验教科书数学》四年级下册“数学广角” 第117—118页。

  二、教材目标:

  1.通过生活中的事例,知道 “植树问题”的三种不同的情况,理解与掌握间隔数与棵数之间的关系和变化规律。

  2.通过具体问题的解决过程,经历观察、比较、发现、概况等数学活动,培 养学生的研究意识和探究能力,感悟化繁为简、数形结合等数学思想方法。

  3.能运用规律或研究方法解决相关的实际问题,感受数学在生活中的广泛应 用,培养学生的应用意识和解决实际问题的能力。

  三、教学重点:引导学生经历规律的获得过程、建立数学模型,并用所学的方法解决一些简单的实际问题。

  四、教学难点:理解间隔数 与棵数之间的关系;解决与植树问题具有相同数学模型的实际问题。

  五、教学准备:学习单、多媒体课件、小树和小路模型。

  六、 教学过程:

  (一) 问题导入:

  出示谜语:两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。让学生猜一猜:这会是什么呢?

  教师组织学生认识手中的间隔,并认识它们存在的规律“间隔数+1”

  (二)探究新知:

  1.队列问题:

  出示学生排着整齐的队伍去植树的图片,引导学生发现学生队伍中存在间隔,通过学生站一站,数一数等形式总结人数和间隔数的'关系,再次对应“间隔数+1”

  并出示课题。

  2.植树问题:

  (1)体会“化繁为简”思想:

  问题导入:同学们到达目的地,又遇到难题了:在全长1260米的小路的一边植树,每隔5米植一棵,按怎样的方案植,又需要多少棵树呢?

  突出矛盾:数字太大,不易思考,引导学生转换较小的数。

  明确思想:当遇到复杂的问题,可以转化成简单的问题,这就是“化繁为简”的数学思想。(板书:化繁为简)

  (2)设计三种植树方案:

  引导学生用学具摆一摆或用线段画一画的形式,同桌两人合作设计植树方案。

  ①学生活动,教师巡视。

  ②汇报、展示:

  ③小结:组织学生对不同方案进行命名,突出其主要特征。

  教师板书:两端都种、只种一端、两端不种

  (3)探究规律:

  ①求间隔数:

  教师引导学生发现植树过程中的间隔,总结植树棵数和间隔数的关系,再次对应“间隔数+1” 。

  在没有植树的棵数时,探究间隔数与全长、间隔的关系。

  组织学生独立思考,借助学具、线段图等形式探究规律

  a:学生思考并摆学具或画线段或列算式。

  b:汇报:

  ②探究间隔数与棵数的关系:

  开放间隔的长度:(出示课件)在20米的小路的一边植树,每隔 米植一棵,一个需要棵树?

  小组合作完成探究,活动要求:

  1)自己选择适合的间隔长度,四人小组合作完成记录表。

  2)小组选择一种植树方式进行探究。

  3)可以借助摆学具、画线段、数手指或列算式的方式。

  a:学生小组活动,教师巡视。

  b:学生汇报发现规律,教师板书。

  c:升华:

  三种情况结果不同,但是在求解过程也存在着相同,都是先计算20÷5,这就意味着解决植树问题的关键是明确间隔数。

  d:应用:

  老师检查同学们的植树情况,他从第1棵树走到第20棵树时,一共走了多少米?

  (三)巩固提升:

  1.选一选:

  下面每一题相当植树问题的哪一种情况?

  (1)音乐中的“五线谱”( )

  (2)衣服上的纽扣( )

  (3)成语“一刀两断”()

  (4)自鸣钟九点报时的钟声( )

  A.两端都种 ; B.只种一端; C.两端不种。

  2. 广场上的大钟5时敲响5下,4秒敲完。12时敲12下,需要 秒。 3. 小法官:

  (1)学校的教学楼每层有24个台阶,老师从1楼开始一共走了72个台阶,判断:现在老师走到了3楼。( )

  (2)一根10米长的木头,把它平均分成5段,锯一次需2分钟。判断:锯完一共需要10分钟。( )

  4.学校一条大路的一边共插了20面彩旗。

  (1)如果使两面彩旗中间放一盆花,一共要放多少盆花?

  (2)如果要使两盆花之间有一面彩旗,一共要放多少盆花?

  (四)课堂总结:

  师:今天我们学习了什么?你有什么收获?

  生活中还有哪些类似植树问题的现象呢?无论哪些问题,我们都能用今天的方法和策略进行解决,这就是数学的奥秘。

  教学反思

  通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的情况。

《植树问题》教学设计12

  教学目标:

  1、知识与技能:通过合作探究,动手实践,让学生在做数学的过程中经历由现实问题到构建数学模型的过程,理解并掌握植树棵数与段数之间的关系。

  2、过程与方法:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、初步探究、合作交流的能力,并培养学生针对不同问题的特点灵活解决问题的能力。

  3、情感态度价值观:让学生在探索、构建模型、用模型的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。

  教学重难点:

  引导学生在观察、操作和交流中探索并发现段数与棵数的规律。并能运用规律解决实际的问题。

  教学准备:课件,纸条,小刀。

  教学过程:

  课前热身:

  师:在上课之前,老师了解了一下,发现我们班很多同学都喜欢唱歌,现在离上课还有一点时间,我们一起来唱《幸福拍手歌》好吗?(播放课件视频,齐唱。)

  师:如果感到幸福你就拍拍手,是双手创造了我们幸福的生活。老师也相信,只要我们在用双手辛勤地创造着,就一定会收获到幸福,今天我们就一起用双手去创造,去收获。

  一、创设情境,生成问题。

  1、猜谜激趣。

  师:同学们喜欢猜谜语吗?我现在要给同学们出一个哑语,谜底是一个成语,同学们看仔细。(师找一个学生配合,用小刀切断纸条。)

  生:一刀两断。

  教师板书:1刀2段,并画出线段图表示。

  师:切两刀呢?(生猜测,师演示,指名画线段图)

  学生回答:三刀呢?五刀呢?(自己画出线段图验证。)100刀呢?

  师:你发现了什么规律?

  学生说,教师板书:刀数=段数-1。

  2、提出问题。

  师:同学们真聪明,可以帮我一个忙吗?出示设计要求:

  在操场边,有一条20米长的小路,学校计划在小路的一边种树,请按照5米一棵的要求,设计一份植树方案。

  师:从这份要求上,你能获得哪些信息?

  (20米长的小路,一边,每隔5米种一棵。)

  师:每隔5米是什么意思?

  (每两棵树之间的距离是5米,每两棵树之间的距离相等。)

  二、探索交流,解决问题。

  1、设计方案,动手种树。

  师:了解了已知条件,请同学们以同桌为一个小组,设计一份植树方案。可以用这条线段代表20米的小路。(师课前给学生准备画有20厘米线段的纸张)用你们喜欢的图案表示树,把你们设计的方案画一画。(小组活动)

  2、反馈交流。

  师:很多小组都已经完成了,先请同学们来说一说,根据你们的方案,需要种几棵树?(5棵,4棵,3棵)

  师:为什么同样的一段路,同样的要求,种的棵数却不一样呢?你们的方案分别是怎样的?来展示一下你们的设计方案。(小组展示设计方案,交流设计思路)

  师:这三种设计方案是不是都合理呢?怎样来检验一下?(参照设计要求,检验设计的合理性。)既然都合理,比较一下,这三种方案的相同点是什么?

  生:两棵树间的间隔都一样,他们的.间隔个数都相同。

  师:那它们的不同点又在哪里?

  根据学生的回答板书:

  (1)两端都栽。

  (2)只栽一端。

  (3)两端都不栽。

  师:就一个要求,同学们就能设计出这么多不同的方案,真有创造力!看来你们都有成为环境设计师的资格。

  3、合作探究,总结规律。

  师:刚才我们借助借助线段图,找到了刀数与段数的关系,回忆一下刚才的方法,你能不能用同样的方法,去探究一下棵数与段数的关系?

  小组合作探究,教师巡视指导。

  4、交流规律。

  小组汇报,其他小组补充。教师根据汇报情况板书:

  两端都栽:棵数=段数﹢1

  只栽一端:棵数=段数

  两端都不栽:棵数=段数-1

  5、验证规律。

  师:我们再用线段图验证一下我们发现的规律。

  (1)画一条18厘米长的线段,两端都种,每隔3米种一棵,几段几树?

  (2)画一条20厘米长的线段。只种一端,每隔2米种一棵,几段几树?

  (3)画一条15厘米长的线段,两端都不种,每隔5米种一棵,几段几树?

  6、强化规律。

  请前排同学到台前扮演小树,模拟种树的三种情况,记忆种树的规律。

  师:刚才同学们用勤劳的双手和智慧的大脑,不仅设计了合理的植树方案,还探究出了植树的规律,真是太棒了,你们幸福吗?拍拍手吧!

  师:其实啊,植树问题也不只是与植树有关,生活中还有很多的现象与植树问题类似,我们把这类问题统称为“植树问题”。(板书课题)

  你能举出一些类似的例子吗?(指名说一说,如,路灯,栏杆,队形……)

  三、巩固练习,运用规律。

  师:要解决植树问题,首先要确定它是三种情况中的哪一种。下面我们来运用这些规律解决一些问题。(课件逐一出示)

  1、同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要栽多少棵树苗?

  2、动物园的大象馆和猩猩馆相距60米,绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?

  3、为庆祝六一,学校要在教学楼前小路的两旁插上小旗子,每4米插一面,20米内可以插多少面小旗子?

  4、提高题。园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (1)先判断属于哪种情况,独立解决。

  (2)小组交流。

  (3)汇报。

  师:运用自己发现的规律去解决了问题,是不是一件幸福的事?我们拍拍手吧!

  四、回顾整理,反思提升。

  师:回忆一下,在我们这节课的学习中,是什么帮助了我们去发现了那么多规律?(线段图)线段图是我们在学习中经常用到的一种工具,同学们一定要把它当成好朋友噢。这节课老师感到很快乐,我收获了幸福,你们收获了什么?

  指名说一说。

  你认为谁的表现最值得你去学习?

  板书设计:

  植树问题

  两端都栽:棵数=段数﹢1

  只栽一端:棵数=段数

  两端都不栽:棵数=段数-1

《植树问题》教学设计13

  一、教学内容

  教科书P117例1

  二、教学目标

  1、利用熟悉的生活情境,通过动手操作等实践活动,理解并掌握“两端都要种”的植树问题中间隔数与植树棵数之间的规律。

  2、在合作探究中解决问题,建构数学模型,感受数学的简化思想和应用价值。

  3、渗透数形结合的思想,培养学生借助线段图来解决问题的意识。

  三、教学重点、难点

  1、重点:通过探究,发现两端都栽的情况中“棵数=间隔数+1”

  2、难点:利用规律来解决生活中的实际问题。

  四、教学准备

  小棒、课件、练习本、表格

  五、教学过程

  (一)创设情境,引入学习

  1、每个人都有一双灵巧的小手,知道吗,在你的手上,还藏着数学知识呢?请伸出左手找找看,你找到了吗?

  (预设生:有5根手指生:有4个空)

  像刚才同学们所提到的2根手指间的空格,在数学上我们叫做间隔(板书间隔)

  2、生活中很多地方也存在着间隔,你能找到吗?

  (预设生1:树木之间有间隔生2:队伍之间生3:栏杆之间也有)指名3人

  3、老师也收集了一些(播放课件)

  过渡:看来与间隔有关的事物太多了,很有研究的必要,今天这节课我们就来研究与间隔有关的植树问题。(板书课题)

  (二)合作探究“两端都栽”的规律

  1、①课件出示请看题“学校准备在一条长20米的小路一旁栽树,每隔5米栽一棵(两端都栽),一共需要多少棵树苗?

  谁能响亮的读题?

  ②从题中你了解到了哪些数学信息?

  预设生1这条小路总长20米生2每隔5米种一棵(5米就是我们所说的间隔长)生3:两端都栽(什么是两端都栽?2人说)(板书两端都栽)生4:一旁

  ③能试着列列算式来解决吗?把你的想法列在练习本上。(指名板演)

  (预设生1:20÷5+2=6(棵)生2:20÷5+1=5(棵))

  还有不一样的吗?也上来写写

  说一说你的想法

  ④我发现你们虽然意见不统一,但是有一步却是相同的,找到了吗?20÷5是什么意思?

  指名2人说(板书总长÷间隔长=间隔数)齐读1次

  2、①到底哪种答案是正确的,你有什么方法来验证一下,同桌一起讨论一下。

  (预设生1:用手掌中的间隔现象来说明生2:用小棒来模拟种一种

  生3:画线段图来验证一下)

  方法有很多,但是画线段图是最常见、最一般的方法。

  ②你打算怎么画,能介绍一下吗?

  生介绍,师板画

  介绍,我们可以取任意长代表5米,这样5米5米地画,一直画到20米,(出示课件)几个间隔,几棵小树?(4个间隔5棵数)

  通过线段图,我们清楚的看出正确答案应该是20÷5+1=5(棵))

  3、①如果老师将总长和间隔长进行变换,你能自己迅速画出线段图得出间隔数和棵数吗?

  两端都栽的情况下

  同桌合作完成表格第2、3两行。

  ②展示1个学生的作品,课件出示

  观察大屏幕上的数据,想一想在两端都栽的情况下,棵数与间隔数存在怎样的规律?

  指名3人说(在说时强调条件是两端都栽的情况下)(板书棵数=间隔数+1间隔数=棵数-1)加上条件再齐读一次

  4、验证规律

  ①在两端都栽的情况下,是不是棵数与间隔数都存在这种规律呢?想自己再来验证一下吗?

  ②请在表格的`剩余两行自设总长和间隔长画一画线段图(注意你所设制的总长必须要能被间隔长整除)想一想怎样才能提高速度,间隔数太多了好不好?

  ③同桌再次合作,教师巡视

  ④汇报,教师记录结果

  ⑤通过这些数据,你有什么要说的吗?为什么棵数总比间隔数多1?

  700个间隔,几棵树?1000棵数几个间隔?

  (三)练习生活,拓展应用

  生活中有很多类似问题也能用植树问题的规律来解决,比如装路灯,设车站,做楼梯,锯木头等等,一起去看看吧!

  1、在一条全长400米的街道两旁挂灯笼,每隔8米挂一个(两端都挂),一共需要多少个灯笼?女生读题学生独立列式,说一说你的理解

  2、刘翔一共要跨10个栏,每两个栏之间的间隔长是10米,求从第一个栏到最后一个栏一共有多长?男生读题刚才求的是棵数,现在求的是(总长)要求总长必须知道什么条件独立列式,汇报结果,说说理解。

  3、你看过钟表吗?

  你听——当当,这是几时;当当当这是几时,有几个间隔?

  在钟声里也有数学问题,一起去看看吧!

  出示广场上的大钟5时敲响5下,敲响第一下到第五下用了8秒,12时敲响了12下,需要多长时间?

  (四)课堂小结,留下悬念

  1、这节课同学们都表现得非常认真,积极,想一想在这节课上你有什么收获?

  2、收获那么多,老师真为你感到高兴,其实植树问题中还有很多数学问题,你比如说一头栽一头不栽,两头都不栽,在封闭图形上栽等等,他们又存在怎样的规律?就让我们带着对这些问题的思考迎接下节课的学习吧!

《植树问题》教学设计14

  教学内容:五年级(上册)第106页例1及练习二十四的1—5题

  教学目标:

  1.通过探究发现一条线段上两端要种植树问题的规律。

  2.向学生渗透化归的思想方法。

  3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点:

  使学生掌握“两端都要种的植树问题”的解题方法。

  教学难点:

  用发现的'规律解决生活的实际问题作为难点。

  教学过程:

  一、引入课题

  3月12日是什么节日呢?植树有什么好处呢?从而引出课题——植树问题。(板书课题:植树问题)

  二、引导探究,发现“两端都要栽”的规律

  让学生在一条长度为12厘米的线段上等距离的植树,通过植树的情况引出间隔和间隔数以及棵数与间隔数之间的关系。

  三、利用规律解决植树中的问题

  例1、同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要栽多少棵树苗?每隔4米呢?每隔10米呢?把小路延长到1000米呢?

  100÷5=20(段).........间隔数

  20+1=21(棵)...........棵数

  答:一共需要栽21棵树苗。

  小结:刚才,我们应用发现的规律,解决了实际问题。已经知道,“两端要种”棵数=间隔数+1.其实,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决.

  四、回归生活,实际应用

  1、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?

  2、在沿河路的一边,设有16个节能路灯(两端都设),相邻两根的距离平均是60米,这条路有多远?

  3、同学们做操比赛,第一行从左起第一人到最后一人的距离是14米,每两人之间相距2米,这一行有多少人?

  五、全课总结

  1、在生活中,你还见过那些植树问题呢?

  2、同学们今天的表现真不错,运用发现的规律解决了不少问题,你们有什么收获呢?

  六、布置作业:课本109页第5题。

  七、板书设计:

  植树问题

  两端要载棵数=间隔数+1

  100÷5=20(段).........间隔数

  20+1=21(棵)............棵数

  答:一共需要栽21棵树苗。

《植树问题》教学设计15

  一、教学目标:

  1、通过探究发现一条线段上两端要种植树问题的规律。

  2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  二、教学重点

  使学生掌握“两端都要种的植树问题”的解题方法。

  三、教学难点

  使学生掌握已知株距和全长求株数的方法,以及已知株数和株距求全长的方法。

  四、教学准备

  多媒体课件、小棒、直尺、卡片、探究表。

  五、课前互动

  1、同学们,我们先来说说顺口溜,好吗?一只青蛙一张嘴,两只眼睛四条腿;两只青蛙两张嘴,四只眼睛八条腿。会说吗?请继续……

  2、接下来,我们来说一个不一样的,有信心吗?两个手指一个隔(教师示范用手指展示出来,让学生也跟着做),三个手指两个隔,会说吗?请继续……学生说到五个手指四个隔时,引出“间隔,间隔数”的概念。(在数学上,我们把空格叫做间隔,也就是说,5个手指之间有4个间隔?间隔数为4。)

  3、随机请一行同学站起来,不断增减学生,让学生边观察边说,几个同学几个隔,老师发问,哪个间隔长,引出“间隔长”的概念。

  教学过程

  六、引入课题

  生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题—植树问题。(板书课题:植树问题)

  七、引导探究,发现“两端要种”的规律

  1、情景导入例题

  ①课件出示校园图片。

  植树不仅能净化空气,还能美化环境。这是我们学校的新校区,绿化校园是我们的一个重要任务。植树节那天,我们全体老师参与了植树活动,(出示综合楼前的小树图片)这是我设计的,你们想知道我是怎样设计的吗?(出示*场图片)这是我们学校的*场,*场外面是一条车道。现在要在车道一边种一行树,校长想在我们班选几名优秀环境设计师完成这项任务。你们想成为优秀环境设计师吗?

  出示示意图及题目:同学们在全长100米的车道一边植树,每隔5米栽一棵树(两端要种)。一共需要多少棵树苗?

  ②理解题意。

  a、指名读题,问:要求一共要栽多少棵树,首先应该考虑到哪些问题

  b、理解“两端”“一边”是什么意思?

  指名说一说,然后师实物演示:指一指哪里是这尺子的两端?一边又是什么意思?

  说明:如果把这根尺子看作是这条车道,在车道的两端要种就是在车道的两头要种。一边栽就是在车道的一旁栽。

  ③算一算,一共需要多少棵树苗?

  ④反馈。

  2、引发猜想

  师:三种意见(19棵、20棵、21棵),哪种是正确的呢?

  八、解决两端都种求总长度的实际问题

  同学们发现规律的能力可真不错。下面我们玩个站队的游戏。

  1、这一列共有几个同学?(4个同学现场站队)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?

  师:这个问题与刚才的类型有什么不同?学生试做,反馈。

  你运用哪个规律?(间隔长×间隔数=总长度)

  2、这一列共有10个同学呢?100个同学呢?

  3、这个规律,你能算算我们学校综合楼的长度吗?

  出示:学校综合楼前种树,每隔4米种一棵,一共种了15棵树。从第一棵到最后一棵一共多少米?学生口答。(示意选拔设计师)

  小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵数用间隔数+1;还知道通过棵数与间距求总长度。

  九、回归生活,实际应用

  其实,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

  1、出示:在一条全长2千米的.街道两旁安装路灯(两端也要安装),每个50米安一座,一共要安装多少座路灯?

  问:这道题是不是应用植树问题的规律解决的?学生读题,练习反馈。(示意选拔设计师)

  2请同学们认真听,伸出右手,用手指记下钟敲打的次数,你发现什么?(次数比间隔数多1)

  出示:广场上的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间?

  学生讨论,汇报。(示意选拔设计师)

  十、全课总结

  1、师:同学们今天的表现真不错,运用发现的规律解决了不少问题,你们看,老师把大家的发现编成了一首儿歌,我们一起来读读吧!

  小树苗,栽一栽,两端都栽问题来,间隔数多1是棵数,棵数少1是间隔数,怎样求出间隔数?

  全长除以间隔长度。

  2、师:植树问题中的学问还有很多,在以后的学习中,我们还会学到两端不栽,一端栽,封闭图形中的植树问题,这些都需要同学们在以后的学习中开动脑筋、积极思考才能找到解决问题的好办法。