我要投稿 投诉建议

商不变的规律教学设计

时间:2024-01-16 14:16:46 教学设计 我要投稿

商不变的规律教学设计(实用)

  作为一名教师,有必要进行细致的教学设计准备工作,借助教学设计可以更好地组织教学活动。那么教学设计应该怎么写才合适呢?下面是小编整理的商不变的规律教学设计,欢迎大家分享。

商不变的规律教学设计(实用)

  教学目标:

  1.使学生理解和掌握商不变的规律。

  2.培养学生观察、比较、抽象、概括等能力。

  3.通过体会“变”与“不变”的数学现象,引导学生感受辩证唯物主义的思想。

  教学重点:理解商不变的规律。

  教学难点:归纳商不变规律的过程。

  教具准备:投影片、卡片。

  教学过程

  一、以疑激趣,导人新课口算(投影片出示)

  (1)24÷12=

  (2)24000÷12000=引导学生大胆猜测第(2)题的结果。教师因势利导,让学生思考它与第(1)题有什么关系,这节课就来研究这个问题。

  [评析:提出新颖的、有一定难度的、与新知联系密切的问题,让学生产生疑问、猜想,有效地激发学习动机。]

  二、探索发现规律

  1.观察算式,说出各部分的名称。24÷12=2被除数除数商2.观察算式,分类整理。学生口算下列各题(卡片):

  (24×2)÷(12×2)=

  (24÷4)÷(12÷4)=

  (24÷3)÷(12÷3)=

  (24×10)÷(12×10)=

  (24-8)÷(12-8)=

  (24÷6)÷(12÷6)=

  (24×2)÷(12÷2)=

  (24×3)÷(12×2)=

  (24×5)÷(12×5)=

  思考:与24÷12=2相比,上面哪些算题的商没有变化?再根据商的变化情况给这些题目分类。

  重点引导学生观察“商不变”的这组题目,再次提出问题:商不变,谁在变?(被除数、除数在变)你能根据被除数、除数的变化情况,再一次把这组题目进行分类吗?为什么这样分类?组织学生在小组讨论后,分成下面两类:

  第一类:(24×2)÷(12×2)=2

  (24×5)÷(12×5)=2

  (24×10)÷(12×10)=2

  第二类:(24÷3)÷(12÷3)=2

  (24÷4)÷(12÷4)=2

  (24÷6)÷(12÷6)=2

  教师陈述:被除数、除数都乘几,可以说被除数、除数都扩大了几倍;被除数、除数都除以几,可以说被除数、除数都缩小了几倍。板书:扩大缩小

  3.观察算式,发现规律

  (1)引导学生小组讨论:以24÷12=2为标准,分别观察上面两组题目的被除数、除数是怎样变化的?

  (2)学生讨论汇报:

  生1:我发现被除数、除数都扩大2倍,商没有变。追问:“都”是什么意思?

  生2:“都”的意思是被除数扩大2倍、除数也扩大2倍。

  引导:被除数、除数都扩大2倍,可以这样说:被除数、除数同时扩大2倍。

  生3:我发现被除数、除数同时扩大10倍,商不变。

  生4:我发现被除数、除数同时缩小3倍,商不变。

  组织学生用完整的话说出上面的规律,并与书上的规律比较。

  板书:在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变。

  (3)组织学生举例验证,并板书课题:“商不变规律”。

  (4)讨论:为什么(24一8)÷(12一8),(24×2)÷(12÷2),(24×3)÷(12×2)的商发生变化呢?在“同时”、“相同的倍数”下面画着重号,引起学生重视。

  [评析:有目的地放手对一些算式进行各层次的分类,引导学生观察、比较、分析、综合,从而概括得出商不变的规律,构思新颖、设计巧妙、步步深入、层层逼近,充分引导学生参与学习的过程,体现了教师主导作用和学生主体作用的紧密结合,体现了“讲一点而学很多”的教学策略。]

  三、反馈练习,深化认识

  1.以“故事”激发兴趣,加深理解。师生一起欣赏一段录像故事《猴子分桃》。花果山风景秀丽,气候宜人,那儿住着一群猴子。有一天,猴王让小猴分桃子。猴王说:“给你6个桃子,平均分给3只小猴子”。小猴子一听,连连摇头,心想每只小猴才分到2个桃子呀,“不行,太少了!太少了!”小猴子喊了起来。猴王缓了口气说:“那好吧,给你60个桃子平均分给30只猴子怎么样啊?”小猴子得寸进尺,挠了挠头试探地说:“大王请开恩,再多给点行不行呀?这时猴王一准桌子显出慷慨的样子:”那好吧,给你600个桃子去平均分给300只小猴子,你总该满意了吧!“小猴子笑了,猴王也笑了。

  引导:同学们也笑了,谁的笑是聪明的笑?为什么?

  引导学生思考:24000÷12000等于多少?根据是什么?

  2.口算。

  3.根据31200÷2600=12很快说出下列各题的结果。

  312÷26= 3120÷260= 15600÷1300= 312000÷26000= 156000÷13000=

  4.抢答。

  (1)在一道除法算式里,如果被除数除以5,除数也除以5,商( )。

  (2)在一道除法算式里,如果被除数乘10,要使商不变,除数( )。

  (3)在一道除法算式里,如果除数除以100,要使商不变,被除数( )。

  5.已知48÷12=4,判断下列各式是否正确。如果不对,怎样改一下就对了。

  (1)(48×5)÷(12×5)=4……( )

  (2)(48×3)÷(12×4)=4……( ).

  (3)(48÷4)÷(12÷4)=4……( )

  (4)(48÷6)÷(12×6)=4……( )

  (5)(48×3)÷(12÷3)=4……( )

  (6)(48÷4)÷(12÷4)=4……( )

  (7)(48×2)÷(12×2)=4……( )

  (8)(48÷2)÷(12÷2)=4……( )

  6.填空,看谁填得又对又快。

  (1)90÷30=(90×口)÷(30×2)

  (2)(40×5)÷(20○5)=2

  (3)(1200÷口)÷(40005)=3

  (4)(120004)÷(40004)=3

  (5)(12000口)÷(4000口)=3

  7.小游戏找朋友。

  方法:一位同学手执32÷8=4的卡片,说:“愿意和我做朋友的请到台上来。对手执(32×4)÷(8÷4)的卡片反问:”你怎样改动一下,我们就可以成为好朋友?还可以怎么改呢?“在做过一些类似的活动后小结:祝贺你们找到了这么多的好朋友,愿我们班成为一个团结协作的大集体。

  四、课堂总结提问:这节课我们一起研究了什么内容?你有什么收获?还有哪些疑问?

  总结:同学们通过认真观察、思考、比较,在被除数、除数的变化申看到了商不变的规律,这种观察和思考问题的方法会使我们变得越来越聪明。

  [评析:巩固练习的形式多样,不拘一格,效果明显,既”实“又”活“。猴王分桃的故事,寓意深而颇有情趣,给数学内容赋予了情感色彩,让学生始终在愉悦、和谐的气氛中获取新知。判断练习,让学生说错在哪里,怎样改一下就对了,不仅加深了对商不变规律的理解,而且有效地培养了学生独立思考、敢于争辩、善于表达的能力。

【商不变的规律教学设计】相关文章:

商的不变规律教学设计01-03

商不变的规律教学设计06-12

四年级上册商不变的规律教学设计08-25

《找规律》教学设计02-03

找规律教学设计04-27

(实用)《找规律》教学设计12-06

《找规律》课程教学设计11-22

积的变化规律教学设计03-29

小学数学商的变化规律公开课教学设计(通用9篇)11-16