我要投稿 投诉建议

容积和容积单位教学设计

时间:2024-07-26 14:04:57 林惜 教学设计 我要投稿

容积和容积单位教学设计(通用11篇)

  作为一无名无私奉献的教育工作者,通常需要准备好一份教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。一份好的教学设计是什么样子的呢?以下是小编为大家收集的容积和容积单位教学设计,希望能够帮助到大家。

容积和容积单位教学设计(通用11篇)

  容积和容积单位教学设计 1

  教学内容

  人教版第50页~51页的例题5以及教材第53页练习九的第1~3题

  教学目标

  知识与技能:使学生理解容积意义,掌握常用的容积单位以及它们之间的进率。掌握容积和体积的联系与区别,知道容积单位和体积单位之间的关系。感受1毫升的实际意义,和应用所学之事解决生活中的简单问题。

  过程与方法:培养学生的观察能力和解决问题的能力

  情感态度价值观:培养学生独立思考、严肃认真的学习态度。

  教学重点

  建立容积和容积单位观念,容积单位换算

  教具、学具准备

  长方体纸盒、木盒各一个,一些细沙;若干个容积为500ml的易拉罐,1dm3的正方体容器若干个,量杯、滴管若干个,一些水,例6的多媒体课件。

  教学过程

  一、复习导入

  1、什么叫物体的.体积?它常用的计量单位是什么?

  2、师:(用橡皮泥做两个体积相等的长方体模型,空心,一个壁厚些)同学们,怎样才能知道这两个长方体体积?

  生:可以先量出它们的长、宽、高各是多少,再算出它们的体积。

  生:(动手测量)计算

  师:(出示一堆细沙)请同学们再想一想,如果把这两个盒子都装满细沙,两个盒子里装的细沙会一样多吗?

  师:同学们,像刚才你们看到的那样,盒子所能容纳细沙的体积,就是盒子的容积。

  二、探求新知

  1、教学容积的概念。

  师:你认为还有什么物体也有容积呢?

  生1:水桶里盛满水,这些水的体积就是水桶的容积。

  生2:饮料瓶里装满饮料,饮料的体积就是饮料瓶的容积。

  生3:茶叶桶所能容纳茶叶的体积,就是茶叶桶的容积。

  (补充)仓库能容纳货物的体积,箱子里装书的体积,一个妈妈正往桶里装水,等。

  教师:瓶子、油筒、仓库所能容纳的物体的体积,通常叫做它们的容积,这节课我们就来研究容积和容积单位。(板书课题)

  2、认识容积单位。

  (1)因为物体的容积通过所容纳物体的体积表现出来的,因此容积的计量单位一般就用体积单位。如上面盒子的容积可以用什么单位?

  (2)计量液体的体积,如水、油等。通常容积单位升和毫升也可以写成L和ml。

  举例:护工把一瓶药水交给病人,嘱咐说:“每天吃2毫升。”。司机对加油站的工作人员说,“加20升汽油。”商店里货架上的可乐,外包装上标着500ml……

  (3)感知毫升和升

  师:1ml究竟有多少呢?请大家认真观察。

  (出示一个小量杯,请学生上台指出1ml所在的刻度。)

  师:请同学们猜一猜,如果用滴管来滴水,滴几滴水可能是1ml?

  (生猜测)

  师生验证。

  实际猜测药瓶容积。

  师:把这1毫升的水倒进1立方厘米的正方体容器里面,刚好到满。

  提问:这个这实验说明什么?(1ml=1cm3)

  提问:大家想一想1升是多少毫升?相互讨论。

  汇报:因为1升是1立方分米,1毫升是1立方厘米,而1立方分米=1000立方厘米,所以,1升就等于1000毫升。即1L=1000ml。

  (出示一个易拉罐)每个小组都有一个易拉罐,请先看一看,它的容积是多少毫升?然后根据活动内容分小组进行活动。

  (屏幕出现活动内容:易拉罐的容积有多少毫升?几个易拉罐的容积是1L?1L水大约可以倒满几杯?一杯水大约有多少毫升?然后再动手试一试,通过实验你发现了什么?)……

  师:请你们想一想,除了上面的易拉罐,哪些物品上也标有毫升或升?

  生1:牛奶盒子上标有毫升。

  师:不错,有一种牛奶盒子上就标着250ml。

  生2:我家的“凉拌醋”瓶子上标有500ml。

  生3:我家吃的“金龙鱼”油瓶上标有5L。

  ……

  师:请大家看屏幕,先认真想一想,再看怎么填。

  [屏幕出示:5L= ( )ml,500ml= ( )L,2.4L=( )ml=( )cm3,2750ml=( )L=( )dm3。]

  3、教学例5

  师:请大家认真想一想,长方体和正方体容器容积的计算方法是什么?

  教师讲解:容器容积的计算方法,跟体积的计算方法相同。但必须注意,计量的时候要从容器的里面量长、宽、高,才能更准确地算出它的容积是多少。

  (屏幕出示例5,学生读题。)

  ①让学生尝试解答。

  ②解答:5 4 2=40(dm3)

  40dm3=40L

  答:这个油箱可装汽油40L。

  讲评时要强调是从容器面量长、宽、高,并要注意,要把立方分米换算成长。汽油是液体,最用好“L”作单位。

  “做一做”

  三、巩固应用

  1、填空

  1 L=( )ML 450毫升=( )升 6.4升=( )毫升

  2、判断

  (1)一个游泳池的容积大约是20xx毫升。( )

  (2)一个杯子能装水1升,这个杯子的容积就是1升。( )

  (3)一个正方体的木箱,它的体积和容积一样大。( )

  3、完成教材第53页练习九的第1~3题

  四、全课总结

  师:谁能谈谈这节课的收获?(生回答略)

  容积和容积单位教学设计 2

  教学目标

  1、使学生知道容积的含义。

  2、认识常用的容积单位,了解容积单位和体积单位的关系。

  教学重点

  建立容积和容积单位观念,知道容积单位和体积单位的关系。

  教学难点

  理解容积的含义和升、毫升的实际大小。

  教学步骤

  一、铺垫孕伏。

  1、什么是体积?

  2、常用的体积单位有哪些?它们之间的进率是多少?

  3、这个长方体的体积是多少?是怎样计算的?

  二、探究新知。

  我们已经学习了体积和体积单位,今天我们继续学习一个新的知识:容积和容积单位。(板书课题)

  (一)建立容积概念。

  1、学生动手实验(每四人一组,每组一个有厚度的长方体盒,细沙一堆)

  实验题目:计算出长方体盒的体积。

  把长方体盒装满细沙,计算细沙的体积。

  2、学生汇报结果。

  长方体盒的体积:先从外面量出长方体盒的长。宽。高,再计算其体积。

  细沙的体积:细沙的体积就是长方体的体积,但要从长方体里面量长。宽。高,再计算其体积。

  教师追问:计算细沙的体积为什么要从长方体里面量长。宽。高?

  3、师生共同小结。

  教师指出:这个长方体盒所容纳细沙的体积,就是长方体盒的容积。我们看见过汽车上的油箱,油箱里装满汽油。这就是油箱的容积。长方体鱼缸里盛满水,它就是鱼缸的容积。

  师生归纳:容器所能容纳的物体的体积,就是它们的容积。(板书)

  4、比较物体体积和容积的相同和不同。

  相同点:体积和容积都是物体的体积,计算方法一样。

  不同点:体积要从容器外量长。宽。高;容积要从里面量长。宽。高。

  所有的物体都有体积;但只有里面是空的能够装东西的物体,才能计量它的容积。(出示长方体木块)

  (二)认识容积单位。

  1、教师指出:计量容积,一般就用体积单位。但是计量液体的体积,如药水,汽油等,常用容积单位升和毫升。(板书:升 毫升)

  2、出示量杯:这就是1升的量杯。

  出示量筒:这就是刻有毫升刻度的量筒。

  3、教师演示升和毫升之间的关系:

  ①认识量筒上1毫升的`刻度,找出100毫升的刻度。

  ②用量筒量100毫升的红色水倒入1升的量杯,一直到量杯满为止。

  板书:1升=1000毫升

  4、学生演示容积单位和体积单位间的关系:

  ①把1升的红色水倒人1立方分米的正方体盒里

  小结:1升=1立方分米

  ②把1毫升的红色水倒入1立方厘米的正方体盒里

  小结:1毫升=1立方厘米

  5、小结:容积单位有哪些?容积单位和体积单位之间有什么关系?

  6、反馈练习。

  3升=( )毫升 2700毫升=( )升

  2.57升=( )毫升 640毫升=( )升

  2.4升=( )毫升 3.5升=( )立方分米

  500毫升=( )升 760毫升=( )立方厘米

  (三)计算物体的容积。

  1、教学例1。

  一种汽车上的油箱,里面长8分米,宽5分米,高4分米。这个油箱可以装汽油多少升?

  8×5×4=160(立方分米)

  160立方分米=160升

  答:这个油箱可以装汽油160升。

  2、反馈练习。

  一个长方体水箱,从里面量长12分米,宽6分米,深5分米,这个水箱可装水多少毫升?

  12×6×5=360(立方分米)

  360立方分米=360000毫升

  答:这个水箱可以装水360000毫升。

  三、全课小结。

  这节课我们学习了哪些知识?容积和体积有什么不同点?计算容积应注意什么?

  四、随堂练习。

  1、填空。

  (1)( )叫做容积。

  (2)容积的计算方法跟( )的计算方法相同。但要从( )是长、宽、高。

  (3)6.09立方分米=( )升=( )毫升

  1750立方厘米=( )毫升=( )升

  435毫升=( )立方厘米=( )立方分米

  9.8升=( )立方分米=( )立方厘米

  2、判断。

  (1)冰箱的容积就是冰箱的体积。( )

  (2)一个薄塑料长

  方体(厚度不计),它的体积就是容积。( )

  (3) 立方分米( )

  3、选择。

  (1)计量墨水瓶的容积用( )作单位恰当。

  ①升 ②毫升

  (2)3毫升等于( )立方分米。

  ①0.3 ②0.3 ③0.003

  4、一种背负式喷雾器,药液箱发容积是14升。如果每分钟喷出药液700毫升,喷完一箱药液需用多少分钟?

  五、布置作业。

  1、手扶拖拉机的油箱,从里面量长3分米,宽2.3分米,深1.6分米。这个油箱可以装柴油多少升?每升柴油重按0.82千克计算,装的柴油重多少千克?(得数保留整数)

  2、把调查的实际数字填在括号里。

  一小瓶红药水是( )毫升。

  一瓶墨水是( )毫升

  汽车(或拖拉机)油箱的容积是( )升

  六、板书设计

  容积和容积单位

  容器所容纳物体的体积,就叫做它们的容积。

  1升=1000毫升 1升=1立方分米 1毫升=1立方厘米

  例6。一种汽车上的油箱,里面长8分米,宽5分米,高4分米。这个油箱可以装汽油多少升?

  8×5×4=160 (立方分米) 160立方分米=160升

  答:这台油箱可以装汽油160升。

  容积和容积单位教学设计 3

  教学目的:

  1、让学生在具体情境中感受并认识容积,联系实际初步形成1升、1毫升的容量观念,通过实验操作体会1升、1毫升有多少。

  2、知道容积和体积的联系与区别,知道容积单位和体积单位之间关系,掌握容积单位之间的进率。

  3、让学生在课前课后的实践活动中,体会数学与生活的密切联系,增强学习数学的兴趣和学好数学的信心,获得积极的数学学习情感和解决实际问题的能力。

  教具准备:

  多媒体课件,一个1升的量杯,一个标有毫升刻度的量筒, 4盒250毫升的牛奶盒,1盒1升的牛奶盒,一个1立方分米的正方体盒子和一袋沙。

  学情分析:

  本课是在学生已经认识了体积以及体积单位的进率的基础上,继续认识容积以及计量液体的体积常用的容积单位升和毫升,认识1升=1000毫升,知道容积和体积的联系与区别,知道容积单位和体积单位之间关系。五年级的学生有了一定的收集信息能力,有意识让学生收集饮料瓶、饮料盒,并先看一看上面的信息。

  教学过程:

  一、复习导入

  1、什么叫体积?

  2、常用的体积单位有哪些?它们之间的关系呢?

  3、怎样计算长方体和正方体的体积?公式呢?

  4、导入课题

  师:展示一盒1升装的牛奶。提问:你会计算这个盒子的体积吗?你知道里面装的是什么?你会计算盒里面牛奶的体积吗?

  师:今天,我们就来学习物体的容积和容积单位。

  二、观察实验——探索新知

  1、感受容积意义

  (1)情境出示集装箱,演示往里面装货物的过程。

  交流:生活中有哪些物体能装些什么?谁来说一说?

  生:碗能装饭。

  生:瓶能装水、油。

  生:箱子、冰箱。

  师:同学们,我们把容纳物体的这些箱子、油桶、仓库等一般称为容器。那么什么叫做物体的容积?你能用自己的话说一说吗?

  这些容器所能容纳物体的体积,通常叫做它们的容积。生活中也有称为容量。

  (2)在量杯里倒入一部分的沙,这部分沙的体积是不是这个量杯的容积?

  把沙倒入量杯并且使之高出量杯口,这些沙的体积是不是这个量杯的容积呢?

  那多少沙子的.体积才是这个量杯的容积呢?

  [设计意图:以学生的事实知识与生活经验为基础的教学原则,请学生课前进行必要的观察、感知容器、容积,在课堂上进一步的引导,感悟,从形象思维上升到抽象思维,认识容积的意义。]

  2、探索容积单位

  常用的容积单位有哪些呢?

  一个长方体的仓库里存放着水泥,从里面量仓库长10米,宽8米,高6米,能容纳多少水泥?

  学生讨论后计算汇报:

  10×8×6=486(立方米)。

  仓库的容积等同于一个长方体的体积,但要从仓库里面量长、宽、高,计算长方体的体积用体积单位,计算仓库的容积也就用体积单位。

  计算容积一般用体积单位。容积的计算方法,跟体积的计算方法相同。

  在计量液体体积的时候,就要用到另一种容积单位:升和毫升。

  升和毫升就是我们这节课要认识的容积单位。自学课本,再观察老师桌面上摆的教具,小组交流说说你的认识。

  生:我们在量杯和量筒上,能看到刻有升和毫升的刻度,1升=1000毫升。

  3、验证容积单位和体积单位的联系

  验证1升=1立方分米:展示装了1立方分米砂的正方体盒,把砂倒入1升的量杯,得出1升的量杯容积是1立方分米。从而得出1升=1立方分米。

  让学生根据立方分米和立方厘米以及升和毫升之间的进率关系,交流推导出1毫升=1立方厘米。

  4、生活应用,感悟新知。

  师:重现一盒1升装的牛奶。现在,你会计算这个盒子的体积吗?你会计算盒里面牛奶的体积吗?

  师:这个盒的容积就是这个盒的体积,这句话对吗?为什么?

  盒子的体积指什么?(盒子所占空间的大小。)

  盒子的容积指什么?(盒子所能容纳物体的大小,这里也就是装满了的牛奶的体积。)

  小结:一般说来,物体的容积比体积小。

  巩固新知

  判断下列说法是否正确,对的在()内打√,错的打x。

  ①计算容积或体积都是从容器外面量长、宽、高。

  ②冰箱的容积就是冰箱的体积。

  ③游泳池注满水,水的体积就是游泳池的容积。

  容积和容积单位教学设计 4

  学情分析:

  容积和容积单位的教学是在体积和体积单位之后,学生对体积有了一定的认识,体积单位已掌握,并很明白其大小关系,以及它们之间的进率,能用其解决问题。容积的概念较抽象,理解是重点,教学中应让学生多说。从表象抽象出概念,在教学容积单位以及它们的关系时,让学生多观察感知。因此本节设计以学生观察、动手实践为主,感受升和毫升,让学生在动手操作中学到知识。

  知识与技能:

  1、使学生认识常用的容积单位升和毫升。

  2、掌握升和毫升间的进率以及它们和体积单位间的关系。

  3、理解容积和体积的概念既有区别又有联系。

  过程与方法:

  1、经历容积概念的探究与理解过程。

  2、通过比较明确容积单位与体积单位的区别与联系。

  情感态度价值观:

  1、培养学生的观察意识和探究意识。

  2、培养小组合作意识,体验合作乐趣,体验数学与生活的密切联系。

  3、渗透事物之间是相互联系的辩证唯物主义思想。

  教学重点:

  建立容积概念,掌握容积单位间的进率。

  教学难点:

  理解容积与体积的联系和区别。

  教法与学法:

  教法:引导观察表述,实际操作演示。

  学法:观察思考,动手操作,小组合作交流。

  教学准备:

  教师:1L量杯,一次性纸杯24个(每组3个),1cm3的自制的小正方体容器,1dm3的自制的可盛水的纸盒,2个500ml的饮料瓶,10ml钙铁锌口服液,习题纸,小黑板(复习题),5ml注射器1支

  学生:贴有商标的各种饮料瓶,药水瓶,家用油壶,牛奶袋,果汁盒等。

  教学过程:

  一、复习导入:

  1、什么叫做物体的体积?

  2、常用体积单位有哪些?你知道他们之间的关系吗?

  填一填:

  2.04m3=( )dm3 ( )dm3=12000cm3

  1400cm3=( )dm3 1.2m3=( )dm3=( )cm3

  (设计意图:复习是为了为容积和容积单位的学习做铺垫,为单位换算提供方法)

  大家练习做得很好,相信大家在掌握旧知识的基础上,今天的新知识会掌握得更好。今天我们来学习容积和容积单位。(板书课题:容积和容积单位)

  二、理解容积的概念

  1、观察发现,引出容积。

  出示长方体纸盒:什么是这个长方体盒子的体积?打开盒子,你发现了什么?(空的')可以放什么?(学生说一说)我们把这个盒子所能容纳物体的体积,叫做盒子的容积。

  出示墨水瓶:指出墨水瓶所能容纳物体的体积叫做墨水瓶的容积。

  (设计意图:初步感知体积与容积的区别和联系)

  2、理解容积的含义。

  利用你准备的学具来说说,什么是它们的容积。

  3、什么是容积呢?

  像粉笔盒、墨水瓶所能容纳物体的体积叫做它们的容积。

  (设计意图:引导学生充分交流,引导学生由表象抽象出概念,这样学生对概念的理解就加深了。)

  4、容积和体积的区别与联系。

  你能说说容积和体积有什么区别和联系吗?

  小组讨论,交流汇报。

  区别:体积求的是物体占空间的大小。(外部)

  容积求的是物体所能容纳空间的大小。(内部)

  (设计意图:让学生在交流中体会体积和容积的区别与联系)

  三、认识容积单位以及与体积单位之间的关系

  1、明确计量容积使用体积单位。

  常用的体积单位有:立方厘米、立方分米、立方米

  2、认识升和毫升。

  a、观察学具,看看你所带的物品上所标示的净含量,你发现了什么?小组交流。

  汇报:发现它们的单位都是(L、 ml),而且这些东西里边装的是液体。

  (设计意图:引导学生从生活中发现数学,认识容积单位在生活中的应用。)

  b、在计量液体的体积时,如水、油等,常用容积单位升(L)和毫升(ml)并板书。当遇到液体体积很大时,例如:计量蓄水池里的水的体积,就用立方米。

  c、指名说说你所带物品的容积是多少?

  3、探究L 、ml与体积单位的关系

  你们想知道L和ml与体积单位间的关系吗?请大家认真观察。

  (1)介绍量杯,观察1L的刻度线,并往里边倒入1L水。感受1L的大小。(由于纸盒自制,要盛水需套塑料袋,倒水时需要边倒边解释,由于水的张力使塑料袋紧贴纸盒四壁。)

  (2)出示装有1ml红墨水的注射器,观察并感受1ml的大小。

  (3)演示操作:

  将1升水倒入1立方分米的正方体盒中,(由于纸盒自制,要盛水需套塑料袋,倒水时需要边倒边解释,由于水的张力使塑料袋紧贴纸盒四壁。)你发现了什么?

  将1毫升水挤入1立方厘米的正方体盒中,你发现了什么?

  通过你的发现,你得出了什么结论?

  1升=1立方分米1毫升=1立方厘米

  (设计意图:实际操作演示让学生看得更直观,不仅感受了1升和1毫升的大小,并使得升和毫升与体积单位间的关系,化抽象为直观形象,在理解的基础上加深记忆。)

  4、研究L与ml的关系

  演示:将两瓶500ml的水倒入量杯中,观察量杯的刻度你发现了什么?得出了什么结论?

  1L=1000 ml

  (设计意图:通过观察,理解它们之间的关系)

  5、估算1L的大小

  (1)小组活动:将一瓶矿泉水倒在纸杯中,看看可以倒几杯。估计一下一杯水大约有多少毫升,几杯水大约是1升。

  小组活动,交流汇报。

  (2)倒入量杯,验证估算结果。

  (设计意图:培养学生的估算能力,让学生估算大约几杯水是1L,之后倒入量杯证实学生的估计。再次真实地感受1L的大小。)

  四、拓展延伸

  说一说,你在生活中见到过哪些物品上标有升和毫升?

  (设计意图:联系生活实际,让数学回归生活,激发学生学习的兴趣,培养学生细心观察的良好习惯。)

  五、练习巩固

  1、完成答题

  纸上练习一。

  填一填:

  一瓶钢笔水的容积是60( )

  摩托车油箱的容积是8( )

  一瓶矿泉水的容积是600( )

  运货集装箱的容积约是40( )

  微波炉的容积是45( )

  集体订正、纠错。

  2、完成答题纸上练习二。

  化一化:

  4 L =( )ml 4800 ml =( )L

  2.4 L =( )ml 500 ml =( )L

  785 ml=( )cm3=( )dm3 7.5 L=( )dm3=( )cm3

  8.04 dm3=( )L =( )ml 2750 cm3=( )ml=( )L

  你能说说是怎么换算的吗?

  六、课堂小结

  通过今天的学习,你有哪些收获呢?

  学生交流学习所得。

  七、板书设计:

  容积像墨水瓶、粉笔盒、教室等所能容纳物体的体积,叫做它们的容积。

  和一般用体积单位:立方厘米(cm3)、立方分米(dm3)、立方米(m3)

  容积单位计量液体:升(L)、毫升(ml)、立方米(m3)

  它们间的关系:1L= 1dm3

  1 ml=1 cm3

  1L=1000 ml

  容积和容积单位教学设计 5

  教学目标 :

  1、使学生认识常用的容积单位,理解容积的含义。

  2、使学生掌握1 升=1000毫升、1 升=1立方分米、1毫升= l立方厘米。

  3、能正确运用容积单位,能正确计量物体的容积。 教学

  教学重点:

  建立容积和容积单位观念,掌握1 升=1000毫升、1升= 1立方分米、l毫升= 1立方厘米。

  教学难点:

  理解容积的含义和升、毫升的实际大小。

  课前准备:

  量杯、注射器 教法学法 实践法、讨论法

  教学过程:

  一、 第一次备课 动态修改激趣导入

  师:同学们,在我们的生活中经常会见到这些物体,(药瓶、汽油桶、垃圾桶、茶叶罐、仓库)。你们知道,它们都是干什么用的吗?

  师:对了,它们都是用来盛放物品的。在我们的数学知识当中,把这种能容纳别的物品的物体,就叫做容器。

  师: 生活中还有哪些物体是容器呢?(学生举一些例子,如:注射器、包装箱等)

  知 (一)学习容积的概念

  师:刚才我们大家所说的容器,它们都有一个共同点,是什么?(能容纳别的物品)。我们就把,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。

  (二)容积与体积的区别与联系

  1、大屏幕出示水池图片:问:这是一个水池,要想计算这个水池的`体积,需要知道哪些条件?(生:水池的长、宽、高)怎样计算?

  师:因此,有人说:这个水池的容积和它的体积一样,也是280立方分米。你同意吗?

  2、那么,物体的容积和体积有什么相同点和不同点呢?(相同点:计算方法一样。不同点:体积从外面量,容积从里面量。)

  3、那是不是所有的物体都有容积的呢?你可以举例说明。(只有容器才有容积,实心的物体等没有容积。)

  (三)认识容积单位

  计量容积,一般就用体积单位。(板书:立方米、立方分米、立方厘米)但是计量液体的体积,如水、油等,常用容积单位升和毫升。(板书:升 毫升)用字母表示就是L、mL(板书:L、mL)

  容积和容积单位教学设计 6

  设计说明

  在本节教学中,为了突破教学的重、难点,给学生创设良好的学习情境,让学生运用已有的生活经验,通过观察、实验、归纳和应用等数学活动,进一步发展空间观念,具体设计说明如下:

  1.尊重学生,相信他们能行。

  每个学生都有自己的生活背景,家庭环境和一定的文化感受,从而导致不同的学生有不同的知识基础、思维方式和解决问题的策略。教师应充分的相信学生通过自己的努力能够完成所学的内容。学生已经获得了大量的知识基础和生活经验,所以本设计充分相信学生,把大量的时间留给学生。对容积概念的理解,体会容积和体积之间的关系,推导容积单位之间的关系等,都引导学生自己去概括总结。教师真正起到组织者和引导者的作用。

  2.将生活中的问题与数学学习有机地结合。

  联系生活实际展开教学,能让学生感受到学习数学的必要性,也能提高学生学习数学的兴趣。本设计利用课件让学生感受生活中的容器,如集装箱、电冰箱、水杯、包装盒、油桶等,并结合学生课前准备的一些矿泉水瓶、饮料盒等,说一说这些物品有什么特点,进而引出容积的含义。以问题的形式,将生活中的知识与数学学习有机结合,让学生感受到学习数学的必要性和趣味性,这样不但能加深学生对容积概念的`认识,还能使学生进一步理解物体的体积和容积的区别与联系。然后通过课件展示探究过程,加深学生对容积单位的理解。

  课前准备

  教师准备PPT课件

  学生准备矿泉水瓶 饮料盒等

  教学过程

  复习旧知,导入新课

  师:同学们,之前我们学习了体积和体积单位,谁来说一说什么是体积?常用的体积单位有哪些?它们之间的进率是多少?正方体和长方体体积的计算公式是什么?

  生1:物体所占空间的大小叫做物体的体积。

  生2:常用的体积单位有立方厘米、立方分米、立方米,每相邻两个体积单位之间的进率是1000。

  生3:V正=a3 V长=abh

  师:同学们对前面学习的知识掌握得非常好,相信对今天学习的新知识会掌握得更好。今天我们来学习容积和容积单位。(板书课题:容积和容积单位)

  设计意图:从学生已有的知识经验开始教学,有利于引导学生对新旧知识间的联系的理解,激发学生的学习兴趣。

  联系生活,探究新知

  1.容积的含义。

  (1)利用课件让学生感受生活中的容器,如集装箱、电冰箱、水杯、包装盒、油桶等。

  结合老师让学生课前准备的一些矿泉水瓶、饮料盒等,说一说这些物品有什么特点。

  (都能够容纳物体)

  (2)说一说生活中你还见过哪些物品能够容纳物体。

  师:能容纳其他物体的物品,称为容器。

  师:大家观察矿泉水瓶、饮料盒的包装盒上有许多信息,你知道它们表示什么意思吗?

  2.比较容积和体积。

  (1)自学教材38页容积和容积单位,然后说一说你从教材中学到了什么。

  ①容器所能容纳物体的体积,通常叫做它的容积。

  ②计量容积一般用体积单位,但是计量液体的体积,如水、汽油等,常用容积单位升和毫升。

  ③长方体容器容积的计算方法和体积的计算方法相同,一般从容器的里面测量长、宽、高。

  (2)谁来举例说一说什么是容积呢?

  (3)质疑:是不是所有的物体都有容积呢?

  明确:所有的物体都有体积,但只有里面是空的、能够装东西的物体才有容积,也就是说物体一定都有体积,但不一定都有容积。

  (4)测量容积。

  小组内讨论:怎样测量一个长方体空盒子的容积。

  方法一 把盒子装满水,再把水倒入量筒里,直接可以测量出盒子的容积。

  方法二 从里面测量长、宽、高分别是多少。

  讨论:为什么要从里面测量长、宽、高?

  明确:容积是物体内部所能容纳物体的那一部分空间的大小,体积是物体外部所占空间的大小。

  师:从这句话中,我们知道物体的体积和容积有哪些不同点?

  (体积要从容器外面测量数据;容积要从容器里面测量数据)

  3.容积单位。

  (1)计量容积时一般用体积单位,但是计量液体的体积,如药水、汽油等,常用容积单位升和毫升。

  (2)单位间的进率。

  板书:1 L=1 dm3

  1 mL=1 cm3

  1 L=1000 mL

  设计意图:通过课件展示和探究过程加深学生对容积单位的理解。

  容积和容积单位教学设计 7

  教学目标:

  知识与技能

  1、理解容积的含义,体会容积和体积的关系。

  2、认识常用的容积单位,感知建立升和毫升的容积观念。

  3、掌握容积的计算方法,能进行单位之间的换算。

  过程与方法

  1、经历容积概念的探究与理解过程。

  2、通过比较,明确容积单位与体积单位的区别和联系。

  情感态度与价值观

  1、培养学生的观察能力和探究意识。在探索未知的过程中体验学习数学的乐趣,培养学生积极、主动地参与学习和探究活动的态度。

  2、渗透“事物之间是相互联系的”这一辩证唯物主义的思想。

  教学重点:

  建立容积的观念,掌握容积单位之间的进率。

  教学难点:

  理解容积与体积的联系与区别。

  教学过程:

  一、创故事情景

  今天老师带来一位神通广大、变化多端的孙悟空,它可厉害呢,有72变。

  二、复习导入

  第一变 回忆

  (1) 什么叫体积?

  (2) 体积单位有哪些?它们之间的进率是什么?

  (3) 体积的计算方法是什么?

  三、探究新知

  第二变 思考

  1、教学容积概念。

  运用你的预习知识,把魔方、电饭褒、雪梨、汽车的油箱这四种物品分成两类,你是怎样分的?说明理由。

  生:空心的 能装东西的

  师:你在生活中见过哪些空心的,能装东西的物品?

  生:举实例 (饭盒、矿泉水瓶、奶牛盒……)

  师:你想知道这些容器里面能装多少东西吗?

  这就是我们今天学习的内容:容积和容积单位 (板书)

  什么叫容积?从中国文字的字面解释 容:容纳 积:体积。合起来:像电饭褒、汽车的油箱等所能容纳物体的体积,叫它的容积。

  练习

  根据容积定义判断:

  (1)电饭褒的体积就是它的容积( )

  计量容积一般可以用体积单位( )

  (2)数学书P53页第一题。

  突出:体积 (外面量数据) 容积(里面量数据)板书

  2、教学容积单位:升和毫升

  师:请同学们再仔细观察你带来的物品,看看能否找到有关容积的数学信息?

  生:500毫升 18.9升

  师:升、毫升就是我们今天要学习的容积单位。板书

  生:净含量:250毫升 1升……

  师:表示什么意思?净含量:250毫升表示瓶子里水的体积是250毫升。而不是瓶子的容积是250毫升,也不是瓶子的体积是250毫升

  (选1升和1立方分米来对比,为实验作铺垫)

  回应:计量容积,一般用体积单位,什么时候用容积单位?计量液体的体积,用容积单位 板书

  练习:(1)四人小组互相说说各自收集物品的容积。

  (2)老师也收集了一些物品,考考大家的眼力。出示:数学书P53第三题

  3、教学容积单位与体积单位之间的换算。

  师:谁知道这两个容积单位之间的进率是多少?生:1000。

  师:你是怎么知道的?

  生:书上写的。

  师:你对这个关系不表示怀疑吗?真理总是通过实践来证明的',想验证一下,你有方法吗?

  由学生做实验:1升的冰红茶、500毫升的量杯、1立方分米的容器。

  师:从实验中你证实了1升=1000毫升,还得出什么结论?

  生:1升=1立方分米。

  如此类推:你还能推理出什么关系?

  生:1毫升=1立方厘米 1立方米=1000升

  练习:数学书P52做一做第一题和P53第四题

  第三变:计算

  4、教学容积的计算

  出示例5,一种小汽车的油箱,里面长5d m ,宽4d m ,高2d m 。这个油箱可以装汽油多少升?

  指一名学生读题。(突出容积的计算方法与体积计算方法相同)

  (1)分析理解题意:求“这个油箱可以装汽油多少升?”就是求这个油箱的什么?必须知道什么条件?是否具备?怎样算?结果是什么?怎么办?(为什么要改单位?求容积)

  (2)学生做完后集体订正。

  第四变:运用

  四、应用知识,解决问题

  咳两声,讲了一节课,老师口干了,很想喝水。

  师:谁知道一个正常人每天要喝多少水才合适才健康?

  生:1500毫升、1000毫升……

  师:你是从哪里知道的?

  生:书里介绍的。

  师:我们一起来看看数学书P52了解更多的课外知识。同时渗透节约用水的教育。

  小组活动:

  (要求组长分工要明确:不同的人负责倒水、记录、计算以及汇报,倒水要注意别溢出来,注意纪律。)

  (1)将一瓶约( )毫升的矿泉水倒在纸杯中,看看可以倒满几杯。

  (2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1 L,正常人一天喝多少杯才健康?

  全班分享

  五、总结质疑

  今天学习了容积和容积单位,你有什么收获?

  六、拓展延伸,发展思维

  作业:

  1 、到商店、超市调查标有容积单位的商品及净含量,编一道有道容积计算的题目并解答。

  2、调查一大桶约18升的矿泉水和一瓶500毫升矿泉水的单价,算一算,一大桶矿泉水相当于几瓶这样的小瓶矿泉水,买哪种比较合算?

  教学反思:通过这节课,我体会到教师应在尊重教材的基础上,根据学生的实际有目的地对教材内容进行改编和加工,使教材变得生动,更贴近学生实际。例如课本上是在认识容积和容积单位后学习容积的计算的,而在后面的设计中我让学生先观察自己手中的盒子(自备的墨水盒、饼干盒等)的空间形状,再动手操作量出盒子里面的长、宽、高,并计算出盒子的容积,这就变成了学生身边的实际问题,有利于激发学生解决这些问题的欲望。在解决实际问题的过程中,学生应用知识解决问题的能力得到了提高,也让学生体会到“数学是解决实际问题的一种方法。”

  教学反思:

  在练习题目中,涉及到新课的内容可以再次点出,再次让学生加深印象,这样就节约了时间。在常规课堂中,切忌概念的讲授花费很多时间,概念讲得越多,学生可能越糊涂。其实学生头脑里已经对新概念有所认识和体会,我们只需要把新概念与旧概念的区别和联系讲清楚就行。

  容积和容积单位教学设计 8

  目标

  ①使学生认识常用的容积单位:升、毫升。

  ②掌握升与毫升间的进率以及它们和体积单位的关系。

  ③理解容积和体积的概念既有联系又有区别。

  教学及训练

  重点

  容积和体积概念的联系与区别。

  仪器

  教具

  容纳1升液体的量杯和1000毫升液体的.量筒各一个。一个长20厘米、宽18厘米、高10厘米的长方体纸盒和木盒各一个。

  教 学内容和过程

  教学札记

  一、创设情境

  1、填空。

  (1)叫做物体的体积。

  (2)常用的体积单位有,相邻的两个体积单位间的进率是。

  2、一个长方体纸盒,它的长是2分米,宽是1.8分米,高1分米,它的体积是多少?

  二、探索研究

  1、教学容积的概念。

  (1)老师将长方体纸盒的盖子打开,问:盒内是空的,可以装什么?

  师:我们把这个纸盒所能容纳物体的体积,通常叫做它的容积,如:金鱼缸,里面可以放满水,在这里水的体积就是鱼缸的容积。

  (2)学生举例。

  ①谁能举例说一说什么叫做容积?

  ②从大家举的例子看,只有里面是空的、能够装东西的物体,它才有什么?如果一个长、正方体铁块,它们有容积吗?(板书:容积)

  (3)容积的计算方法。

  师:容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。

  师:这是为什么?(出示一个木盒)

  2、教学容积单位(板书课题)

  (1)翻开书第28页,让学生看第三自然段。

  板书:升毫升

  (2)出示量杯和量筒,倒入1升的水进行演示,让学生得出:

  1升=1000毫升。

  (3)容积单位与体积单位的关系。

  1升=1立方分米1毫升=1立方厘米

  3、应用。

  出示例4,指一名学生读题。

  (1)分析理解题意:求“这个油箱可以装汽油多少升?”就是求这个油箱的什么?必须知道什么条件?是否具备?怎样算?结果是什么?怎么办?

  (2)学生做完后集体订正。

  6×4×3=72(立方分米)

  72立方分米=72升

  三、巩固练习

  1、第28页的“练一练”中的第1题、第2题;

  2、练习五的第5、6、7题。

  四、课堂小结

  学生小结今天学习的内容。

  五、思考练习

  做练习五的第8、9、10题。

  容积和容积单位

  1、什么是容积?

  2、哪些物体有容积?

  3、怎样计算容积?

  容积单位:

  1升=1立方分米

  1毫升=1立方厘米

  容积和容积单位教学设计 9

  教学目标

  1、使学生理解容积的意义,掌握容积的计算方法,并能正确地计算物体的容积。

  2、使学生认识常用的容积单位升和毫升,掌握单位之间的进率,明确容积和体积的联系与区别。

  3、使学生在探索未知、研讨成果的过成中品味学习的乐趣,培养学生积极、主动探究问题的学习。

  重难点:

  建立容积和容积单位的观念是重点;理解容积的意义、感知升与毫升的实际大小是难点。

  教学过程

  一、认识容积、引起兴趣

  (一)复习体积

  1、师:我们已经学习了体积,谁愿意说说什么是物体的体积?(生:物体所占空间的大小叫做物体的体积)

  2、老师拿出一个长方体塑料盒(每个小组一个)说:“谁能说说这个长方体的体积指的是哪?(生:用手比一比)师:这个长方体塑料盒的长是15厘米、宽是10厘米、高是5厘米,你能计算出它的体积吗?”(由学生计算并说明方法)

  (二)教学容积的概念。

  (1)老师将长方体纸盒的盖子打开,问:盒内是空的,可以装什么?

  师:我们把这个纸盒所能容纳物体的体积,通常叫做它的容积,如:金鱼缸,里面可以放满水,在这里水的体积就是鱼缸的容积。

  (2)学生举例。

  ①谁能举例说一说什么叫做容积?

  ②从大家举的例子看,只有里面是空的'、能够装东西的物体,它才有什么?如果一个长、正方体铁块,它们有容积吗?(板书:容积)

  (3)容积的计算方法。

  师:容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。

  师:这是为什么?(出示一个木盒)

  (三)比较容积与体积

  1、老师指着长方体塑料盒说:“刚才我们算出这个长方体塑料盒体积是750立方厘米,我说它能容纳750立方厘米的东西,你们同意吗?

  2、老师往长方体塑料盒里倒入半盒水,师说:“我认为盒里水的

  体积就是这个长方体塑料盒的容积,你们同意吗?

  二、探究计算容积的方法

  教学过程

  备 注

  1、你们还想了解有关容积的哪些知识?

  2、怎样计算容积呢?师拿着刚才那个长方体塑料盒说:“请每个小组拿出这个盒子,我特别想知道这个盒子的容积,你们能帮我想办法计算出这个盒子的容积吗?请同学们先想一想,然后把你的好主意告诉给组里的同学。(独立思考后小组交流)

  3、集体交流(演示操作)

  4、说说怎样求物体的容积?与求体积一样吗?为什么?(计算方法相同、容积的长、宽、高从里面量,体积从外面量)

  三、动手操作了解容积单位

  1、计算容积就要用到单位,你们知道那些容积单位?怎么知道的?

  2、关于容积单位书上有较详细的介绍,请同学们自学23页,我们为每个小组准备了量杯等学具,同学们可以在学习中使用。

  3、汇报(生:学会什么?还有什么不懂的问题?)学生边汇报老师边板书。

  4、根据学生提出的问题集体探讨:

  (1)1升和1毫升的实际多少和它们之间的关系

  a、谁能告诉同学们1升或1毫升的水有多少?(往1升的量杯里倒入水,就知道1升的多少)

  b、请各组量出1升的水,看一看、掂一掂并想象2升、3升的水有多少。

  c、毫升方法同上

  d、刚才有同学问为什么1升=1000毫升,谁能解答这个问题?(实验证明)

  e、出示事物:饮料包装盒让学生估计能容纳多少饮料?

  (2)探讨1升、1毫升与1立方分米、1立方厘米之间的关系

  谁能证明1升=1立方分米:1毫升=1立方厘米

  5、练习:单位换算

  四、运用知识解决问题

  计算油箱的容积

  例5:一个长方体油箱,里面长6分米,宽5分米,高4分米。这个油箱可以装汽油多少升?

  (1)学生尝试练习

  (2)小组讨论,探索解题思路

  (3)反馈

  2、试一试:一个立方体水箱,从里面量高0.8米,这个水箱能装多少升水?

  五、巩固提高

  1、练一练(1)在括号里填上适当的数。

  2、练一练(2)把调查的结果填在括号中。

  3、练一练的3、4、5、6

  容积和容积单位教学设计 10

  教学目标

  1.知道容积的含义,认识容积单位,掌握容积的计算方法,能进行单位之间的换算。

  2.在动手操作、实际测量中,理解容积与体积的联系和区别,能运用所学知识解决一些简单的实际问题。

  3.在探索未知的过程中体验学习的乐趣,培养学生积极、主动地参与学习和探究活动的态度。

  教学过程

  一、创设情境,引入容积

  1.自主分类,初步感知。

  出示:魔方、木块、油桶、鱼缸、水杯、字典、文具盒、长方体塑料盒。

  谈话:请同学们看屏幕,你能把这些物品分成两类吗?和小组里的同学说一说。

  学生可能有不同的分法,反馈时,着重让学生说一说把“油桶、鱼缸、文具盒、长方体塑料盒”分为一类,其他物品分为一类是怎样想的。

  2.观察比较,深化认识。

  谈话:每个小组的桌上都有两个大小不同的水杯。请小组内的同学合作,在两个水杯里分别倒满水,比较一下哪个水杯里能盛的水比较多。

  学生活动后,组织交流并归纳:水杯能盛水的多少就是水杯的容积。

  提问:你能说一说油桶的容积指的是什么吗?鱼缸、文具盒、长方体塑料盒呢?

  提问:你能用一句话说说什么叫做容积吗?

  根据学生回答,揭示容积的概念。

  【评析:容积的概念较为抽象,学生在理解上有一定的难度,教师设计的这一教学环节别具特色。首先,通过分类使学生认识到有些物体能容纳一些东西,有些不能;接着,通过实验引导学生归纳水杯能容纳水的体积就是水杯的容积,并类推出油桶、鱼缸等容器的容积的含义。在此基础上,引导学生理解容积的概念显得水到渠成。】

  二、动手实践,自主探索

  1.探索容积的计算方法。

  提问:同学们已经认识了容积,你们还想了解容积的哪些知识?

  学生可能会提出容积的计算、容积单位、容积和体积有什么联系与区别等问题。

  谈话:怎样计算容积呢?请每个小组拿出桌上的长方体塑料盒,先仔细观察,想一想怎样才能算出这个长方体塑料盒的容积,然后把你的想法告诉小组里的同学。

  交流并归纳:容积的计算方法与体积相同,但要从容器的里面量出长、宽、高。

  追问:为什么要从里面量长、宽、高?

  引导学生交流:塑料盒是有厚度的,从外面量,算出的是塑料盒的体积;从里面量,算出的才是塑料盒的容积。

  【评析:教师充分相信学生的能力,给学生留有足够的时间和空间,放手让学生去探索容积的计算方法,并使学生在活动中逐步体会容积和体积之间的联系与区别。】

  2.认识容积单位。

  (1)谈话:请同学们自学课本第28页第2、3小节的内容,说一说你知道了什么?还想进一步研究哪些问题?

  学生可能提出“1升和1毫升各有多少?为什么1升= 1立方分米”等问题。

  根据学生的'回答,板书:1升=1000毫升。

  (2)谈话:1升和1毫升的水有多少呢?先用量筒量出1升的水,再把1升的水倒入纸杯里,看一看1升的水大约有多少杯?

  学生活动后,组织交流,并引导学生用一句话描述1升的水大约有多少。

  教师拿出一个10毫升的试管,谈话:这是一个10毫升的试管,你能用它倒出1毫升的水吗?

  学生活动后,引导学生用一句话描述1毫升的水大约有多少。

  (3)谈话:我们已经知道1升和1毫升的水大约有多少。你能通过实验说明1升= 1000毫升吗?先在小组里讨论可以怎样做,再按自己的方法试一试。

  学生活动,教师参与学生的活动,并进行适当的指导。

  反馈:哪个小组愿意把你们的方法介绍给大家?可以一边说,一边做。

  (4)出示:一个容积是1升的量筒和一个正方体的容器(里面的棱长是1分米)。

  谈话:这里有一个容积是1升的量筒和一个里面棱长是1分米的正方体容器,你有办法说明1升= 1立方分米吗?

  演示:把1升的水倒入正方体容器里。

  提问:怎样解释1毫升= 1立方厘米呢?(可以通过单位间的进率推出,也可以通过实验说明)

  (5)练习:完成“练一练”第1题。

  【评析:在此环节中,教师注重引导学生使用量筒、量杯等学具,通过观察、实验、分析、比较、概括等一系列活动,建立升、毫升的概念,弄清容积单位与体积单位之间的联系,使学生在获得数学基础知识的同时,积累丰富的数学活动经验,发展数学思考能力。】

  3.教学例4。

  (1)出示例4,提问:题目中的已知条件和问题是什么?你想怎样解答?自己在下面试一试。

  学生独立完成后,组织反馈:你是怎样解答的?

  (2)练习:完成“练一练”第2题。

  三、分层练习,巩固深化

  完成练习五的有关习题。(略)

  四、全课总结

  今天的学习中你有哪些收获?感受最深的是什么?还存在哪些疑惑?

  【评析:一节课的学习,学生有所收获,有所体验,同时也产生了新的问题。这些新的问题将成为学生进一步探索的动力。】

  总评

  本课的教学设计结构紧凑、合理、巧妙,层次清楚,重点突出。全课教学以活动为主线,让学生在操作、实验、比较、合作和交流等活动中,自主地设计活动方案、交流活动体验、总结活动成果,实现了从被动地“听”数学向主动地“做”数学的转变,有效地改善了学生的学习方式,提高了课堂教学效率。同时也使学生在参与学习和探索活动的过程中不断地体验学习成功的愉悦,激发对数学学习的兴趣。

  容积和容积单位教学设计 11

  教学理念:

  数学来源于生活,又回归于生活 。课堂创设动手活动,积累学生的感性认知 。

  教学目标:

  1、使学生理解容积意义,掌握常用的容积单位以及它们之间的进率。

  2、掌握容积和体积的联系与区别,知道容积单位和体积单位之间的关系。

  3、感受升和毫升的实际意义,能应用所学知识解决生活中的简单问题。

  教学重点:

  理解容积意义;掌握容积和体积的联系与区别。

  教学难点:

  理解容积意义;感受升和毫升的实际意义

  教学准备:

  教师:1L量杯,一次性纸杯24个(每组3个),1cm3的自制的小正方体容器,8个1升量杯, 10ml钙铁锌口服液,5ml注射器8支

  学生:2瓶自己带瓶装水,贴有商标的各种饮料瓶,药水瓶,家用油壶,牛奶袋,果汁盒等。

  教学过程:

  一、导课

  师:老师想送朋友一个生日礼物?(出示长方体礼盒)大家想知道是什么礼物吗?

  生:想

  师:是一个生日蛋糕

  师:如果老师告诉你这个礼盒长3分米,宽3分米,高1分米,这个礼盒的体积是多少?

  生:9立方米

  师:猜猜,这个长方体礼盒所容纳蛋糕的体积是多少?

  生:9立方米,8立方米,7.5立方米等(学生很快否定9立方米)

  师:(打开纸盒,露出蛋糕)是你所预料到的吗?如果你过生日收到这样的生日礼物会有何感想?

  生:(试说)太小了

  师:我买了这么大个礼物还小?

  学生:盒子里面太小了

  师: 盒子里面太小了,说的真到位。盒子里所容纳的蛋糕的体积叫盒子的容积。今天我们来学习容积和容积单位。(板书课题:容积和容积单位)

  (设计意图):学生通过求长方体的体积,并估算出长方体里所能容纳面包的体积,当老师打开礼品后,学生会发现与自己所估算的差别太大,突出容积的表象认知)

  二、理解容积的意义

  1、举例,感知容积意义

  出示墨水瓶:指出墨水瓶所能容纳墨水的体积叫做墨水瓶的容积。

  出示茶叶筒:茶叶筒所能容纳茶叶的体积叫做茶叶筒的容积

  2、理解容积的意义

  利用你准备的学具来说说,什么是它们的容积

  【出示课件(第2张幻灯片)】:集装箱、油漆桶(指名说出他们的容积)

  3、归纳概括容积意义

  像粉笔盒、墨水瓶所能容纳物体的体积叫做它们的容积。(学生齐读,老师板书)

  (设计意图:学生在充分的感性实例中积累容积的本质内涵,丰富的积累为学生归纳总结容积意义打下扎实基础)

  4、容积和体积的区别与联系。

  ①区别两者数据给出的不同

  师:同学们,我们继续来看这个长方体礼盒。礼盒放在空间,自身有什么?

  生:体积

  师:打开礼盒,礼盒里面又有什么?

  生:容积

  师:已知礼盒的长、宽、高,能求出礼盒的容积吗?

  生:不能

  师:想求出礼盒的容积,必须要知道(老师边比划边问学生)什么?

  生:礼盒里面空间的长、宽、高

  师:如果老师告诉你礼盒里面的空间是一个棱长为1分米的正方体,你能求出蛋糕的体积吗?

  生:能,1立方分米

  师:蛋糕的体积就是礼盒的容积

  (设计意图:通过学生对直观长方体礼盒的体积与容积的计算,突破求容积需要已知容器里面的数据这一难点)

  ②区别两者本质的不同

  师:【出示课件(第3张幻灯片)】:一个较小的实心长方体;一个较大的空心长方体)问题:谁的体积大;谁有容积?

  学生:指名回答

  ③小组讨论,交流汇报两者异同点(课件出示第4、5张幻灯片)

  师:同学们,体积与容积一字之差,他们有什么区别与联系呢?(小组讨论,交流汇报)

  联系:求的都是物体的体积。

  区别:体积求的是物体占空间的大小。(外部)

  容积求的是物体所能容纳空间的大小。(内部)

  (设计意图:多角度的区分容积与体积的不同,从而使学生较为全面的理解容积的意义,突破容积意义这一教学难点)

  三、教学容积单位

  1、计量容积一般用体积单位。

  常用的体积单位有:立方厘米、立方分米、立方米(学生边说,老师边板书)

  2、认识升和毫升。

  ①观察学具,看看你所带的饮料瓶上所标示的.净含量,你发现了什么?(小组交流汇报:发现它们的单位都是L 、 ml而且这些饮料瓶里装的是液体。)

  ②在计量液体的体积时,常用容积单位升(L)和毫升(ml)。当遇到液体体积很大时,例如:计量蓄水池、游泳池里的水的体积,就用立方米。(板书)

  3、感知1L

  ①介绍量杯,观察1L的刻度线,

  ②组长负责,将桌面上的瓶装水倒入1L的量杯中水,其他人仔细观察

  ③生活中,我们常用杯子喝水,组长负责将1L倒入纸杯大小,观察1升水大约几纸杯

  ④ 谈谈,对1L水你有什么感受?

  ⑤生活中那些物品用升做容积单位?(生:油桶、水桶、大瓶饮料瓶的容积)

  4、感知1ml

  (整队纪律,老师将在每组中找一名最快坐好的同学,负责下一个活动。给每组发一个5ml注射器)

  ① 桌面上有一杯有颜色的水,组长负责,用针管吸入1ml水,让大家看看

  ② 再将这1ml水注入一个空纸杯,再让大家看看

  ③ 谈谈,你对1ml水有什么感受?

  ④ 你准备的学具中那些标有毫升,是多少毫升?(举例:眼药水5ml、钙口服液10ml等)

  (设计意图:学生通过吸入1ml带蓝色的水,在注入纸杯的过程中感受1ml的多少,突破学生对1ml由感性认知到理性认知的突破)

  5、1L与1ml的关系

  师:通过前面几个活动,大家了解了1L 、1ml。那么1L 与1ml有怎样的关系呢?仔细观察桌面上的量杯,你就能找到答案

  生:齐答1L =1000ml(板书)

  6、升与立方分米、毫升与立方厘米的关系

  师:计量容积,一般用体积单位,但计量液体的体积时,常用的体积单位是升与毫升。这两者之间有没有关系呢?老师想请一位同学和老师一起做个实验。

  (拿出准备1立方分米的透明正方体,1升有颜色水)

  师:老师会做好你的助手,拿稳盒子,你放心大胆的到,开始!(此个环节老师要装作很神秘,学生在整个过程中很兴奋)

  生:(全场一片惊讶)得出:1升=1立方分米

  师:看来他们之间真有联系,谁能用黑板上的关系推算出1毫升等于多少?

  生:观察得出: 1毫升=1立方厘米

  (设计意图:学生通过这个活动,突破1升=1立方分米的教学难点)

  四、小结

  通过前面有趣的动手操作,闭上眼睛体会:升一般用于计量油桶、水桶、大瓶饮料瓶等的容积;毫升一般用于计量眼药水、药水、小瓶饮料瓶等的容积;而计量、集装箱容积;蓄水池、游泳池里的水的体积,就用立方米。

  五、练习巩固【课件出示(第6、7、8张幻灯片)练习题】

  1、填一填

  一瓶钢笔水的容积是60( ) 摩托车油箱的容积是8( )一瓶矿泉水的容积是600( )

  运货集装箱的容积约是40( )微波炉的容积是45( )

  (集体订正、纠错。)

  2、填出合适的数

  4L =( )ml4800 ml =( )L2.4 L =( )ml785 ml=( )L752cm3=( )dm37.5 L=( )ml36 dm3=( )cm38.04 dm3=( )cm32750ml =( )L

  (引导学生说出每道题是怎么换算的思路)

  3、联系实际【课件出示(第6、7、8张幻灯片)】

  出示生活中用到本节知识的图片(喝水、潜水艇、献血等图片)

  (设计意图:练习有层次,有代表性。由知识题型过度到生活实际,使学生理解数学来源于生活又应用于生活)

  六、结课

  今天我们所学的知识与生活联系非常紧密,大家下去后在生活中找找与我们这节课有关的内容,下节课我们将进一步学习容积的知识。

  板书设计:

  容 积 和 容 积 单 位

  像墨水瓶、粉笔盒、教室等所能容纳物体的体积,叫做它们的容积。

  一般用体积单位:立方厘米(cm3)、立方分米(dm3)、立方米(m3)

  计量液体:升(L)、毫升(ml)、立方米(m3)

  它们间的关系:1L= 1dm3

  1 ml=1 cm3

  1L=1000 ml

【容积和容积单位教学设计】相关文章:

容积和容积单位教学设计03-02

五年级数学课容积和容积单位教学设计(精选11篇)03-05

五年级数学《体积与容积》教学设计05-06

形容积极向上正能量的句子04-25

形容积极向上正能量的句子02-15

北师大版五年级数学下册《体积与容积 》教学设计07-05

建设用地容积率管理办法2023全文12-18

长度单位教学设计07-13

《长度单位》教学设计04-11