我要投稿 投诉建议

比例的意义教学设计

时间:2023-05-08 16:40:09 教学设计 我要投稿

比例的意义教学设计集锦

  作为一名辛苦耕耘的教育工作者,时常需要编写教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。我们应该怎么写教学设计呢?以下是小编为大家收集的比例的意义教学设计集锦,仅供参考,希望能够帮助到大家。

比例的意义教学设计集锦

比例的意义教学设计集锦1

  教学内容:

  义务教育课程标准实验教科书人教版数学六年级下册。

  教学目标:

  1.理解和掌握比例的意义和基本性质。

  2.能用不同的方法判断两个比能否组成比例,并能正确组成比例。

  3.通过观察比较、自主探究,提高分析和概括能力,获得积极探索的情感体验。

  教学过程:

  一、认识比例的意义

  1.出示小红、小明在超市购买练习本的一组信息。

  (1)根据表中信息,你能选出其中两个量写出有意义的比吗?

  (学生思考片刻,说出了1.2∶3、2∶5、1.2∶2、3∶5等多个比,并说出每个比表示的意义。教师适时板书。)

  (2)算算这些比的比值,说说你有什么发现。

  (学生说出自己的发现,教师用“=”连接比值相等的两个比。)

  (3)说说什么叫比例。

  (学生各抒己见,师生共同归纳后板书:比例的意义)

  评析:比的意义、求比值是这节课所学新知的“生长点”。对此,教师将教材例题后(相当于练习)的一组信息“前置”,这样设计与处理,一是使题材鲜活,导入更为自然;二是把“一组信息”作为学生思考的对象,给学生提供了一定的思维空间,学生学习的热情和积极性明显提高。“激活旧知”后,教师引导学生主动进行比较、发现、归纳,最终实现了对新知的主动建构。

  2.即时训练。

  A.判断下面每个式子是不是比例,依据是什么?

  (1)10∶11(2)15∶3=10∶2

  a.学生独立思考,小组讨论交流,说说是怎样判断的,进而说明判断两个比能否组成比例的.关键是什么。

  b.剩下的(1)(2)(4)三个比中有没有能组成比例的?

  c.上面几个比有没有能和5∶4组成比例的,你能不能帮它找一个“朋友”并组成比例?它的朋友有多少个?这些朋友有什么相同点?

  评析:认知心理学告诉我们,学生对数学概念、规律的认识和掌握不是一次完成的,对知识的理解总是要经历一个不断深化的过程。因此,上例中教师设计了“即时训练”这一环节。即时训练既有运用新知的直接判断,又有变式和一题多用,较好地体现了层次性、针对性和实效性,它对促进学生牢固掌握新知,灵活运用新知起到了很好的作用。

  3.教学比例各部分的名称。

  (1)引导学生读教材(相关内容),认识比例各部分名称。

  (2)集体交流。(教师板书:内项、外项)

  (3)把比例写成分数形式,指出它的内、外项。

  (4)任意写一个比例,同桌相互说一说比例各部分的名称。

  二、探究比例的基本性质

  1.填数。

  (1)出示比例8∶( )=( )∶3。想一想,这两个空可能是哪两个数。

  〔刚开始时,学生可能从比例的意义的角度去思考,所以填数相对费时,慢慢地,学生似乎发现了“规律”,填数速度加快。教师将学生的发现(如1和24、2和12、0.5和48……)板书在括号下面,与学生一起判断能否组成比例。〕

  (2)观察思考:在填这些数的过程中,你有什么发现?

  (这一问题满足了学生的心理需求,学生发现每次所填的两个内项之积相等,进而发现“两个内项之积等于两个外项之积”。)

  (3)再次设问:在这些比例中,“两个内项之积等于两个外项之积”,这是一种巧合还是在所有的比例中都有这样的规律呢?(学生意见不一,自发产生验证的需求。)

  A.先验证黑板上的比例式,再验证自己写的比例式。

  B.概括比例的基本性质。同桌相互说一说比例的基本性质。

  (4)学了比例的基本性质有什么作用呢?(学生作答。产生用比例的基本性质去验证能否组成比例的需要。)

  评析:“每个人的心灵深处都有一种根深蒂固的需要,那就是希望自己是个发现者、研究者、探索者。”这一教学环节正是基于满足学生的“心理需求”而设计的。先由开放性问题引入,给予不同认知基础的学生以各自探究的时间和空间,在自主探索、合作交流中学生的认识经历了由“难”到“易”、由“繁”到“简”的过程。通过“你有什么发现”,“这是一种巧合,还是在所有的比例中都有这样的规律”两个问题指明了学生思考的方向,提升了学生思维的层次,使学生人人体验到“发现者”的快乐。在学生主动获取知识的同时,教师还引领学生经历了科学探究的过程,这些“关于方法的知识”对学生终身学习无疑是有益的。

  2.即时训练。

  应用比例的基本性质,判断下面的两个比能否组成比例。

  3.6∶1.8和4∶24∶9和5∶10

  小结:根据比例的基本性质来判断两个比能否组成比例,其实我们是先假设这两个比能组成比例,如果比例的两个外项的积等于两个内项的积,假设成立,两个比能组成比例;如果不相等,就不能组成比例。

  三、巩固新知,解决问题

  1.猜数游戏。

  在下面每个比例中,有一个或两个数被遮掉了,你能根据所学知识把它猜出来吗?

  3∶5=6∶( )( )∶5=6∶( )3∶5=( )∶( )

  2.你能用3、5、6、10这四个数组成不同的比例吗?把它们都写出来。(学生探索后交流。)

  利用这四个数最多能写出几组比例?怎样写既不重复也不遗漏?(根据时间来安排讨论,也可留作课后进一步探讨。)

  评析:练习设计能紧紧围绕教学目标精选练习内容,注意练习的梯度、层次和思维含量。特别是最后的挑战性问题把学生带入了“欲罢不能”的境界,学生思维活跃,讨论热烈。

  总评:“比例的意义和基本性质”是一堂“老课”,但执教者却能“老课新教”。新授课的巧妙导入,数学化过程的有效展开,训练的精当、扎实、灵活,以及在突出学生是学习的主人,教师是组织者、引导者的课堂师生关系的定位等方面都颇有新意,因而,这是一堂以新课程理念做指导,又保持着数学课“本色”的朴实无华、扎实高效的数学课。

比例的意义教学设计集锦2

  教学内容:

  教科书第40页的例3,完成随后的练一练和练习九的第3—7题。

  教学目标:

  1、理解比例的意义。

  2、能根据比例的意义,正确判断两个比能否组成比例。

  3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

  教学重点:

  理解比例的意义,能正确判断两个比能否组成比例。

  教学难点:

  在学生观察、操作、推理和交流的过程中,发展学生的探究能力和精神。

  教学准备:

  两张照片。

  预习作业:

  1、预习课本第40页例3,2、分别写出每张照片长和宽的比,并比较这两个比的关系,知道什么叫做比例。

  3、在课本上完成第40页练一练。

  教学过程:

  一、预习效果检测

  1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?

  2、关于比你有哪些了解?(生答:比的意义、各部分名称、基本性质等。)

  还记得怎样求比值吗?希望这些知识能对你们今天学习的新知识有帮助。

  3、什么叫做比例?

  二、合作探究

  1、认识比例

  (1)呈现放大请后的两张长方形照片及相关的数据。要求学生分别写出每张照片长和宽的比。

  (2)比较写出的两个比,说说这两个比有什么关系?你是怎样发现的?(求比值,或把它们分别化成最简比)

  (3)是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:6.4:4=9.6:6。或6.4/4=9.6/6

  数学中规定,像这样的式子就叫做比例。(板书:比例)

  (4)你能说说什么叫比例吗?(让学生充分发表意见,在此基础上概括出比例的意义)

  (5)学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

  2、学以致用

  (1)学习比例的意义有什么用呢?(可以判断两个比是否可以组成比例。)

  (2)分别写出照片放大后和放大前的长的'比和宽的比,这两个比也能组成比例吗?

  学生独立完成,再说说是怎样想的?由此可以使学生对比例意义的丰富感知。

  (3)你能根据以上照片提供的数据,再写出两个比,并将它们组成比例吗?

  3、交流“练一练”的完成情况。

  三、当堂达标检测

  1、做练习九第3题。

  先写出符合要求的比,再说清楚相应的两个比是否能够组成比例的理由。

  2、做练习九第4题

  独立审题,说说解题步骤,在独立完成。同时找两个同学板演。

  3、做练习九第7题

  (1)弄懂什么是“相对应的两个量的比”。如240米是4分钟走的路程,所以240米与4分钟是相对应的两个量。

  (2)分组完成,同时四人板书,再讲评。

  完成后反馈、引导学生进行汇报交流,及时修正自己的答案。

  提出疑问,总结全课。

比例的意义教学设计集锦3

  教学内容:

  人教版六年级下册《比例》

  教学目标:

  1、知识目标:理解比例的意义,能正确判断两个比能否成比例,会组比例。

  2、能力目标:通过探索国旗中蕴含的数学知识,提高认知能力。

  3、情感目标:体验获得成功的乐趣,建立学好数学的自信心。

  教学重难点:

  教学重点:理解比例的意义。

  教学难点:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。

  教学工具:

  多媒体课件

  教学过程:

  一、回顾旧知,复习铺垫

  同学们,今天我们开始学习新的单元比例,看到这两个字你有没有联想到一些我们学过的知识呢?(比)上学期我们学过比的相关知识,现在大家回想一下:

  (一)复习

  1、什么叫做比? (表示两个数相除)

  2、你能举例说明比的各部分名称吗?

  比包括前项、后项和比值,比值就指的是比的前项除以后项所得的商,比值是一个数。

  3、请你计算下面各比的比值。

  2:16 2.7:4.5

  (二)谈话导入

  大家对比的知识掌握得很好,接下来我们就进入比例的第一课时比例的意义的学习,首先需要明确本节课同学们的学习目标。请读记一遍:

  1、理解和掌握比例的意义。

  2、能根据比例的意义正确判断两个比能否组成比例并会组比例。

  3、探索国旗中蕴含的`数学知识,增强爱国精神。

  二、比较分析,探究新知

  同学们,每周一早上我们学校会举行升国旗仪式,对于国旗你了解多少呢?

  (一)观察

  观察这三幅情境图,它们有什么相同之处呢?(都有国旗)分别在什么地方?(xx广场、校园的操场和教室里。)

  这些国旗有大有小,长宽不同(点击PPT出示数据),但通过观察我们学校操场和教室里的国旗发现它们的形状都是相似的,都接近这样的一个长方形国旗(点击PPT出示图片),看上去庄严和谐统一。那你有没有见过这样的国旗呢?这说明我们的五星红旗的长与宽一定隐含着某种特点,想弄明白吗?

  (二)计算

  1、我们先来看看学校里的两面国旗的长和宽的比值有什么关系?(点击出示图片文字)

  (1)请同学们在练习本上写出操场与教室的国旗的长与宽之比,再计算出它们的比值。(计算要保证准确)

  32.4:1.6?2.4?1.6?(1.5)(2)指名汇报:操场上的国旗 23(1.5)2描述:操场上的国旗长宽之比为2.4:1.6,比值为3/2….(2名学生描述)(板书) 教室里的国旗

  60:40?60?40?(3)同意他们的结果吗?通过计算你能发现什么吗?(这两幅国旗的长宽虽然不同,但长宽之比都是3/2,是相等的。)(板书等式)既然两个比的比值相等,可以用什么符号把这种关系表示出来?(=)(板书不同颜色)

  (三)讲解

  1、其实不光这三面国旗,在国旗法中规定所有国旗都必须按长与宽的比3/2来制作,而且也只有指定企业才能制作,这是对国旗的尊重!

  2、那谁来说一说像这样的一个式子表示了什么?(表示两个相等的比;表示两个比值相等的比)你们都说出来了重点(板书:比相等)。在数学中,像这样(板书:表示两个比相等的式子叫做比例)。这就是比例的意义。同学们读记一遍。比可以写成分数形式,那比例的呢?(板书)

  三、合作探究,提升理解

  (一)小组讨论,代表发言

  探讨一:判断两个比能否组成比例,关键是什么?(各组的看法是什么?根据比例的概念可知)

  探讨二:你还能从三面国旗中找出哪些比例?(代表发言,xx的国旗长宽之比为5:10/3,比值为3/2,所以还可以找出其他的。) 探讨三:比和比例是一样的吗?如果不是,两者有什么区别? (结合同学的回答,可以从两个角度来区分,形式上,意义上。)

  四、巩固应用,提升能力

  对于比例,现在已经有了初步认识,接下来就让我们学以致用。 首先我们观察做一做的两道题,可以发现一道关于数的比例,一道关于形的比例,那我们就从这两个方面去理解比例。先独立完成第一题。

  (一)数的比例

  (出示习题和答题规范,提问两组同桌,2分钟完成,订正答案2分钟。出示答案,对板演,对台下答案)

  (二)形的比例

  先观察图形并结合数据,分析边长之间的关系,找出比例。

  一组同桌上台展示,讲解:图中有一大一小两个直角三角形,观察每个三角形两条直角边的数据可得出,每个三角形各自的直角边之比相等;而且两个三角形短直角边之比等于长直角边之比。因此一共能找出8对比例。

  (三)综合提升

  写出比值是5的两个比并组成比例。(提问多名学生汇报)

  五、拓展

  喝过蜂蜜水吗?你会调制吗?下图是调制蜂蜜水时蜂蜜和水的配比情况。怎样调配的呢?(蜂蜜水A用两杯蜂蜜和10杯水调配,蜂蜜水B用3杯蜂蜜和15杯水调配)

  哪种更甜呢?你能用今天所学知识判断出来吗? 同桌或小组讨论,点名:

  学生甲:A和B两种蜂蜜水中蜂蜜比是2:3,水的比是10:15,两个比的比值都是2/3 ,所以我们认为两种蜂蜜水一样甜。

  学生乙:蜂蜜水A的水和蜜的比是10:2,蜂蜜水B的水和蜜的比是15:3,两个比的比值都是5,我们认为两种蜂蜜水一样甜。

  其他同学的想法呢?看来你们很善于动脑筋,这些题都没有难倒你们,但同学们在学习中依然要谦虚努力。

  六、总结

  今天的学习就结束了,相信大家都有自己的收获。孔子有句话说,“学而不思则殆”。所以课后大家独立主动地梳理今天所学知识,形成思维导图,并与同学交流。

比例的意义教学设计集锦4

  教学内容:

  《反比例的意义》是六年制小学数学(人教版)第十二册第一单元《比例》中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。

  学生分析:

  在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

  设计理念:

  学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的.空间,提供自主学习的机会。

  教学目标:

  1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。

  2.引导学生揭示知识间的联系,培养学生分析判断、推理能力

  教学流程:

  一、复习铺垫,猜想引入

  师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?

  2.猜想

  师:今天我们要学习一种新的比例关系——反比例关系。(板书:反比例)

  师:从字面上看“反比例”与“正比例”会是怎样的关系?

  生:相反的。

  师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?

  生:(略)

  反思:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。

  二、提供材料,组织研究

  1.探究反比例的意义

  师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。

  (1)表中有哪两个相关联的量?

  (2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?

  2.小组讨论、交流。(教师巡回查看,并做适当指导。)

  3.汇报研究结果

  (在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)

  生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。

  生2:已行路程十剩下路程=总路程(一定)。

  生3:我认为第一个同学的说法不准确,应该换成“增加”和“减小”……

  (最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)

  师:表2和表3中两个量的变化规律有哪些共性?(生答略。)

  师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)

  师:如果用字母A和B表示两个相关联的量,用C表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]

  反思:教材中两个例题是典型的反比例关系,但问题过“瘦”过“小”,思路过于狭窄,虽然学生易懂,但容易造成“知其然,而不知其所以然”。通过增加表3,更利于学生发现长×宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表1、表4,把正比例关系、反比例关系、与反比例雷同(“和”一定)的情况混合在一起,给学生提供了甄别问题的机会。

  4.做一做(略)

  5.学习例6

  师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)

  三、巩固练习,拓展应用

  1.基本练习。(略)

  2.拓展应用。

  师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)

  交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的“正方形的边长×边长=面积(一定),边长和边长成反比例”的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:“能说出你的理由吗?”有的学生说:“因为乘积一定,所以边长和边长成反比例关系。”对他的意见有的同学点头称是,而有的同学却摇头……忽然,一名同学像发现新大陆一样大声叫起来:“不对!边长不随着边长的扩大而缩小!这是一种量!”一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:“边长×4=正方形的周长(一定),边长和4成反比例。”话音刚落,学生们就齐喊起来:“不对!边长和4不是相关联的两个量。”

  反思:通过“你能举一个反比例的例子吗?”这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。

  3.综合练习

  四、总结

  反思:

  《数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。

比例的意义教学设计集锦5

  教材分析

  这部分内容是在学生已经学习了比的意义,比的化简、求比值和比的应用的基础上学习的。通过本节课的学习,学生将掌握比例的意义,对学生学习比例的基本性质和正、反比例的意义和应用,乃至在初中继续学习有关正、反比例知识打好基础。

  学情分析

  1、本班现有学生92人,男生49人,女生43人。

  2、本班班额大,学生基础较差,所以我将比例的意义和基本性质这一学时的内容分成了两课时,本节课主要学习比例的意义。

  3、本节课我准备从生活情境出发,为学生创设探究学习的情境;联系生活实际,让学生体会数学与生活的密切联系;改变学生的学习方式,运用合作学习,培养学生协作能力;运用多媒体教学手段增加教学的新颖性,引导学生以各种感官参与学习的全过程。

  教学目标

  1、知识与技能:理解比例的意义,认识比例各部分的名称。

  2、过程与方法:让学生经历探索比例的意义的过程,并能运用比例的意义,判断两个比能否组成比例,会组比例。

  3、情感态度与价值观情感目标:培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。

  教学重点和难点

  1、掌握比例的意义。

  2、应用比例的意义判断两个比能否组成比例,并能正确地组成比例。

  3、能根据一个比例写几个不同的比例。

  教学过程

  教学环节 教师活动 预设学生行为 设计意图

  一、复习

  1、什么叫比?怎样表示比?一辆汽车1小时行60千米,2小时行120千米,3小时行180千米,分别说出所行路程与所用时间的.比,这些比表示的意义是什么?

  2、怎样求比值?求下面各比的比值,你发现了什么?

  20∶252.7∶4.56∶10生回答。

  学生回答后,独立求出各比值,并交流汇报。复习旧知,为新知探究奠定基础。

  揭示

  课题这节课我们在比的知识基础上,进一步学习新知识。

  揭示课题——比例的意义。学生打开数学课本48页。开门见山,直奔主题。

  探究

  比例的意义

  1、课件出示

  例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。

  列表如下:

  竹竿长(m)23...... 影子长(m)69......

  2、你能写出多少个有意义的比?并求出它们的比值。

  3、观察这些比,把能用等号连接的比用等号连接起来。

  4、教师板书

  3∶2=9∶6

  2∶6=3∶9

  强调:这些都是比例。

  引导学生用自己的语言说一说什么是比例。比例就表示两个比的比值相等的式子。

  5、2∶9和3∶6能组成比例吗?你是怎么知道的?

  6、指导学生说出“判断两个比能不能组成比例,要看他们的比值是否相等。”

  1、学生讨论,然后写出比,完成后汇报,并随意找出几个学生的作业进行展示。

  2、学生试写:

  2:3=6:9

  2:6=3:9

  3、学生合作探究:什么是比例?

  4、学生小组讨论:2∶9和3∶6能组成比例吗?并说出理由。

  1、生活情境导入,增强学生的学习兴趣,调动学生主动参与。

  2、让学生分享在主动参与、探究中获取知识的愉悦心情。

  3、学生在合作探究和小组讨论时,增强合作意识,培养自己解决问题的能力。

  认识比例的各个项

  1、课件出示:在一个比例中两端的两项叫外项,中间的两项叫内项。

  要求学生依据定义,分别找出3∶2=9∶6和2:6=3:9的内项和外项。

  介绍分数形式的比例写法。

  学生小组合作探究,找出3∶2=9∶6和2:6=3:9

  的内项和外项。加深认识,学以致用。

  五、巩固练习

  1、请同学们用比例的意义判断一下,0。4∶25能否和1。2∶75组成比例?为什么?

  2、说一说比和比例有什么区别。

  3、在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。

  4、用下面的四个数组成比例:2,3,4和6(能组几个就组几个)。你能否写出几个不同的比例?

  5、下面的四个数可以组成比例吗?若不能,改变其中的任何一个数,使其能组成比例。2、3、4、5试试看,相信你一定能完成?

  1、学生独立完成。

  2、汇报答题情况。

  检测学生学习效果。

  六、比与比例的区别

  1、a÷b=a:b比就表示两个数相除,它们的商叫比值,应用比的意义可以求比值。

  2、比例a:b=c:d表示两个比相等的式子,叫做比例。应用比例的意义可以判断两个比是否可以组成比例。学生自己说出几个不同的比和比例,对比理解。加强新旧知识的联系和区别,巩固新知识。

比例的意义教学设计集锦6

  教学内容

  人教版教材第33-34页比例的意义和基本性质。

  教学目标

  1、理解比例的意义,认识比例各部分的名称。

  2、能运用比例的意义判断两个比能否组成比例,并会组比例。

  3、理解并会应用比例的基本性质。

  教学过程

  一、情境导入,复习比的知识

  教师出示课件,结合画面引入。

  师:同学们请看,这是们祖国各地的风景图片,我们的祖国幅员非常辽阔,却能在一张小小的地图上清晰可见各地位置;科学家在研究很小很小的生物细胞时,想清楚地看见细胞各部分,就要借助显微镜将细胞按比例放大。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

  教师板书课题:比例的意义和基本性质。

  师:说到比例,我们很容易想起前面学过??(教师拖长声音)

  生:比(几乎异口同声地)

  师:下面就请同学们完成学案的“课前检测”部分,复习一下比的有关知识。

  [设计意图:借助现代电教媒体,用形象、直观的图片,来激发学生的求知欲望,同时也培养了学生爱祖国、爱科学的情感。]

  二、自主探究,学习比例的意义

  1、探求共性,概括意义

  师:刚才第三题10:6 与 4.5:2.7 的比值有何特点?

  生1:我发现这两个比的比值相等 。 师:既然这两个比的比值相等,请你想想用什么符号把这种关系表示出来!

  生2:用等号。(师把左右两个中间板书 = )

  师:同学们现在用了等号表示出这样一个式子,这是一个新的表达式,你能给它起个名字吗?

  生:比例(有几个学生低声说)

  师:这几位同学很聪明,数学上也起名为“比例”(师板书:比例)

  师:你现在想知道什么叫比例吗?

  生:想(学生声音响亮,愿望强烈)

  师:那就请同学们自学课本32-33页做一做之前的内容,并完成学案上自学引导部分的问题。(5分钟后多数学生停了笔,教师在学生的回答过程中板书比例的概念,并引导学生把文字语言转化成数学符号语言,得出比例的两种表达式: a:b=c:d或 = (b、d不能为0)

  2、根据意义,判断比例

  师:刚刚我们认识了新的式子比例,要是让你来判断两个比是不是能组成比例,你会怎么办?

  生:看比值是不是相等

  师出示课件:下面哪组中的两个比可以组成比例?把组成的比例写出来.(1)6∶10 和 9∶15 (2)20∶5 和 1∶4

  师:比一比 看谁说的又快又好!

  生1:因为 6∶10 = 0.6

  9∶15 = 0.6

  所以 6∶10 = 9∶15

  生2: 因为 20∶5 = 4

  1∶4 = 0.25

  所以 20∶5和1∶4不能组成比例.(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)

  师:请同学们自己独立完成学案上的课堂训练

  (一)第1题。(再次巩固判断两个比是否成比例的方法,并熟练解题思路。)

  [设计意图:从学生熟悉的比入手教学,充分重视了学生原有的认知基础,找准了新知识的生长点。然后放手让学生自学,让学生亲自经历知识的发生、发展过程,充分发挥了学生的主体作用。]

  三、合作探究,学习比例的基本性质

  1、组织看书,认识名称

  师:a:b里比号前面的a叫——(生齐答:前项)比号后面的b叫——(生齐答:后项)。那么在比例里的各部分有哪些名称呢?请同学自学课本,并汇报。然后完成学案上的课堂训练

  (一)第2题进行巩固。

  2、活动探究,总结性质

  小组活动内容:

  ①观察比例的两个内项与两个外项,算一算,你发现了什么。

  ②如果把比例写成分数形式,是否也有上面发现的规律?

  ③是不是每一个比例的两个外项与两个内项都具有这种规律,请你再找几个比例进行验证。

  ④通过以上研究,你发现了什么?(5分钟后,学生基本停止了讨论。)

  师:请汇报你发现的规律。

  生1:两个外项的积等于两个内项的积

  生2:不对,老师,我有个反例:0:1=1:0 0×0=0,1×1=1,所以??

  还没等生2说完,生3迫不及待:不对,比的后项不能为0的,你这个不是比例。

  生2:那我0:1=0:2 (很着急的改了)

  生4:那0×2=0 ,1×0=0,还是两个外项积等于两个内项积。

  师:同学们验证得非常认真,现在我们可以一致公认——(生齐答:任何一个比例里,两个外项的积等于两个内项的积。)

  师:和比的基本性质一样,我们把这种性质叫做比例的——(生齐答:比例的基本性质。)(板书:基本性质)

  3、应用性质,自主判断

  师:刚才我们应用比例的基本性质解决了这两个问题(课件展示刚才的问题:下面哪组中的两个比可以组成比例?把组成的比例写出来(1)6∶10和9∶15 (2)20∶5和1∶4)

  师:学过比例的基本性质后,你有新的方法解决这个问题吗?不一会,就有学生举起了小手。

  生1:第(1)题,只要算一下6×15=90,10×9=90,乘积相等,所以能组成比例.

  生2:第(2)题,20×4=80,5×1=5,乘积不相等,所以不能组成比例.

  师:很好!同学们发现了一种新的判断两个比是否成比例的方法,现在请大家用你发现的方法完成学案课堂训练

  (二)。

  4、总结方法,辨析概念

  师:我们学了比例的意义和基本性质后,你有几种方法判断两个比能否组成比例?

  生:两种,一种是利用比例的意义,通过计算两个比的比值来判断;另一种是利用比例的基本性质,通过计算能够构成内项与外项的两个数的`积是否相等来判断。

  师:(惊喜!)这节课我们一直类比着比学习比例,比与比例仅一字只差,它们会有什么区别呢?

  生1:比是两个数相除,是一个算式;比例是两个比相等,是一个等式

  生2:比有两项,比例有四项。

  生3:比与比例各部分的名称不同,比的项分别叫做前项和后项;比例的四项,有两个叫做外项,有两个叫做内项。

  师:同学们的概括能力很强,你们真的很棒!

  师:把你们回答的内容总结一下,边说边展示课件:从意义上、项数上进行对比:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。 [设计意图:以上比例基本性质的教学,把知识的探究过程留给了学生。问题让学生去发现,共性让学生去探索,充分尊重学生主体。将学习内容“大板块”交给学生,体现了学习的自主性和主动性,有利于探究和创新意识的培养。同时小组共同探讨有助于培养学生的合作意识。]

  四、灵活运用,大显身手

  师:以上就是我们这节课学习的内容,大家想要知道自己掌握的情况,请认真完成学案灵活运用与拓展天地的部分。

  [设计意图:这一部分设计了活用知识点与拓展天地两个部分,其中活用知识点侧重于考察基础知识、而拓展天地则侧重于培养学生的发散思维。拓展天地的这个问题要想写出全部的八个比例式,需要综合运用比例的意义与基本性质,难度比较大,而教师的教学设计就是要善于把学生已有的知识引向纵深,并以此为载体促进学生能力的提高。]

  五、归纳小结,交流收获

  师:同学们,通过本堂课的学习,你有什么收获,还有什么疑问?

  [设计意图:培养学生反思自己学习过程的意识,有利于学生掌握、巩固新知,并促使学生能深入思考和探索。

比例的意义教学设计集锦7

  教学内容

  义务教育课程标准实验教科书数学六年级下册P45练习十的第5—8题

  教学目标:

  1、使学生学会解比例的方法,会应用比例的基本性质解比例,进一步理解和掌握比例的基本性质。

  2、让学生在经历探究的过程中,体验学习数学的快乐。

  教学重点:

  学会解比例。

  教学难点

  掌握解比例的书写格式。

  设计理念

  在本课时的设计中,引导学生根据按比例放大图形,把相关数据组成比例,用未知数X来表示比例中的未知项,列出比例式。

  在解比例的教学设计上,重点利用旧知的迁移,通过学生主动探索新知与旧知的联系,在比较分析中,把握规律,掌握解比例的方法。

  教学步骤教师活动学生活动

  一、练习引入

  1、小练笔:

  在()里填上合适的数。

  5:4=():12

  4:()=():6

  2、教师:前面我们学习了一些比例的知识,谁能说一说怎样填空的?

  3、比例的基本性质是什么?这节课我们还要继续学习有关比例的知识。学生练习

  学生回顾比例的基本性质

  二、探索新知

  出示例5,前面我们学习过图形的放大与缩小,李明把照片按比例放大,放大后长是13.5厘米,你能求他的宽吗?

  (1)读题审题,理解题意

  老师帮助学生理解题意。提问:怎样理解“把照片按比例放大”这句话?引导学生理解放大前后的相关线段的长度是可以组成比例

  (2)引导分析,写出比例

  如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?引导学生写出含有未知数的比例式。

  师介绍:“像上面这样求比例中的未知项,叫做解比例。

  (3)找到依据,变形解答

  讨论:怎样解比例?根据是什么?

  思考:“根据比例的基本性质可以把比例变成什么形式?”

  教师板书:6x=13.5×4。“这变成了什么?”(方程。)

  教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。

  (4)、板书过程,总结思路

  师生把解比例的.过程完整地写出来。指名板书。

  师问:第一步计算的依据是什么?

  师生总结解比例的过程。

  提问:“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?”(先根据比例的基本性质把比例变成方程。再根据以前学过的解方程的方法求解。)

  (5)、练习提高,再说思路

  做“试一试”,学生独立完成,再说说解题思路。

  学生读题,分析题意

  学生写出含有未知数的比例式

  学生小组交流,大组汇报

  学生交流总结思路:在解比例的过程中第一步是关键,是根据比例的基本性质把比例变成方程。下面和以前学习的解方程的方法一样。

  学生独立练习,小组说明思路。

  三、巩固练习

  1、做“练一练”

  2、做练习十第6、7题。

  3、做练习十第8题

  学生先说说按比例“缩小或放大“的含义。再列出相应的比例式并求解。

  学生独立审题并解题。讲评时重点指导学生解决第(2)问。

  四、比较提高。

  1、通过本课的学习,你有哪些收获?

  2、把你掌握的解比例的方法在小组里介绍一下,并在大组交流。

  五、作业练习九第5、6题。

【比例的意义教学设计】相关文章:

《比例的意义》教学设计03-29

《正比例的意义》教学设计04-06

比例的意义教学设计(精选21篇)03-07

反比例的意义教学设计05-07

《反比例的意义》数学教学设计02-27

正比例的意义数学教学设计03-06

“比例的意义和性质”的教学设计范文03-07

比例的意义和基本性质教学设计03-05

《比例的意义和基本性质》教学设计04-28

数学《正比例的意义》教学设计(精选9篇)11-12