我要投稿 投诉建议

六年级下册数学教学设计

时间:2023-04-13 08:59:57 教学设计 我要投稿

六年级下册数学教学设计

  在教学工作者实际的教学活动中,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。我们应该怎么写教学设计呢?下面是小编为大家整理的六年级下册数学教学设计,欢迎阅读,希望大家能够喜欢。

六年级下册数学教学设计

六年级下册数学教学设计1

  【教材分析】

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。教材中选用了许多来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面展开后可以是一个长方形,在操作中经历“圆柱侧面积”的探索过程,体会圆柱侧面展开图的长和宽与圆柱的有关量之间的关系,获得求“圆柱侧面积”的方法。

  【学生分析】

  学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。

  【教学目标】

  1、掌握圆柱侧面积和表面积的概念。

  2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。

  3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。

  4、培养合作意识和主动探求知识的.学习品质,培养学生的创新精神和实践能力。

  【教学重点】

  掌握圆柱的侧面积和表面积的计算方法。

  【教学难点】

  将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积的计算公式。

  【教具准备】

  圆柱体纸盒、多媒体课件。

  【学具准备】

  圆柱形纸盒。

  【教学过程】

  一、引入新课

  1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?

  2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)

  3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?

  4、这节课我们就一起来研究“圆柱的表面积”这个问题。

  二、探究新知

  1、初步感知

  (1)请同学们观察圆柱,想一想什么是圆柱的表面积。

  总结:圆柱所有面面积的总和就是圆柱的表面积。

  (2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)

  (3)圆柱的表面积怎么求?(两个底面积+侧面积)

  (4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的侧面展开后是一个怎么样的图形?你有什么想法。

  2、侧面积

  (1)小组合作:

  请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。

  (2)学生汇报

  (3)教师总结演示。

  (4)推导圆柱侧面积公式

  圆柱的侧面积=底面周长×圆柱的高,用字母表示圆柱的侧面积公式也可以写成:S侧=C×h,如果已知底面半径为r,圆柱的高为h,侧面积公式变形为:S侧=2πrh

  3、表面积

  (1)总结表面积公式

  怎么求圆柱的表面积?

  圆柱的表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。

  (2)共同解决课前提出的问题:要制作这个盒子至少需要多少平分米的包装纸?

  侧面积:2×3.14×10×30=1884(cm2),底面积:102×3.14=314(cm2),表面积:314×2+1884=2512(cm2)

  三、巩固练习

  1、现在我们自己尝试来算一算这两个圆柱的表面积。

  过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。

  2、设计一个无盖的圆柱形铁皮水桶,底面直径为4分米,高为5分米,至少需要多大面积的铁皮?

  4、一台压路机的滚筒宽1.2米,直径为0.8米。如果它滚动10周,压路的面积是多少平方米?

  5、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?

  四、总结收获

  同学们我们来回顾一下这节课你有那些收获?你有什么想提醒大家注意的吗?

  请记住同学们善意的提醒,这节课就上到这!

  五、板书设计

  圆柱的表面积

  侧面积=底面周长×高

  圆柱表面积=S侧=C×h=2πrhS表=2πrh+2πr2

  教学反思

  本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

  一、学生学到了有价值的知识。

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

  二、培养了学生的科学精神和方法。

  新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

  三、促进了学生的思维发展。

  传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

  本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

六年级下册数学教学设计2

  教学目标:

  1、使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。

  2、在计算税款的过程中,加深学生对社会现象的理解,提高学生解决问题的能力。

  3、感受数学知识与生活的紧密联系,激发学习兴趣。增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。

  教学重点:

  税率的理解和税额的计算。

  教学难点:

  税额的计算(个人所得税的计算)。

  教学过程:

  一、情景导入

  1、口答算式。

  (1)100的5%是多少?

  (2)50吨的10%是多少?

  (3)1000元的8%是多少?

  (4)50万元的20%是多少?

  2、什么是比率?

  二、新课讲授

  1、阅读教材第10页有关纳税的内容。说说:什么是纳税?

  2、税率的认识。

  (1)说明:纳税的种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率,一般是由国家根据不同纳税种类定出不同的税率。

  (2)试说说以下税率各表示什么意思。

  A、商店按营业额的5%缴纳营业税。

  B、某人彩票中奖后,按奖金的20%缴纳个人所得税。

  3、税款计算。

  (1)出示例3:一家饭店十月份的营业额约是30万元。如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税约多少万元?

  (2)分析题目,理解题意。

  引导学生理解“按营业额的5%缴纳营业税”的含义,明确这里的5%是营业税与营业额比较的结果,也就是缴纳的营业税占营业额的.5%,题中“十月份的营业额是30万元”,因此十月份应缴纳的营业税就是30万元的5%。

  (3)学生列出算式。

  相当于“求一个数的百分之几是多少”,用乘法计算。

  列式:30×5%

  (4)学生尝试计算。

  (5)汇报交流。

  30×5% = 30×0.05 = 1.5(万元)

  4、课堂练习。

  (1)教材第10页“做一做”。

  (2)张老师二月份工资收入是6500元,按税法规定,扣除5000元免征额后,按3%的税率缴纳个人所得税,这个月张老师应缴纳个人所得税多少元?

  (3)黄老师上个月工资收入是8200元,按税法规定,扣除5000元免征额后,按3%的税率缴纳个人所得税,这个月黄老师税后收入是多少元?

  (4)李工程师得到一笔劳务8000元的报酬,按规定,扣除1000元免征额后,按20%的税率缴纳个人所得税,他应缴纳个人所得税多少元?

  5、课后作业。

  完成教材第14页练习二第6、7、8题。

六年级下册数学教学设计3

  [教学内容]

  人教版小学六年级数学(下册)第8页例1及相关练习)

  [教材及学情分析]

  本节课教学的主要内容是折扣的含义及解决有关实际问题。这是承接六年级上册求简单的百分率编排的。教材安排了两个例题,先从学生熟悉的商城打折的生活情境中引出对打折含义的解释,再具体说明“几折”所表示的意义。例1情境引导学生解决两个问题,第一个问题是已知原价和折数,求现在售价,这是让学生明白折扣的含义后,求一个数的百分之几是多少。第(2)题再次变换条件,已知原价和折扣后,求便宜的钱数,以让学生灵活运用知识解决实际问题。

  教材还通过做一做的习题,是学生理解折扣含义的基础上,利用百分数解决实际问题。练习二的练习题除了巩固用折扣解决实际问题,还通过创设各类解题情境,让学生明白生活中的商业折扣与数学上的百分数之间是相互联系的。

  [教学目标]

  1、让同学们在商品打折销售的情境中理解“折扣”的意义。

  2、在掌握“求一个数的百分之几是多少”这种问题的基础上自主解决问题,培养同学们解决实际问题的能力。

  3、养成独立思考、认真审题的学习习惯。

  [教学重点]

  会解答有关折扣的实际问题。

  [教学难点]

  合理、灵活地选择方法,解答有关折扣的实际问题。

  [教法与学法]

  引导交流,合作探究

  [教学准备]

  白板课件收录机等物品

  [教学过程]

  一、谈话引入,揭示课题

  师:同学们,你们喜欢购物吗?你有什么购物的体验吗?今天我们一起来学习有关购物的知识吧。

  师板书:折扣

  二、明确学习目标

  白班出示学习目标,让生读中理解,明确学习任务。

  三、创设情景

  师:请同学们观察老师拍摄的几组图片,想一想生活中在哪些地方见过这些图片?

  生:商场。

  师生:搞什么活动?

  生:打折销售商品。

  (从学生的身边例子唤起对“折扣”的回忆,激起学生的`学习兴趣。)

  四、教学新知

  1、明确概念,理解折扣”的含义。

  白板出示概念(商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就表示十分之几,也就是百分之几十),引导学生识记。

  2、初步计算,熟悉百分数与折扣之间的正确转化。

  (这一设计,目的让学生熟练掌握折扣的百分数表示方法,为后的应用做铺垫。)

  3、情境体验

  通过观察购物的情境图,体会“八五折”表示的实际含义。

  (这一设计,目的让学生理解“几折”的数学表示,为将学习求折扣的应用题做铺垫。)

  4、初步应用

  如果原价是100元的毛衣,打七折,猜一猜现在的价钱会是多少元?

  5、解决例题

  (1)爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。现在买这辆车用了多少钱?

  6、活动:我是小小销售员

  (通过模拟商场购物的真实情景,让每一位学生参与现场购物活动,在活动中感受打折扣促销的具体场景。)

  7、解决例题

  (2)爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

  (将例题(2)放到此处教学的目的是让学生熟练了解决简单的一步计算的问题后,探究较复杂的问题,有利于分散难点,提高学习效率。)

  五、巩固练习

  活动1:看你有多棒

  妈妈给小强买了一套运动服,原价120元,现在打七五折出售,比原来便宜多少元?

  (让学生说思路,了解学生是否掌握此类题目的解决方法。)

  活动2:考考你

  一辆自行车,七折出售后是700元,它的原价是多少元?

  (学生熟悉了已知原价和折扣求现价的方法后,进行变式练习,实现举一反三,触类旁通的目的。)

  活动3:轻松过关

  说说下面每种商品打几折出售?

  (1)一辆汽车按原价的90%出售。

  (2)一座楼房按原价的96%出售。

  (3)一只旧手表按新手表价格的80%出售。

  (设计意图:通过简单的练习,让学生在轻松的学习活动中巩固所学知识。)

  活动4:我是小法官

  判断对错:

  (1)商品打折扣都是以原商品的价格作为单位“1”,即标准量。()

  (2)一件上衣现在打八折出售,就是说比原价便宜了10%。()

  (通过辨别练习,深化对概念的理解。)

  六、拓展延伸

  活动5:考考你的智力(课件出示题目)

  (在学生进行了一系列的练习活动后,适当设置有难度问题,有利于激发学生的探究欲望,将课堂教学活动推向一个新的高度。)

  七、课堂小结

  谈谈这节课我们学会了什么?你有什么收获?

  八、课后作业

  双休日到附近的商场调查一下促销活动中的不良现象,写一篇简单的调查报告。

六年级下册数学教学设计4

  教学内容:

  人教版六年级下册第19~20页圆柱体积公式的推导和练习三的第1~3题。

  教学目标:

  1、通过观察、操作、讨论等教学活动过程,理解圆柱体积计算公式的推导过程,并会正确地计算圆柱的体积。

  2、在图形的变换中,培养迁移能力,逻辑思维能力,并进一步发展其空间观念。

  3、探索和解决问题,体验转化及极限的思想方法。

  4学会由未知向已知转化的学习方法。

  教学重点:掌握和运用圆柱体积计算公式。

  教学难点:掌握圆柱体积公式的推导过程。

  教学方法:尝试指导法

  学法指导:猜想→讨论→操作→概括→尝试→辨析→总结

  教学用具:圆柱的体积公式演示课件。

  学习用具:准备推导圆柱体积计算公式所用的学具。

  教学过程:

  一、激疑引入

  同学们,你们看,茶叶罐是什么形状的?如何求它的体积?你有办法吗?……今天,就让我们一起来研究圆柱体积的计算方法(板书课题:圆柱的体积)。

  二、探究新知

  1、猜想

  现在该怎样来计算圆柱的体积呢?不妨大胆猜想一下好吗?

  2、表扬鼓励,实践迁移

  (1)有同学能把圆柱转化成我们已学过的立体图形,来计算它的体积,真是既聪明又能干!

  让学生互相讨论,思考应如何转化,然后组织全班汇报。(把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。)

  (2)操作:学生操作学具,切割拼合。

  (3)感知:将圆柱体模具(已切好)当场演示。

  ①让一位学生把切割好的一半拿上又叉开;

  ②另一位学生将切割好的另一半拼合上去;

  ③观察得到一个什么形体?同时你发现了什么?逐步引导学生观察、对比、分析。

  (4)课件演示,让学生明白:分成的扇形越多,拼成的立体图形就越接近于长方体。

  (5)讨论:圆柱与所拼成的近似长方体之间的有什么联系?

  (6)汇报:你发现了什么?【圆柱→近似长方体:①体积相等;②底面积相等;③高相等;④表面积不相等。】

  (7)概括总结

  ①让学生试着总结公式;

  ②老师在学生总结的基础上用课件出示

  长方体的体积=底面积×高

  ↓ ↓ ↓

  圆柱体的体积=底面积×高

  用字母表示:v=sh

  3、运用新知,尝试解答

  [做一做]一根圆柱形木料,底面积为75cm2,长90cm。它的体积是多少?

  (1)尝试:让学生理解题意,自己尝试解答。

  (2)展示:根据v=sh可得:75×90=6750(cm3)

  (3)讲评并强调:计算体积时结果应用体积单位。

  (4)拓展:如果已知圆柱底面的半径r和高h,该怎么来计算圆柱的体积呢?如果已知的.是底面的直径d和高h呢?

  让学生独立思考,写出计算公式,再相互交流。

  得到:v=πr2h

  [完成教材第20页例6]一个圆柱形水杯,从里面量底面直径是8厘米,高是10厘米。已知一袋纯牛奶有498mL。问这个杯子能不能装下这袋牛奶?

  1、教师引导学生:要回答这个问题,先要计算出杯子的容积。

  2学生独立计算杯子的容积,然后与牛奶的容积作比较,就完成了任务。

  三、巩固练习

  1、完成下表。

  底面积/ m2

  高/m

  圆柱的体积/ m3

  7

  3

  5.6

  4

  2一个压路机的前轮是圆柱形,轮宽2.5米,半径1米。它的体积是多少立方米?

  四、全课小结

  同学们,今天我们学习了什么知识?你还有什么不懂的问题?

  五、布置作业(练习三第2、3题)

  板书设计

  圆柱的体积

  圆柱转化近似长方体

  长方体的体积=底面积×高

  ↓ ↓ ↓

  圆柱的体积=底面积×高

  V柱=sh

  V柱=πr2h

【六年级下册数学教学设计】相关文章:

六年级数学下册《圆柱》教学设计04-21

六年级下册数学《负数》教学设计04-21

六年级下册数学思考教学设计04-22

小学六年级下册数学教学设计03-14

六年级数学下册《利率》教学设计12-15

六年级数学下册《解比例》教学设计03-09

六年级数学下册《圆柱的体积》教学设计04-27

六年级数学下册《圆柱的认识》教学设计01-20

六年级数学下册《面的旋转》教学设计12-19