我要投稿 投诉建议

《分数除法》教学设计

时间:2023-03-02 19:00:23 教学设计 我要投稿

《分数除法》教学设计

  作为一名人民教师,就不得不需要编写教学设计,教学设计是实现教学目标的计划性和决策性活动。那要怎么写好教学设计呢?以下是小编为大家收集的《分数除法》教学设计,欢迎大家分享。

《分数除法》教学设计

《分数除法》教学设计1

  【教学目标】

  1、结合具体的情景,巩固、掌握有余数除法的计算方法;

  2、通过小组合作探究,理解余数一定比除数小的道理;

  3、初步养成用数学解决实际问题的意识和能力。

  【教学重难点】

  在巩固、掌握有余数除法的计算方法的基础上理解余数一定小于除数。

  【教学过程】

  一、情景感知,适时提问。

  1、用竖式计算

  (1)57÷9(2)40÷8(3)38÷7(4)24÷6

  (请学生独立完成,及时校对)

  [设计意图:及时巩固学生已学知识,为这节新课的学习打下基础。]

  2、课件出示例1,进入情境:用15盆鲜花来装饰联欢会的会场,以每5盆为一组,可以摆几组呢?

  T:同学们,你们还记得这道题目吗?谁会列算式?(板书:15÷5=3(组))

  二、探究发现,试作体验。

  1、出示例题3:如果上一例中一共有16盆花,还是每5盆一组,最多可以分几组?多几盆呢?

  T:如果现在变成了16盆花,条件没变,你还会算吗?这道题该怎样列算式呢?谁会算?(板书:16÷5=3(组)??1(盆))

  2、改变条件,花盆的总数变成了17、18、19、20盆,请学生分别再来列算式算一算(写在自己的本子上)。

  T:如果是17、18、19、20盆,还是每5盆一组,那最多可以分几组?还剩几盆呢?你会算吗?怎么列算式?

  三合作交流,试说分享。

  1、请学生以小组分工合作的形式,先列式算一算,再讨论观察余数与除数,说说你们发现了什么?

  T:前后4人为一小组,分工合作,每人做一题,并相互检查,看看有没有漏算,有没有算错,看哪一小组最先得出答案。(学生动手写一写)

  T:现在哪一小组愿意将你们的计算成果和我们大家分享一下呢?(学生汇报,并板书)17÷5=3(组)??2(人)

  18÷5=3(组)??3(人)

  19÷5=3(组)??4(人)

  20÷5=4(组)

  T:看来同学们的计算能力越来越好了。那现在我们来看看黑板上这几条算式的除数和余数,谁能来说说你发现了什么?细心的孩子一定发现了。

  预设:除数比余数大;除数是5,余数可以是0、1、2.3、4、(真棒,你们观察得真仔细)T:可是,有人不服气了,我们一起去看看。(出示小精灵的话——不对不对,这只是个巧合,

  如果数大一点,结果肯定就不一样了。)你们觉得是巧合吗?好,那现在我们就去验证一下,让它输的心服口服,怎样?有信心吗?

  (增加花盆的总数,分别是21、22、23、24、25盆,让学生将课本上相应的.算式补充完整。——开火车汇报答案。)

  21÷5=

  22÷5=

  23÷5=

  24÷5=

  25÷5=

  2、课件出示所有算式,再来看看除数和余数,说一说余数为什么不能是“5”。(提示:被除数逐渐变大,除数不变,那余数呢?除数是“5”,余数可能有几种情况呢?)

  3、归纳总结:(1)余数要小于除数;

  (2)知道除数是几,就能知道余数可能是几。

  4、改变除数,不改变被除数,让学生试着做一做。(加深余数和商之间的密切联系,尤其让学生明白,当知道除数时,便可以知道余数可能是几)

  16÷4=

  17÷4=

  18÷4=

  19÷4=

  四、知识梳理,适时拓展。

  1、判断题:第52页的做一做,让学生判断,进一步明确“余数要比除数小”,并列出正确的竖式。

  2、先做第一小题,并请学生说说自己判断的理由,引导学生理解:被除数=除数×商+余数。

  3、解决问题:十月份有31天,十月份有几个星期?多几天?

  4、拓展延伸,完成填一填。

  5、同学们,这节课你有什么收获:你体验最深的是什么?

  板书设计:

  有余数的除法

  17÷5=3(组)??2(人)

  18÷5=3(组)??3(人)

  19÷5=3(组)??4(人)

  20÷5=4(组)

  余数一定要比除数小。

《分数除法》教学设计2

  【教学目标】

  1、借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

  2、掌握一个数除以分数的计算方法,并能正确的计算。

  3、培养学生乐于交流、喜欢数学的情操,感受数学来源于生活。

  【教学重点】

  一个数除以分数的计算法则推导过程。

  【教学过程】

  课前谈话:

  《皇帝内经》中说春天是一个生发的季节,对于你们小孩子来说,要多运动才能长高个,那么春天还是一个美容的季节,爱美的女士们在这个季节要注重皮肤护理,多做面膜多补水。春天还是一个开始减肥的最佳季节,夏天可以穿漂亮的衣服,美美的。和老师聊天长知识吧?老师希望你们像我一样,多留心观察生活,积累生活经验。

  一、课前导入

  昨天毕老师问我,夏天马上到了,有没有一种快速减肥的方法?于是我给毕老师介绍了一款素食减肥营养饼。这素食减肥营养饼,胖子吃了能变瘦,瘦子吃了能变壮,于是我给办公室几个老师限量赠送四张饼,并制定了饮食计划。孙老师每天吃2张,白老师每天吃1张,毕老师每天吃半张,袁老师每天吃四分之一张,听到这里,你想知道什么?

  生1:谁每天吃最少?(这都知道了)

  生2:他们能吃几天?(太棒了)

  二、新知探究

  (一)探究整数除以分数

  1、下面请同学们结合学习指南,完成学习单上第一部分内容。

  指名读学习指南。(附:学习指南)

  1、独立思考:

  (1)分一分:把分饼的过程用算式记录下来。

  (2)想一想:结合分饼的.过程,总结算法。

  2、合作交流:与组员分享自己的想法。

  师:明白学习指南的要求了吗?现在开始。(学生完成,教师巡视抽取样本)

  (学生独立完成学习单,时间3分钟。学生小组讨论时间2分50秒。)

  2、组织汇报:

  师:请你结合分饼过程说一说算式中每一个数字的意义。

  生1:第一个算式:4÷2=2,4表示4张饼,每天吃2张,2表示能吃2天。

  第二个算式:4÷1=4,4表示4张饼,每天吃1张,4表示能吃4天。

  第三个算式:4÷=4×2=8张饼,每天吃这张饼的二分之一,每张饼分两份,一张饼吃两天,4乘2,表示吃8天。

  第四个算式:4÷=4×4=16张饼,每天吃这张饼的四分之一,每张饼分四份,一张饼吃四天,4乘4,表示吃16天。

  师:你说的太棒了,我还想请你再说一说,算式中4乘2和4乘4中的2和4在图中表示什么?

  生:2表示每张饼分成2份,一张饼吃2天,4张饼可以吃8天,4表示4分之一的倒数,代表一张饼吃4天,4乘4等于16天。

  师:太棒了,给她点掌声。这个同学解释了2遍,我相信你们一定能听懂。

  这两个算式是整数除以分数,通过这两个算式的计算过程你发现了什么?

  生:一个数除以另一个数等于一个乘这个数的倒数。

  师:一个数和另一个数我们用整数除以分数代表更准确些。

  观察这四个算式有什么相同点和不同点。

  生:他们每人都有四张饼

  师:这是从表象上看,我们可以算式更深层次去分析。前两道题是整数除以整数的除法算式,后两道是整数除以分数的除法算式,他们都是求4里面有几个除数。也就是说整数除法算式和分数除法算式意义有什么关系?

  生:是不是可以把分数除法转化为分数乘法?

  师:no,我是说意义上,前两个和后两个算式都是在求4里面有几个除数,也就是说整数除法意义和分数除法意义有什么关系?就两个字。

  生:相同

  师:有什么不同点?

  生:以1为分界线,1往上,商比被除数小,1的话,商和被除数相等,1往下,商比被除数大。

  师:说的不错,但是就以这两个题,其实我们在找不同点的时候,可以从计算方法上去分析。前两道整数除以整数除法你是怎么计算的,后两道整数除以分数你是怎么计算的?

  生:整数除以整数直接除,整数除以分数把分数变成它的倒数。

  师:说的特别好,掌声送给他。奖励20分当家币。

  (二)探究分数除以分数

  演算法验证

  师:刚才我们结合分饼的过程掌握了整数除以分数计算方法,那么这种方法针对分数除以分数也同样适用吗?我们来看这道题,(÷)谁会算?

  生:÷,我打算把变成倒数,用乘,3和9约分,4和8约分,最后等于。

  师:你是利用整数除以分数计算法则来计算分数除以分数的,但是这只是一个猜测,没有说服力,我们需要验证,怎样来验证分数除以分数也可以转化为分数乘法来计算?大家想,我如果我们用刚才简单的分饼初级操作来验证力不从心。老师给大家介绍一种新的方法,叫做演算法。演算法是你经过深入学习数学常用到的一种方法。根据知识的新旧承接,利用旧知识迁移、转化,算出结果,要想用演算法验证整数除以分数同样适用于分数除以分数需要用到哪些旧知识?

  生:商不变的性质

  师:对,你怎么这么聪明!你怎么想到的?

  生:两个数互为倒数,相乘是1,乘等于1,所以除以,用乘。

  师:还需要用到哪些知识?提示:分数除法就要用到分数与除法的关系?

  生:a÷b=b分之a,b不等于0

  师:太棒了,商不变的性质用文字说明一下吗?

  生:被除数和除数同时乘或除以不为0的数,商不变。字母表达式里的C表示什么(相同的倍数)

  师:还有除数的性质

  知识链接:

  1、分数与除法的关系:b分之a=a÷b,b不等于0

  2、商不变的性质:a÷b

  =(a×c)÷(b×c)

  =(a÷c)÷(b÷c)【c≠0】

  3、除法性质的扩展应用:a÷b÷c=a÷(b×c)a÷(b×c)=a÷b÷c

  a÷(b÷c)=a÷b×c

  生:A除以B除以C等于A除以B乘C的积

  师:还有除法性质的逆运算,还有性质扩展。

  请同学们利用这些知识链接小组合作完成学习单上的第二部分内容

  老师巡视,抽取样本(独立完成时间:1分25秒。小组合作时间:3分钟)

  师:同学们想出验证方法

  生1:根据商不变性质验证(附:验证方法)

  师:说的特别好,为什么。没想打到你们验证出来,我在备课时想到一种验证方法,谁看懂老师的方法?结合每一步说一说运用了什么?

  指名回答

  师:分数与除法关系及除法性质应用这些步骤要为了说明什么?

  生:一个数除以另一个数等于这个数乘另一个数倒数

  (三)探究分数除法法则

  师:整数除以分数对分数除以分数同样适用。昨天和孟老师学习分数除以整数,今天学习分数除以分数,其实这些都是分数除法,所以算法及算理是相同。用一句话总结分数除法算法法则、

  生:除以一个数等于乘这个数倒数

  师:计算分数除法转换为分数乘法计算

  虽然我们只有一节课的缘分,但是你从我这里学习的不是有限的知识,而是学习数学的思想方法、习惯。我有一个习惯,把数学文字用哪个字母表达出来。现在请同学们用字母表达式表达分数除法的计算法则。

  生:a÷b=a×。

  师:对b做说明

  生:b不等于0

  师:我们接下来进行一场实战演习。指名读学习指南。老师巡视

  (学生完成时间:3分钟10秒小组讨论时间:5分钟)

  师:出示学生样本,请学生讲一讲填表过程

  生:根据除数特征填表,除数大于1,商小于被除数,除数等于1,商等于被除数,除数小于1,商大于被除数。

  师:解释一下字母表达式。

  存在疑问:

  1、只能用ABC表示吗?(任意)

  2、字母只能代表分数吗(分数,小数,整数)

  师:计算分数除法注意什么?

  生:除以一个数要变成乘这个数的倒数。

  师:总结:变—不—变(除号变乘号除数不变不除数变倒数变)

  这有一道题,说思路

  总结:小数,分数在一起,解决策略是什么?

  生:小数变分数

  三、课堂总结:不管计算加减乘除,先同意数的形式,再计算。

  你们不仅凭自己收获数学知识,还掌握数学方法思想解决策略。同学们你们太棒了!

《分数除法》教学设计3

  一、教学内容

  分数与除法,教材第65、66页例1和例2

  二、教学目标

  1、使学生理解两个整数相除的商可以用分数来表示。

  2、使学生掌握分数与除法的关系。

  三、重点难点

  1、理解、归纳分数与除法的关系。

  2、用除法的意义理解分数的意义。

  四、教具准备

  圆片、多媒体课件。

  五、教学过程

  (一)复习

  把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)

  (二)导入

  (2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)

  (三)教学实施

  1、学习教材第65页的例1 。

  (1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)

  (2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?

  通过练习,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当1÷3得不到一个有限的小数时,又该如何表示?这一问题激发了学生探索的积极性,创设解决问题的情境,研究分数与除法的关系。

  (3)指名让学生把思路告诉大家。

  就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数来表示,这一份就是块。

  老师根据学生回答。(板书:1 ÷ 3 =块)

  (4)如果取了其中的两份,就是拿了多少块?(块)怎样看出来的?

  通过这样的练习,为下面的操作打下基础。

  2、观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法

  3、学习例2 。

  (1)如果把3块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)(2)3 ÷ 4的计算结果用分数表示是多少?请同学们用圆片分一分。

  老师:根据题意,我们可以把什么看作单位“1 "?(把3块饼看作单位“1”。)把它平均分成4份,每份是多少,你想怎样分?请同学到投影前演示分的过程。

  通过演示发现学生有两种分法。

  方法一:可以1个1个地分,先把1块饼平均分成4份,得到4个,3个饼共得到12个,平均分给4个学生。每个学生分得3个,合在一起是块饼。

  方法二:可以把3块饼叠在一起,再平均分成4份,拿出其中的一份,拼在一起就得到块饼,所以每人分得块。

  讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)

  两种分法都强调分得了多少块饼,让学生初步体会了分数的另一种含义,即表示具体的数量。借助学具,深化研究。

  (3)加深理解。(课件演示)

  老师:块饼表示什么意思:

  ①把3块饼一块一块的分,每人每次分得块,分了3次,共分得了3个块,就是块。

  ②把3块饼叠在一块分,分了一次,每人分得3块,就是块。

  现在不看单位名称,再来说说表示什么意思?(表示把单位“1 “平均分成4份,表示这样3份的数;还可以表示把3平均分成4份,表示这样一份的数。)

  (4)巩固理解

  ①如果把2块饼平均分给3个人,每人应该分得多少块?2÷3=(块)

  ②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)

  ③从刚才的研究分析,你能直接计算7÷9的结果吗?()

  借助学具分饼、想象分的过程、抛开情境给出除法算式三个环节的呈现层次清楚,逻辑性强,为学生概括分数与除法的关系提供了足够的操作经验。

  4、归纳分数与除法的关系。

  (l)观察讨论。

  请学生观察1÷3 =(块)3÷4 =(块)讨论除法和分数有怎样的关系?

  学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)

  用文字表示是:被除数÷除数=

  老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。

  (2)思考。

  在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

  (3)用字母表示分数与除法的关系。

  老师:如果用字母a 、b分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

  老师依据学生的总结板书:a÷b =(b≠0)

  明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)

  5、巩固练习:

  (1)口答:

  ①7÷13==()÷()()÷24=9÷9=0.5÷3=n÷m=(m≠0)

  ②1米的等于3米的()

  ③把2米的绳子平均分3段,每段占全长的(),每段长()米。

  解释0.5÷3=是可以用分数形式表示出来的,但这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数。

  (2)明辨是非

  ①一堆苹果分成10份,每份是这堆苹果的()

  ②1米的与3米的一样长。()

  ③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的。()

  ④把45个作业本平均分给15个同学,每个同学分得45本的。()

  (3)动脑筋想一想

  ①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

  (用分数表示)

  ②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?

  六、教学反思:

  七、教材分析:本节课是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。

  八、设计意图:

  1.直观演示是学生理解分数与除法的关系的前提:由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的'含义,重点在如何理解3张饼的就是张。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的就是张饼的理解。学生操作经验的积累有效地突破了本节课的难点。

  2.培养学生提出问题的意识与能力是培养学生创新精神:本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。

  3.注重了知识的系统性:数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对0.5÷3=,部分学生会觉着的=表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。

《分数除法》教学设计4

  教学目标:

  1、使学生经历整数除以分数计算方法的过程,理解并掌握整数除以分数计算方法,通过比较,能正确地计算整数除以分数和整数除以分数的试题。

  2、使学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。

  3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功的乐趣,增加学好数学的信心。

  教学重难点

  理解并掌握整数除以分数计算方法,通过比较,能正确地计算整数除以分数和整数除以分数的试题。

  教学过程:

  一、回顾整理,熟悉法则。

  1、口算。

  9/10÷3=4/7÷4=3/10÷1=3/5÷6=

  口答出答案,并说出得到答案的具体过程。分数除以整数:是用分数乘整数的倒数。

  2、梳理相关的知识。

  分数除以整数的计算法则:分数除以整数,只要用分数乘以整数的倒数。

  举例说说分数除以整数的意义:把9/10平均分成3份,每份是多少?

  二、激活记忆,引出课题。

  1、出示课件。

  幼儿园李老师把4个同样大的饼分给小朋友。

  每人吃2个,可以分给几个人?(口答答案和算式)

  每人吃1个,可以分给几个人?(口答答案和算式)

  每人吃1/2个,可以分给几个人?(口答答案和算式)

  板书:4÷1/2=8(个)

  2、观察算式,引出课题。

  观察算式,揭示课题——整数除以分数。

  三、探究算法,形成法则。

  1、交流得数8个人的想法。

  分一分,让学生动手分一分,体会8个苹果的由来;用算式表示4×2=8;比较算式4÷1/2=8和4×2=8,观察它们之间的联系,形成整数除以分数的算法,4÷1/2=4×2=8。

  2、变换数据,增加感性认识。

  每人吃1/3个,可以分给几个人?每人吃1/4个,又可以分给几个人?

  先列算式,再在图中分一分得出结果,最后把算式写完整。

  4÷1/3=4×3=12(个)

  4÷1/4=4×4=16(个)

  3、出示课件

  有1根2米长的绳子

  (1)截成每段1/2米,可以截几段?

  (2)截成每段1/3米,可以截几段?

  (3)截成每段长2/3米,可以截几段?

  列出算式;在图中分一分,写出结果;思考计算方法,形成法则后再计算。

  4÷2/3=4×3/2=6(段)

  4、交流,形成计算法则。

  小组交流整数除以分数的计算法则,再班级交流,形成整数除以分数的计算法则:整数除以分数,只要整数乘分数的倒数。

  四、巩固练习,形成技能。

  1、完成练一练。

  12÷2/3=12×()/()9÷6/7=9×()/()

  10÷2/5=8÷2/3=3÷6/7=12÷8/7=

  2、8÷6/75/12÷3

  除以一个数(0除外),等于乘这个数的倒数。

  3、课堂作业。

  6÷1/42/3÷1/54/9÷2/38/3÷41/3÷3/45/6÷1/43/7÷75/7÷7/5

  4、1壶水可以装几杯?

  五、课堂总结

  本节课你有什么收获?

  教学反思:

  1、创设生活情境:

  数学知识来源于生活。通过创设幼儿园的老师分饼的生活情境来激发学生对知识的求知,增强学生的探索欲望,从而感悟学习数学的意义和必要。

  2、注重自主探索:

  学生有了知识的'求知欲望后,赶紧让他们在小组内自主探索,借助圆片和图形语言理解理解整数除以分数的意义。通过观察,比较,思考与讨论,自主发现知识的内在联系,体会"除以分数"与"乘这个数的倒数"之间的关系。

  3、经历知识的形成:

  数学的学习过程注重学习的效果,更注重知识的学习过程。于是,我让学生通过自己的操作猜想整数除以分数的计算方法,并借助图形语言来验证知识的形成,如4÷1/2=8是怎样得出学生就能借助图形语言自己探索出每张分了2个1/2,4张就有8个1/2。从而培养学生学习数学的能力和逻辑推理能力,体会数学知识的严密性,还让学生明白了知识或真理是能接受实践的验证的,为以后同学们的学习猜想提供了很好的学习方法、

  4、练习循序渐进:

  设计练习时,我在算一算里安排有层次的计算,让学生先算简单的不需要约分,再算需要约分的,最后算要化成带分数的算式,满足了不同的学生有不同的收获。然后把所学的知识回归生活,解决实际问题。

《分数除法》教学设计5

  教学目标:

  能力目标:培养学生动手动脑能力,以及计算能力。

  知识目标:

  体验整数除以分数的计算方法,并能正确的计算。

  情感目标:

  培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。

  教学重点:

  整数除以分数的计算方法。

  教学策略:

  在小组间交流合作的`基础上,提高计算能力和计算速度。

  教学准备:

  小黑板

  教学过程:

  一、导入新课。

  前一课我们学习了整数除以分数的计算方法,你们还记得吗?老师考一考你们好吗,看题目。

  6÷=÷=÷=÷=

  2÷=÷=÷=÷=

  通过提问,全班订正,导入新课。并评价。

  二、用小黑板出示下列题目。

  3x=x=10x=25x=

  提问学生解方程的规律,并指名说一说第一小题的解法。

  其它题目独立作,全班订正。

  三、课本第三题

  指名说出题目的意思,然后解答,全班判定。

  四、第四题

  1、先独立计算,全班订正。

  2、小组间交流发现了什么规律。

  3、全班交流。

  4、教师小结。

  板书设计:

  整数除以分数

  除以真分数商大于整数

  整数除以分数除以1商等于整数

  除以假分数商小于整数

【《分数除法》教学设计】相关文章:

分数除法教学设计02-08

《分数除法》教学设计04-22

《分数与除法》教学设计11-02

分数除法二的教学设计02-07

《分数除法》课程教学设计02-27

《分数与除法》教学设计与反思02-23

《分数与除法的关系》教学设计02-27

关于分数除法教学设计02-28

分数除法小学数学教学设计03-31

《分数与除法的关系》的课程教学设计12-14