我要投稿 投诉建议

数学归纳法教学设计

时间:2023-03-02 14:03:01 教学设计 我要投稿

数学归纳法教学设计

  作为一名教学工作者,通常需要准备好一份教学设计,教学设计是实现教学目标的计划性和决策性活动。那要怎么写好教学设计呢?以下是小编整理的数学归纳法教学设计,希望对大家有所帮助。

数学归纳法教学设计

  一、教材分析

  数学归纳法是一种重要的数学证明方法,在高中数学内容中占有重要的地位,其中体现的数学思想方法对学生进一步学习数学、领悟数学思想至关重要。本课是数学归纳法的第一节课,前面学生对等差数列、数列求和、二项式定理等知识有较全面的把握和较深入的理解,初步掌握了由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法,这是研究数学问题,猜想或发现数学规律的重要手段。但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为一种论证方法。因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法——数学归纳法,这是促进学生从有限思维发展到无限思维的一个重要环节,同时本节内容又是培养学生严密的推理能力、训练学生的抽象思维能力、体验数学内在美的好素材。

  二、教学目标

  学生通过数列等相关知识的学习,已经基本掌握了不完全归纳法,已经由一定的观察、归纳、猜想能力。

  根据教学内容特点和教学大纲,结合学生实际而制定以下教学目标:

  1.知识目标

  (1)了解由有限多个特殊事例得出的一般结论不一定正确。

  (2)初步理解数学归纳法原理。

  (3)能以递推思想为指导,理解数学归纳法证明数学命题的两个步骤一个结论。

  (4)会用数学归纳法证明与正整数相关的简单的恒等式。

  2.能力目标

  (1)通过对数学归纳法的学习,使学生初步掌握观察、归纳、猜想、分析能力和严密的逻辑推理能力。

  (2)在学习中培养学生大胆猜想,小心求证的辨证思维素质以及发现问题、提出问题的意识和数学交流的能力。

  3.情感目标

  (1)通过对数学归纳法原理的探究,亲历知识的构建过程,领悟其中所蕴含的数学思想和辨正唯物主义观点。

  (2)体验探索中挫折的艰辛和成功的快乐,感悟数学的内在美,激发学生学习热情,使学生喜欢数学。

  (3)学生通过置疑与探究,初步形成正确的数学观,创新意识和严谨的科学精神。

  三、教学重点与难点

  1.教学重点

  借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些与正整数有关的简单恒等式,特别要注意递推步骤中归纳假设的运用和恒等变换的运用。

  2.教学难点

  (1)如何理解数学归纳法证题的严密性和有效性。

  (2)递推步骤中如何利用归纳假设,即如何利用假设证明当时结论正确。

  四、教学方法

  本节课采用交往性教学方法,以学生及其发展为本,一切从学生出发。在教师组织启发下,通过创设问题情境,激发学习欲望。师生之间、学生之间共同探究多米诺骨牌倒下的原理,并类比多米诺骨牌倒下的原理,探究数学归纳法的原理、步骤;培养学生归纳、类比推理的能力,进而应用数学归纳法,证明一些与正整数n有关的简单数学命题;提高学生的应用能力,分析问题、解决问题的能力。既重视教师的组织引导,又强调学生的主体性、主动性、交流性和合作性。

  五、教学过程

  (一)创设情境,提出问题

  情境一:根据观察某学校第一个到校的女同学,第二个到校的也是女同学,第三个到校的还是女同学,于是得出:这所学校的学生全部是女同学。

  情境二:平面内三角形内角和是,四边形内角和是,五边形内角和是,于是得出:凸边形内角和是。

  情境三:数列的通项公式为,可以求得,,,,于是猜想出数列的通项公式为。

  结论:运用有限多个特殊事例得出的一般性结论,即不完全归纳法不一定正确。因此它不

  能作为一种论证的方法。

  提出问题:如何寻找一个科学有效的方法证明结论的正确性呢?我们本节课所要学习的数

  学归纳法就是解决这一问题的方法之一。

  (二)实验演示,探索解决问题的方法

  1.几何画板演示动画多米诺骨牌游戏,师生共同探讨:要让这些骨牌全部倒下,必

  须具备那些条件呢?(学生可以讨论,加以教师点拨)

  ①第一块骨牌必须倒下。

  ②两块连续的骨牌,当前一块倒下,后面一块必须倒下。

  (启发学生转换成数学符号语言:当第块倒下,则第块必须倒下)

  教师总结:数学归纳法的原理就如同多米诺骨牌一样。

  2.学生类比多米诺骨牌原理,探究出证明有关正整数命题的方法,从而导出本课的重心:数学归纳法的原理及其证明的两个步骤。(给学生思考的时间,教师提问,学生回答,教师补充完善,对学生的回答给予肯定和鼓励)

  数学归纳法公理:(板书)

  (1)(递推基础)当取第一个值(例如等)结论正确;

  (2)(递推归纳)假设当时结论正确;(归纳假设)

  证明当时结论也正确。(归纳证明)

  那么,命题对于从开始的所有正整数都成立。

  教师总结:步骤(1)是数学归纳法的基础,步骤(2)建立了递推过程,两者缺一不

  可,这就是数学归纳法。

  (三)迁移应用,理解升华

  例1:用数学归纳法证明:等差数列中,为首项,为公差,则通项公式为.①

  选题意图:让学生注意:①数学归纳法是一种完全归纳的证明方法,它适用于与正整数有关的问题;

  ②两个步骤,一个结论缺一不可,否则结论不成立;

  ③在证明递推步骤时,必须使用归纳假设,必须进行恒等变换。

  此时学生心中已有一个初步的证明模式,教师应该规范板书,给学生提供一个示范。

  证明:(1)当时,等式左边,等式右边,等式①成立.

  (2)假设当时等式①成立,即有

  那么,当时,有所以当时等式①也成立。

  根据(1)和(2),可知对任何,等式①都成立。

  例2:用数学归纳法证明:当时

  选题意图:通过师生共同活动,使学生进一步熟悉数学归纳法证题的两个步骤和一个结论。

  例3:用数学归纳法证明:当时

  选题意图:①进一步让学生理解数学归纳法的严密性和合理性,从而从感性认识上升为理性认识;

  ②掌握从到时等式左边的变化情况,合理的进行添项、拆项、合并项等。

  (四)反馈练习,巩固提高

  课堂练习:用数学归纳法证明:当时

  (练习让学生独立完成,上黑板板演,要求书写工整,步骤完整,表述清楚,如果发现学

  生证明过程中的错误,教师及时纠正、剖析,同时对学生板演好的方面予以肯定和鼓励。)

  教师总结:利用数学归纳法证明和正整数相关的命题时,要注意以下三句话:递推基础不

  可少,归纳假设要用到,结论写明莫忘掉。

  (五)反思总结

  学生思考后,教师提问,让同学相互补充完善,教师最后总结,这一环节可以培养学

  生抽象、归纳、概括、总结的能力,同时教师也可以及时了解学生的掌握情况,以便弥补和及时调整下节课的教学方向。

  小结:(1)归纳法是一种由特殊到一般的推理方法,分完全归纳法和不完全归纳法两种,

  而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明;

  (2)数学归纳法作为一种证明方法,用于证明一些与正整数n有关数学命题,它的基本思想是递推思想,它的证明过程必须是两步,最后还有结论,缺一不可;

  (3)递推归纳时从到,必须用到归纳假设,并进行适当的恒等变换。

  (六)作业布置

  选修2-2习题2.3第1题第2题

【数学归纳法教学设计】相关文章:

数学归纳法教学设计02-07

数学归纳法的教学设计三篇04-14

精选数学教学设计04-30

数学教学设计12-28

数学教学设计12-27

数学《欣赏与设计》教学设计04-19

数学的优秀教学设计01-08

数学教学设计步骤01-06

数学周长教学设计01-20