圆的认识教学设计(集锦15篇)
作为一名教职工,有必要进行细致的教学设计准备工作,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。一份好的教学设计是什么样子的呢?下面是小编整理的圆的认识教学设计,仅供参考,希望能够帮助到大家。
圆的认识教学设计1
教学内容:《圆的认识》人教版 六年级上册
教学目标:
1、使学生认识圆的各部分名称,掌握圆的特征及画圆的方法。
2、在活动中培养学生观察、动手操作、与他人合作交流等方面的能力。
3、使学生感受生活中圆的存在及作用,感受平面图形的学习价值,提高学生数学学习的兴趣和学好数学的信心。
教学重难点:掌握圆的特征及画圆的方法。
教学过程:
一、创设情境,导入新课
(1)喜羊羊和灰太狼一起参加动物王国里举办的汽车设计大赛,喜羊羊设计一个圆形车轮的汽车,灰太狼设计一个方形车轮的汽车。它们行驶起来会是什么感觉呢?
(2)对于圆,我们一定不会感到陌生吧?生活中你们在哪见过它们呢?
(3)(课件出示)欣赏有关圆的美丽的图片,如向日葵、光环等。
【设计意图】
数学来源于生活,又应用于生活。创设学生熟悉的生活情境,使学生产生积极的心理需求,感受数学与生活的密切联系,体验到生活中处处有数学与数学的运用。
二、自主探索,交流互动
1、感悟画圆法
师:好了,欣赏了那么多美丽的圆,大家想画这些圆吗?你们有什么办法把圆画出来呢?
……
2、尝试用圆规画圆
师:利用实物画圆这个方法大家都会了,我们就不研究了。你们想挑战用圆规画圆吗?
(生在纸上画圆,师巡视,仔细观察学生画圆时出现的问题)
师:老师发现大部分同学画的圆很漂亮,但有小部分同学画的圆不是很好喔!你猜猜,他们可能在什么地方出现了问题?大家愿不愿意帮帮他们呢?
……
师:其实大家所说到的就是用圆规画圆的步骤和应注意的地方。谁说说?师根据生说相机归纳与板书,并示范画圆。
(1)确定圆规两脚间的距离
(2)把针尖固定在一个点上
(3)把另一只脚旋转一周
3、画定长为2厘米的圆
师:同学们学会画圆了吧?想再画一个吗?不过这次老师有一个小小的要求喔,就是要使咱班同学画的圆一样大,怎么办?(圆规两脚间的距离定的一样长)
【设计意图】
把静态的图片变为动态的操作,从学生的真实点出发,以练习作为贯穿用圆规画圆的教学过程的始终,并以观察、讨论、谈话等教学方法加以辅助,让学生在亲身经历知识的过程中掌握画圆的方法及注意点。
4、剪一剪、折一折
(1)认识圆心。师:把这些折痕都相交于圆中心的一点,我们把它叫做什么?用字母怎样表示?
小结:我们把圆中心的这一点叫做圆心,用字母“O”表示。请同学们用彩笔在圆上标出圆心。
(2)认识直径。师:我们任取一条折痕,观察它有什么特点?
小结:通过圆心,两端都在圆上,是一条线段。(揭示概念像这样通过圆心并两端都在圆上的线段就是圆的直径)用字母d表示,并在圆上标出。
(4)认识半径。师:画面中的线段有什么特点?
小结:一端在圆心上,另一端在圆上任意一点。揭示概念(连接圆心与圆上任意一点的线段叫做半径)用字母“r”表示。
(5)半径与直径的关系。师:我们认识了圆心、直径与半径,想想它们的特征及其关系?
a在剪成的圆里你能画多少条半径?它们的关系有什么关系?
b在剪成的圆里你能画多少条直径?
c直径与半径有什么关系?
小组讨论交流
小结、板书
【设计意图】
在这里先让学生掌握画圆的方法,再让他们认识圆的各部分名称及其特征,既优化了教材的编排,又符合学生的认知结构,达到了教学目标的要求。
三、自练反馈,巩固练习
(1)填一填:
①同一圆里有( )条直径,有( )条半径。
②在同一圆里,直径与半径的比是( )。
③把一个圆规的两脚张开2厘米,画一个圆,它的直径是( )。
(2)判一判,对的打“√”错的打“×”。
①两端都在圆上的线段叫圆的直径。 ( )
②圆心到圆上任意一点的距离都相等。 ( )
③直径是半径的2倍。 ( )
(3)三题中选一题做:
①请你当裁判员:我们班举行迎“元旦”套圈比赛,参赛的同学应站成什么形状合理、又省时?请根据你的创意画出相应的.示意图。
②请你当设计师:绿岛公园计划在圆形人工湖里建一个观影亭,请你拟定一个选择建设位置的方案并简要说明理由。
③体育老师想在操场上画一个10厘米的圆圈做游戏,可圆规太小,你能帮她想一个办法吗?
【设计意图】
《课标》提倡:学生的数学学习内容应是现实的、有意义的、富有挑战性的,强调数学知识的来源与应用。这一环节将枯燥的练习,融入到当设计师、裁判员中来,促使学生以饱满的热情参与学习,又在活动中巩固所学的知识,在交流中开阔思维,培养学生的创新意识及实践能力。而且练习的设计富有层次性,体现了实践性、应用性、开放性。
四、回顾总结
师:在这节课里,我们学到了什么?我们生活中有些东西为什么要做成圆形的呢?感兴趣的话课后我们可以用今天所学的知识解释一下。
圆的认识教学设计2
撰写公开课教案是每个教师都必需熟悉的一项工作,好的公开课教案能够激发同学兴趣,培养同学多方面的能力,有效提高课堂教学效率。本站提供的这套新课标五年级下册《圆的认识》公开课教案符合新课标的规范,思路清晰,结构合理,适合同学的年龄特征,与素质教育的要求相吻合,具有科学性、实用性等优点。
教材简析:
圆是小学数学“空间与图形”领域里最后教学的一个平面图形,也是教学的惟一一个曲线图形。同学对平面上常见的`直线图形的认识经验将有助于同学对曲线图形的认识,这也是同学对平面图形认知结构的一次重要拓展。通过“圆”的教学,本单元在教学圆的基础知识的同时,还通过化曲为直、等积变形这些方法与手段,进一步发展转化的战略和推理能力。全单元的教学内容分成四局部编排,本节课教学第93·97页圆的形状特点以和圆心、半径和直径的认识。教学中采用由表和里、逐步深入,来体验圆的特征。例1通过说圆、画圆、感
受圆与以前学过的平面图形的不同之处。教材里没有直接指出圆是曲线图形,把机会留给同学体验和交流。这样,同学在直观认识圆的基础上深入了一步。例2通过用圆规画、用尺量来教学圆心、半径、直径,使同学能更准确地掌握圆心、半径、直径的概念。例3布置同学通过画、量、折等活动,深入体验圆的特征。练习十七在布置练习基础知识的同时,让同学进一步体会圆,开展数学考虑,发展空间观念。
特别说明:由于本届五年级同学还没有使用苏教版国标本教材,因此,在实际教学中有关轴对称和平移,旋转的内容无法涉和。
教学目标:
1.知识与技能目标:使同学认识圆,知道圆各局部的名称;掌握圆的特征,理解直径和半径的相互关系。初步学会用圆规画圆。
2.过程与方法目标:通过分组学习,动手操作,主动探索等活动,初步培养同学的合作意识和创新意识,以和笼统、概括等能力,进一步发展同学的空间观念。
3.情感与价值观目标:通过学习,提高同学对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。
教学重点:认识圆和其特征,让同学初步学会用圆规画圆。
教学难点:画圆,用圆的知识来解释和解决有关实际问题。
课前准备:纸圆、剪刀、线绳、尺、圆规、多媒体课件
教学过程
一、创设情境,初步感知圆
1.课前交流:略
2.导入新课:
(1)(指着物体上的圆)这种形状叫……
(2)生活中你在哪儿见过圆?
二、自主合作,初步认识圆
1.画圆。
(1)同学借助物体画圆。
(2)用圆规试着画一个圆,然后组织同学交流用圆规画圆的方法:定长、定点、旋转一周。
(3)用圆规规范地画圆、剪圆,让同学再次感受圆是由曲线围成的。
(4)比较得出:圆是由曲线围成的平面图形。
2.认识圆的特征
(1)认识圆心、半径、直径
①观察剪下来的纸圆,组织同学在交流中认识圆心,并知道常用字母0表示。
②通过让同学折圆,使同学进一步感受圆心的特征。
③通过让同学画一画、比一比纸圆上的折痕,交流有什么发现,从而认识圆的半径和直径的概念。
(2)认识圆的特征
①组织同学通过小组合作学习,自主探索圆的有关特征。
②完成填表题和判断画圆,让同学知道圆的大小和半径或直径有关。
③教师小结有关内容。
三、联系实际,初步应用圆。
1.广场花坛喷水装置的设计,假如你是设计人员,喷头放在哪里?喷水距离应满足什么条件?为什么?巩固圆心的作用。
2.车轮为什么要设计成圆的?车轴为什么要装在圆心?
3.这是一个球场,要在中间画这样一个圆要用哪些工具?怎么画?
圆的认识教学设计3
教学内容:
P95—96例1、2
教学目标:
1、使学生在观察、画圆等活动中感受并发现圆的有关特征,能够用圆规画圆;
2、知道什么是圆心、半径和直径;
3、使学生在活动中进一步积累认识图形的学习经验。
教学重点:
能用圆规画圆,知道什么是圆心、半径和直径。
教学难点:
知道什么是圆心、半径和直径。
教学方法:
自主探究法
教学用具:
圆规,三角尺
教学过程:
一、复习引入
1、以前我们学习过很多的平面图形,现在请大家回想一下,我们都学习过哪些平面图形?让学生回答,并及时给予鼓励。
2、在我们学习这些图形中有一个图形是我们没有系统学习过的图形?(圆)
3、出示课题:圆的认识
二、联系实际
1、在我们身边存在很多圆,回想一下,在生活中哪些地方还能见到圆?让学生联系生活实际回答,可多举例子说明。注意把握时间,尽可能让学生多说。
2、如果让你画一个圆会画吗?(方法不限,手段不限)可以让学生多说一些方法,比如:用圆形物品,绳子等等。在课上要注意观察学生是否能用不同的方式画圆,若不能可稍微的提示一种。
三、用圆规画圆
1、用圆形物品画圆只能画一个,它的大小不能变。如果想画一个大圆怎么办呢?这时我们就该用更科学的工具画,那就是&ldqu;圆规&rdqu;。
2、拿出圆规观察一下,你觉得圆规有几部分组成?学生尝试回答(教师总结:圆规有一个把手,两只脚,一只脚是针尖,一直脚是笔尖)
3、打开练习本,自己尝试画一个圆。思考在画的.过程中圆规哪个部分不动,哪个部分动了,相应的谁的位置没变,谁的位置变了?让学生自己多花,体验画圆的过程,最后由学生回答
4、在学生总结后,可根据学生的总结教师示范画法。在师范的过程中故意出错,帮助学生补充没有注意到的地方。最后总结:画圆时,两不变,一变(针尖固定不变,针尖与笔尖的距离不变,笔尖的位置发生了变化。)
四、认识圆心、半径和直径
1、现在来重点研究两不变。第一个不变:针尖固定的位置不变,那针尖在纸上画出来的是一个什么?(点)我们把这个固定的点叫做圆心,用大写字母表示。(强调大写字母)
2、让学生在自己的练习本上画出来
3、针尖固定不变在纸上画出的是一个点,那针尖与笔尖之间距离不变,它在纸上画出来的是一条什么呢?(线段)
4、让学生独立尝试画出表示针尖与笔尖距离的线段。
5、教师:既然是一条线段,那它有几个端点,(两个)这两个端点分别连接的哪?
学生:一个端点连接圆心,一个端点连接圆上的点
教师:它只能连接一个点吗?(不是,它能连接圆上任意一个点)
6、所以我们把连接圆心和圆上任意一点的线段叫做半径,用字母&ldqu;r&rdqu;来表示
7、出示各类型的错误让学生区分,明确半径必须要连接圆心和圆上任意一点。
8、对比观察,如果一条线段的两个端点都在圆上,并且经过圆心,那它就叫做直径,用字母&ldqu;d&rdqu;来表示。
9、仿照学习半径的过程出示错例,让学生更清晰的认识直径的概念。
10、在学生认识了以上概念后,在练习本上画一个圆,并且标出圆心、半径和直径。
五、练习巩固
完成P96页练一练
六、小结
回想一下,这节课你学会了什么?
圆的认识教学设计4
【学习目标】
1、让学生通过折一折、画一画、量一量等多种形式的操作认识圆,并理解直径、半径、圆心等概念,同时掌握圆的基本特征。
【自主学习】
1、多边图形是由几条()围成的封闭图形。
2、圆是由一条()围成的封闭图形。
【合作探究】
1、小组合作学习圆的各部分名称。
自学提示:
(1)打开课本第56页,用自己准备的圆片对折,打开,再换个方向对折,再打开,反复折几次。你发现了什么?
(2)读课本第56页,边读边画出关键字词。
(3)在圆片上标出o、r、d。
【达标测评】
1、完成填空。
①连接()和()任意一点的()叫做半径,用字母()表示。
②通过()并且两端都在()的'(),叫做直径,用字母()表示、
③同一圆内,有()条半径,有()直径,直径是半径的(),半径是直径的()。
2、明辨是非。
(1)在同一个圆内只可以画100条直径、()
(2)圆的直径都相等。()
(3)等圆的半径都相等。()
(4)两端都在圆上的线段叫做直径。()
(5)一个圆的半径扩大到原来的2倍,它的直径也扩大到原来的2倍。()
3、选择正确答案的字母填在括号里:
(1)从圆心到()任意一点的线段,叫半径。
A、圆心B、圆外C、圆上
(2)同一个圆内,半径有()条,直径有()条。
A、一条B、无数C、100条
(3)()的对称轴有无数条。
A、正方形B、长方形C、圆
(4)()是圆内最长的线段。
A、直径B、半径C、圆心
4、快乐计算。
5、探索能手
请你找出下列圆的圆心和直径。
圆的认识教学设计5
教材分析
“圆的认识”是在学生已经认识了长方形、正方形、平行四边形、三角形、梯形等平面图形和初步认识圆的基础上进行学习的,在学生认识了多种平面图形的基础上认识的由曲线围成的平面图形,是小学阶段认识的最后一种常见的平面图形。由于学生已经对圆有了初步的感性认识,所以教材首先从日常生活的常见物体中引出圆,再凭借圆形物体画出圆,然后利用折叠的方法找出圆心,在此基础上,通过测量、比较和交流等活动,引导学生认识圆的半径和直径以及它们的长度之间的关系,从而使学生掌握圆的特征。考虑到小学生的认知水平,教材并没有给出圆的本质特征的描述,但教材通过观察与思考、画一画等活动帮助学生逐步对此加以体会,为学生到中学学习圆的定义提供了感性认识和直观经验。
学情分析
我班学生在低年级已经对圆有了初步认识,加之生活中比较常见的缘故,已经有了一定的感性积累,只是在概念上尚不具体化,同时已经学过了几种常见图形认识,如:长方形、正方形、三角形等,为本课的学习奠定了基础。小学五年级的学生思维处于经验性的逻辑思维,思维的形成与发展需要依赖具体形象的经验材料来理解和抽象事物之间的内在联系,以前学的几种常见图形是由线段围成的,而圆则是由曲线围成的图形,无论从内容本身,还是研究问题的方法,都有所变化。故此,在教学中要紧密联系学生的实际生活,列举出日常生活、生产中所见到的圆形物体,引出圆的概念,了解圆的特征。圆的相关知识与特征,学生通过自己的操作、探索都能获得,“学”数学就是“做”数学;而学生的心理特点,决定了应当重视引导学生运用多种感官,参与知识的形成过程,因此我借助多媒体课件为自己的探索所得提供科学验证和知识深化、运用的机会。通过认识圆、画圆过程,体验数学的乐趣。
教学目标
1、使学生在观察、操作、画图等活动中感受并发现圆的有关特征,知道什么是圆的圆心、半径和直径,能借助工具画圆,能用圆规画指定大小的圆,能应用圆的知识解释一些日常生活的现象。
2、使学生进一步体验圆形与生活的联系,体会圆形物体的美。
教学重点和难点
进一步认识圆的特征及其内在联系,使学生深切体会圆的特征与我们的生活紧密相连,并学会用圆规画圆。
教学过程
一、情境引入
师在黑板上板书“圆”字,问:看到这个字你想到什么?(指名回答)
生:十五的月亮、轮胎、月饼、圆脸蛋、唱片……
师:一个“圆”字让大家浮想联翩,在我们的生活中,圆无处不在,说了这么多的圆,看了这么多的圆,你想不想亲自动手画一个?用你手上的工具动手画一画。问:圆和以前学过的平面图形有什么不同?(长方形、正方形、三角形、平行四边形、梯形都是由线段围成的,而圆是由曲线所围成的。)
二、探究特征
师:刚才大家用各种工具画了圆,但是,大家可能也发现了,有的工具并不好用,而且大多数只能画一种大小的圆,有没有一种工具可以很方便地画各种大小的圆呢?是什么?
生:圆规。
师:对,这个工具就是圆规,圆规就是专门用来画圆的工具(生拿出自己的圆规观察),圆规有一个小圆柄,画圆时手要握住这个小圆柄,还两只脚,一只脚是针尖,另一只脚是用来画圆的笔,画圆时,针尖必须固定在一点,不可移动,两只脚要叉开,手握住小圆柄旋转一周。
师:你能试着用圆规画出一个圆吗?(生画圆)
师:让学生说说自己用圆规画圆的过程(组织交流)
师在黑板上示范画圆,大家看,我们在用圆规画圆的时候要注意一些什么问题?
1、注意圆规这个针尖要固定在一个点上,我们画的图形才够圆。(板书:1、定点)
2、圆规的两只脚之间的长度不能变,否则圆形不能闭合。(板书:2、定长)
3、要用手握住圆规的这个小圆柄旋转一周。(板书:3、旋转)
师:同学们,现在大家运用刚才总结的方法,再在练习本上画一个圆,看看是否画得更顺畅了。(生画圆)
师:现在大家都已经学会画圆了,那么同学们再想想,有没有什么办法让我们画的圆都一样大呢?
师:对!我们可以让两只脚固定,这样就可以画出固定大小的圆了。现在我们先拿出直尺,让针尖和铅笔头之间的距离是3厘米,把圆规固定好,在纸上画一个圆。
师:这个针尖是什么?(圆心)用什么字母表示?(O)圆心,顾名思义就是圆的中心,刚才我们画的两个圆一样大,但位置不同,想一想:圆的位置是由什么来决定的?(圆心)圆心可以确定一个圆的位置,针尖固定在哪个位置,圆就在那个位置。(板书:圆心决定圆的位置)
师:大家看这个刚才画的两脚距离是3厘米的圆,要是有人问这个圆有多大,你们怎么回答呢?(半径3厘米的圆),对这个两脚间的`距离就是半径,用什么字母表示?(r)(指导书写r,说说什么是半径,作相应的练习)
师:请你在纸上画一个圆,比原来的圆要小得多。请你在纸上再画一个圆,比原来的圆要大得多。(生画)
师:刚才我们画了大小不同的两个圆,谁来说一说:圆的大小是由什么来决定的?(板书:半径决定圆的大小)
师:同学们,你们再想一想,在同一个圆里,这样的半径可以画几条呢?现在我们来做个小小的竞赛,怎么样?在一分钟内看看哪位同学在同一个圆里画的半径又多又好。(板书:在同一个圆里,有无数条半径)请同学们用尺子来量一量这些半径,它们的长度到底是怎样的。(板书:在同一个圆里,所有的半径都相等。)
师:除了半径以外在圆中还有能决定圆的大小的线段吗?
生:直径。
师画一条直径,讲解:通过圆心并且两端都在圆上的线段,叫做直径,用什么字母表示(d)(做相应的练习)
师:如果我给你们一分钟的时间画直径,想一想:能够画出圆的所有直径吗?(板书:有无数条直径),同样在同一个圆里,所有的直径也相等吗?(板书:所有的直径也相等)
师:请同学们量一量半径和直径,有什么发现?(r=d=2r)
师:我们来做个小游戏,比一比谁的反应比较快。(师报半径,生说直径;师报直径,生说半径。)
师:大家还记得什么是轴对称图形吗?(生拿圆片折,发现交流)
三、巩固练习
师:同学们学得可真不错,大家有没有兴趣接受新的挑战呢?
1、判断题。
(1)在一个圆中,有一个圆心,无数条半径,无数条直径。( )
(2)两端都在圆上的线段叫做直径。( )
(3)半径总是直径的一半。( )
(4)圆心决定圆的位置,半径决定圆的大小。( )
(5)圆内直径是最长的线段。( )
(6)所有的半径都相等,所有的直径都相等。( )
2、欣赏图片。
圆的认识教学设计6
一、情景引入
出示一组生活中物体的图片,让学生欣赏。(如太阳、圆月、汽车的车轮、呼拉圈、光盘、钟面等)
1、刚才欣赏到的那些漂亮图片中的物体是什么形状?
2、在我们的生活中,就在我们的身边,还有那些地方能看到圆?
(学生衣服上的纽扣、身上的硬币、桌子里的杯子等等)
请学生用手指一指这些物体上的圆,并用手摸一摸,有什么感觉?
3、看来,在我们的大自然中、生活中圆是无处不在,今天就让我们一起来了解这个虽然不熟悉但和我们处处在一起的圆。(板书:圆的认识)
二、教学新知,初步画圆
1、刚才看了那么多的圆,说了那么多的圆。接下来请大家用你能想到的办法自己动手画一个圆。
2、请学生交流画圆的方法。如借助圆形的物体画,还有书上讲到的方法或是用圆规画)
3、通过刚才的看圆、说圆与画圆,你觉得圆与以前学过的平面图形有什么不同?
总结:以前学过的平面徒刑都是由线段围成的,圆是由曲线围成的,圆比较光滑,没有角。
4、大家介绍了很多画圆的方法。为了使我们能画出任意大小的圆来,勤劳、智慧的人们制成了专门用来画圆的工具――圆规。
三、认识圆规,掌握用圆规画圆的方法。
1、认识圆规。
让学生取出课前准备好的圆规,一起认识圆规的的构成并介绍圆规两脚的功能:圆规有两只脚,一只是针尖,另一只脚是用来画圆的笔,两只脚可以随意叉开。
2、尝试画圆。
1 )你能试着用圆规画一个圆吗?学生独立画圆。
2 )刚才老师转了转,发现有些同学要么没画好,要么画出来的不圆,下面我们一起看大屏幕,注意观察如何使用圆规画圆。(使用实物投影仪,教师示范使用圆规画圆)
3 )说说,老师刚才是如何使用圆规画圆的?学生回答,教师总结并板书:两脚叉开――固定针尖――旋转成圆。
4 )学生按照这个方法再练习画一个圆,同时思考:通过两次画圆,应该注意什么?
总结:针尖要固定,不能移动;两脚间的距离保持不变;要旋转一周。
5 )练习画一个两脚之间距离是2 厘米的圆。
四、学习圆的各部分名称及特征。
1、认识圆心、半径、直径。
1 )教学圆心:刚才我们画圆时,针尖固定的这个点,我们把它叫做圆心,用字母O 来表示。找出你刚才所画的圆的圆心,并标上字母O 。同桌相互检查一下,有没有标对。
2 )教学半径:连接圆心和圆上一点的线段是半径,用字母r 表示。指导学生画一条圆的半径,并标上字母。在我们用圆规画圆时,这个半径就是指什么?(两脚之间的距离)因此圆的`大小就是由圆的半径决定的。
让学生联系画一个半径是4 厘米的圆,画出一条半径,标上圆心和半径的字母。向全班展示自己的圆,看一看,自己画的、标的还有什么地方部不对。
3 )教学直径。
出示一个画有一条直径的圆,让学生观察这条线段的位置有什么特点?
总结:像这样通过圆心并且两端都在圆上的线段是直径,通常用字母d 表示。
同学们你们画的圆也有直径,请你画一条圆。
4 )闭好眼睛,回想标圆心、画半径与直径的方法。
2、练习,完成练一练的第1 题。
说说哪些不是半径或直径,为什么?
3、研究圆的特点。
我们已经认识了圆心、半径和直径,现在我们就继续来研究圆的特点。
1 )出示一张圆形的纸,你能找到它的圆心吗?(把圆对折两次)
通过对折,你还发现圆有什么地方比较特别吗?(对折后能完全重合,是轴对称图形)
2 )把你手中的圆通过:画一画、量一量、比一比、折一折,在小组内讨论交流下面问题:在同一个圆里可以画多少条半径,多少条直径?
在同一个圆里,半径的长度都相等吗?直径呢?
同一个圆的直径和半径有什么关系?
圆是轴对称图形吗?它有几条对称轴?
3 )学生汇报回答上述四个问题,教师适当引导:前面三个问题为什么要强调在同一个圆里?可以画无数条半径和直径,你是怎么知道的?你能用字母来表示半径与直径之间的关系吗?(板书:d=2r )
4 )通过刚才的讨论和交流,我们掌握了圆的特征,谁来总结一下圆的特征。
五、巩固练习。
1、练习十七的第1 题。
填写表格,并说一说半径与直径之间有什么关系?
2、练一练的第2 题。
画一个直径是5 厘米的圆,并用字母O、r、d 分别表示出它的圆心、半径和直径。
教师提问:使用圆规画一个直径是5 厘米的圆,先要确定什么?(求出半径,也就是两脚之间的距离)
3、判断题。
1 )圆有无数条对称轴。
2 )直径是半径的2 倍。
3 )画一个直径为4 厘米的圆,圆规两脚间的距离为4 厘米。
4 )圆的位置由圆心决定。
5 )两脚间的距离越大,画出的圆就越大。
六、欣赏生活中的圆
谈话:瞧,生活中,也蕴含着丰富的数学规律呢。其实,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏。
师:感觉怎么样?
师小结: 而这,不正是圆的魅力所在吗?
七、全课总结
谈话:其实短短的一节课,要想真正了解圆还不太容易。那么就让我们从今天起,走进历史,走进文化,走进圆的世界吧!
圆的认识教学设计7
课前与同学谈话省略
师:今天上课我们学什么?大声地说“学什么”
生齐:圆的认识
师:从哪里看到的?只给我看,
生指屏幕
师:屏幕上有,还有呢?
师:说,哪有?
师:没错,圆片,还有吗?
生:圆规
师:没错,还有圆规。小朋友们都很善于观察、善于联想。老师的信封里还有一个圆,想看看吗?
生齐:想
师出示一个信封,摸出一个圆片,师:是圆吗?
生:是
师:听说咱们班的同学特别的聪明,所以,一会儿老师要把这个圆片放进信封了,让同学们把他摸出来,有没有信心?
生齐:有
师:我不会轻易的给你们这样一个简单的问题的,这里面不只仅有着一个圆,还有其他的图形,想看看吗?
师:好,现在看谁的反应最快?
师从信封里摸出一个长方形
生:长方形
师:男孩的反应快,状态也不错。
师从信封里摸出一个正方形
生:正方形
师:还有一个图形
师从信封里摸出一个三角形
生:三角形
师:猜猜还有吗?
师从信封里摸出一个平行四边形
生:平行四边形
师从信封里摸出一个梯形
生:梯形
师:行了行了,小朋友们,都别你们猜到了。
教师课件演示各种图形,
师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?
生齐:没有
师:为什么?
生:因为圆是由曲线围成。
师:而其他图形呢?
生:都是由直线,哎!线段围成。
师:同意吗?
师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?
生:角
师:圆有角吗?
生:没有。
师:所以圆特别的?
生:光滑
师:说的真好
师:数学上,我们把左面的这些由线段围成的图形给它个名称:直线图形。(课件演示)小朋友们,圆是由什么围成的?
生齐:曲线
师:给它一个名称。
生:曲线图形
师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?
生齐:不难。
师:谁让你们聪明呢?还有难的。
师出师一个不规则图形
师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?
生齐:不会
师:为什么?
师:有的同学说,因为它有的地方凹,有的地方凸。而圆怎么样?显得特别的饱……,说出来,特别的……
生齐:丰满
师:嘿!瞧,还有一个
师出示一个椭圆,
师:看,没有凹进去的地方了吧?看上去有光滑,有丰满,你们待会儿会不会也把它也当作圆给摸出来?
生:不会,
师:为什么?
师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……
生:瘦瘦的
师:瘦瘦的。圆呢?
教师出示圆形教具,转动。
师:怎么样?
生:一样
师:怎么看到的一样?
师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?
行,就你吧,近水楼台
师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?
生:看不见了
师:看不见,就让他一个人在里面摸多没意思呀。所以我请你闭上眼睛,我把图形一个一个往你手上放。你要是感觉是就大声地喊一声“是”,要是觉得不是……
生:不是
师:可以吗?
生齐:可以
师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?
生:不能
师:对,不能提醒。但是可以做一件事情,当你认为他的判断正确的时候,可以大声的喊一声“对”,给它鼓励一下,ok?
生齐:ok!
师:好,伸出你最拿手的一只手,右边,准备好了吗?
生:准备好了
生1:不是.
师:对不对?
生:对.
生1:不是.
师:对不对?
生:对.
生1:更不是.
师:瞧,这更字用的多好.
生1:更不是.
师:小家伙厉害.
生1:不是.
生:对.
生1:是.
生:对.
师:掌声鼓励一下.
圆是曲线图形
可是和下面这些凹凸的或者椭圆这样的曲线图形相比,圆看起来又是那样的丰满,那样的光滑,那样匀称.20xx多年前,伟大的数学家毕达哥拉斯赞美”在一切平面图形中圆最美”,
画圆
张老师发现绝大多数的同学画的都非常的好,不过也不排除有个别同学到现在也没画完,有个别同学画完了,可似乎还有缺口,明明是这样画的,可是怎么就绕不回去了呢?聪明的小朋友猜一猜,他们之所以没有胜利的画一个圆,你们觉得可能是哪里的问题,
生2:我认为是圆的半径变了.
师:半径是个新词,我们用圆规来说,院的半径变了,也就是画圆的时候,量角的距离变了.在画圆的过程中能不能改变?
生:不能.
师:除了这个地方改变以外,还有那些地方不能动?
生3:圆心改变了.
师:在画圆的过程中,针不能改变.
画圆看起来简单,大家琢磨一下,里面还是有学问的.下面我们把刚才大家提出的建议综合起来,手握柄,中间扎的地方固定,两角的距离不能变,三个要素综合起来,轻轻的绕一圈,圆就画出来了.小朋友们,掌握了这三要素,有没有信心,比刚才画的又快又好?
生:能.
师:先别动笔,边画边考虑.
圆和什么有关系?
生:圆心和半径.
师:我知道你们说的半径是什么意思?
谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察
生4(到黑板前画出远的半径)
师:对不对?
生:对.
师:同学们,可千万不要小看这条线段,在圆中,这条线段有着特殊并且很重要的地位,我发清闲,刚才这位同学画完圆以后,还擦了擦,对这两条线段似乎有特殊的要求,大家来看一下,一端在哪里?
生:圆心.
师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?
生:O.
师:请在你刚才画的圆上,标出圆心,写出字母O.
继续看这条线段,圆心的另一端在哪里?
生;圆上.
师:象这样,连接圆和圆上两个点的线段,叫做半径.半径可以用小写字母r来表示,现在画出一条半径,写出字母r.刚才我发现哟个同学,上次画的非常快.刻画司这次画的非常慢,你们知道是什么原因吗?不知道是他没有听清楚,还是自身在想方法,在琢磨.因为我们画的是一条圆的半径,他画的是四条,我们想一想:一个圆里只有一条半径吗?
生:不是.
师:那有多少个?
生:无数个.
师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?
生;不知道.
师:不知道不怕,怕的是他人说这三个字:为什么?
我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.
生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.
师:因为平滑,所以有无数条.
生6:因为圆心到圆上的距离全部相等
生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.
师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?
生:随便
师:请问,在圆上有多少个这样随便的点?
生:无数.
师:有无数个点,就对应无数个半径.所以小朋友们,在学习数学时,不能只图于外表,要问自身三个字?
生:为什么?
师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?
生:相等.
师:同意的请举手,我的三个字又来了.
生:为什么.
师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?
生:圆规.
师:还有尺寸,尺寸让你们用来干什么的?
生:量.
师:现在就动手量一量.
虽然是有无数条,但是我们不必全都量,找几条代表一下就可以了.同学们,刚才我们画一画,量一量,在你们的圆中,半径都相等的请举手.有没有同学说,老师我不用画,不用量也知道,有吗?
生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.
师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.
生:半径有无数条,长度都相等,都一样.
师:其实早在20xx多年前,中国古时候的哲人也对这个问题进行了研究,你们猜他们的出结论了吗?
生:得出来了.
师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.
生:错.
师:我还没有画呢,聪明的小朋友不看结果,看过程就知道了,画直径要通过圆心,概括一下,通过圆心,并且两端都在圆上,这样的饿线段才叫直径.可以用小写字母d来表示,现在请画出圆的直径,并用小写字母d来表示.小朋友们,数学学习,除了问刚才的三个字为什么以外,还要善于联想,不要一切都从头在来,.刚才我们已经证实了半径,知道它的特点:半径有无数条,而且都相等.那直径呢?
生:也有无数条,直径都相等.
师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?
除了六个举手的同学以外,其他同学可不恩能够丧失一次考虑的机会呀.带工具了吗,一起来画一画.通过画一画,量一量,我们发现圆里的直径的长度都是一样的.有没有同学说我不量也知道这个结果?
生9:因为我们知道所有的半径都相等.
师:聪明的眼睛看出的不一样,我们看这条线段,看出的是一条直径,他除了看出一条直径以外,还看到了两条半径,一条直径包括两条半径,而所有半径的长度相等,所以直径也相等.我们又一次借助推理,完成了直径的发现.刚才这个男同学,不只告诉我们为什么直径相等,还给我们带出了一个新的结论,在同一个圆里,直径和半径有关心吗?
生:有.直径是半径的二倍.
师:这样描述太复杂了,用简洁的数学语言来描述好吗?也就是d=2r,,就这样.两个字母加一个数字,我们刚才的结果就出来了.我们刚才学习了圆心,半径,直径,而且半径和直径有无数条,长度相等.我们试想一下,在同一个圆里,假如它们的半径不是都相等的,而是有的长,有的短,那你觉得最后连起来的还是一个圆吗?还可能光华丰满匀称光华丰满匀称吗?想一想是什么原因,使圆看起来那样光华丰满匀称?
生:半径和直径都相等.
师:很准确.是半径的长度都相等.在一个圆里有无数条半径,长度都相等,所以才使圆看起来光华丰满匀称,圆的美通过研究终于在这里找到了.有人会说在同一个图形中,具有等长线段的又不是只有圆一个,,你们相信吗?我们来看一下,这是一个正三角形,从中心动身,连接三个顶点,这三条线段一样长,这样的线段有三条.正方形有几条?
生:四条.
师:正五边形,有几条?
生:五条.
师:正六边形?
生:六条.
师:正八边形?
生:八条.
师:圆形?
生:无数条.
师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最 的地方和曲线图形圆交融在一起.
现在把张老师给你们准备的圆拿出来,哪个女小朋友一直在观察,看这个圆是否有圆心,肯定有,只是我没有标,请看大屏幕,这是一个半径( )厘米的圆,聪明的你们能量出它的半径吗?看看谁能想到好方法?同伴合作,开始.这边的'同学量得的半径是5厘米.这边也是5厘米,这边是4厘米,这边是3厘米,大家请考虑,张老师画的圆很奇怪,居然有的是半径3厘米,有的是4厘米,有的是5厘米,那半径不同,你就想象一下,圆的大小一样吗?
生:不一样.
师:半径几厘米的圆比较大?
生:5厘米.
半径几厘米的圆比较小?
生:3厘米.
师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?
生:半径.
师:虽然量出来了,可是我要看看是怎样能够量出来的?谁愿意给大家交流一下,你是怎样量出半径的?
生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.
师:在三年级的时候,我们也学过对折,这就说明圆是一个轴对称图形,折线就是它的对称轴.圆有无数条对称轴,这名同学是对折两次,那么对折一次是否可以量出?
生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.
师:有的同学是通过量得出的结果,虽然比我们刚才说的方法都在混却,但是在数学学习过程中,要先尝试,在调整,其实也是一种可行的方法.嘎嘎年菜有个女小朋友悄悄的问我,张老师,你这个圆怎么就没有针眼呢?那没有针眼,想一想,我这个圆是用圆规画出来的吗?
生:不是.
师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?
生12:用一个碗扣在白纸上,描一下.
师:有可能,但不是.
生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.
师:人造圆规.
生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.
师:这个方法至少给我们开拓了思路,他用的是三年集学的轴对称图形的知识,也可以,很善于考虑.可是你们都猜错了,正确的答案是用电脑画的.但是我们发现用电脑画圆的的大小太随意了,怎么能更好的画出半径是3厘米,4厘米或者5厘米呢?看,双击一下,对于圆来说,高度就是直径.假如我要画一个半径3厘米,那高度就是6厘米,不对呀,怎么变成椭圆了?
生15:少了宽度.
师:多精明的小朋友呀!所以光有高度还不行.还要有宽度,宽度也要是6厘米,我再按一下回车,就出来一个半径是3厘米,直径是6厘米的圆.我们来看一下是不是这样的.概括一下,画圆的方法,只有圆规一种吗?
生:不是.
师:可以是多种多样的,在所有画圆的方法中,有一种是最最基本的,是圆规.假如张老师非要用圆规画一个半径是5厘米的圆,你觉得我的两角应该张开有多大?
生:5厘米.
师:4厘米呢?
生:4厘米.
师:假如半径是3厘米,那么直径呢?
生:6厘米.
师:是不是我把圆扯开6厘米,就可以画圆了/
生;不是.要扯开3厘米.
师:所以圆规两角张开的距离是半径,回顾一下,今天我们一起认识了圆,又近一步感受了圆的特别,其实圆、还有一个更特别的地方,我们一起来看大屏幕:这是一个正三角形,现在我们把它的中心点稍微选中一下,结果发现和原来的三角形没有完全吻合.现在来看看圆,饶着中心旋转,随便怎样转,都能吻合.数学上我们把圆的这个特点叫做旋转不变性.那三角形有旋转不变性吗?
生:没有.
师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?
生:近似一个圆,
师:想一想,刚才我们旋转的是什么呀?
生:中心.
师:假如不用中心旋转,就不行.这里有一个正方形,饶这个顶点来旋转,不知道行还是不行?一边观察,一边考虑,能转成一个近似的圆吗?所以可以知道正方形,三角形,绕着一边,随便旋转,都可以得出一个近似的圆.一条线段绕中点旋转,请同学们仔细盯着线段的两个端点,看它的运动结束以后,成了一个什么?
生:圆.
师:其实就是特定的点运动的轨迹.今天我们还接触了什么平行四边形,梯形,甚至是任意的区别行等等,那么它们绕某一点旋转,能出现圆吗?回家去试试,也许一幅一幅美伦美幻的图形就在你们的手下诞生了,到时别忘了带给咱班的数学老师和其他同学一起去交流和欣赏
课前与同学谈话省略
师:今天上课我们学什么?大声地说“学什么”
生齐:圆的认识
师:从哪里看到的?只给我看,
生指屏幕
师:屏幕上有,还有呢?
师:说,哪有?
师:没错,圆片,还有吗?
生:圆规
师:没错,还有圆规。小朋友们都很善于观察、善于联想。老师的信封里还有一个圆,想看看吗?
生齐:想
师出示一个信封,摸出一个圆片,师:是圆吗?
生:是
师:听说咱们班的同学特别的聪明,所以,一会儿老师要把这个圆片放进信封了,让同学们把他摸出来,有没有信心?
生齐:有
师:我不会轻易的给你们这样一个简单的问题的,这里面不只仅有着一个圆,还有其他的图形,想看看吗?
师:好,现在看谁的反应最快?
师从信封里摸出一个长方形
生:长方形
师:男孩的反应快,状态也不错。
师从信封里摸出一个正方形
生:正方形
师:还有一个图形
师从信封里摸出一个三角形
生:三角形
师:猜猜还有吗?
师从信封里摸出一个平行四边形
生:平行四边形
师从信封里摸出一个梯形
生:梯形
师:行了行了,小朋友们,都别你们猜到了。
教师课件演示各种图形,
师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?
生齐:没有
师:为什么?
生:因为圆是由曲线围成。
师:而其他图形呢?
生:都是由直线,哎!线段围成。
师:同意吗?
师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?
生:角
师:圆有角吗?
生:没有。
师:所以圆特别的?
生:光滑
师:说的真好
师:数学上,我们把左面的这些由线段围成的图形给它个名称:直线图形。(课件演示)小朋友们,圆是由什么围成的?
生齐:曲线
师:给它一个名称。
生:曲线图形
师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?
生齐:不难。
师:谁让你们聪明呢?还有难的。
师出师一个不规则图形
师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?
生齐:不会
师:为什么?
师:有的同学说,因为它有的地方凹,有的地方凸。而圆怎么样?显得特别的饱……,说出来,特别的……
生齐:丰满
师:嘿!瞧,还有一个
师出示一个椭圆,
师:看,没有凹进去的地方了吧?看上去有光滑,有丰满,你们待会儿会不会也把它也当作圆给摸出来?
生:不会,
师:为什么?
师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……
生:瘦瘦的
师:瘦瘦的。圆呢?
教师出示圆形教具,转动。
师:怎么样?
生:一样
师:怎么看到的一样?
师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?
行,就你吧,近水楼台
师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?
生:看不见了
师:看不见,就让他一个人在里面摸多没意思呀。所以我请你闭上眼睛,我把图形一个一个往你手上放。你要是感觉是就大声地喊一声“是”,要是觉得不是……
生:不是
师:可以吗?
生齐:可以
师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?
生:不能
师:对,不能提醒。但是可以做一件事情,当你认为他的判断正确的时候,可以大声的喊一声“对”,给它鼓励一下,ok?
生齐:ok!
师:好,伸出你最拿手的一只手,右边,准备好了吗?
生:准备好了
生1:不是.
师:对不对?
生:对.
生1:不是.
师:对不对?
生:对.
生1:更不是.
师:瞧,这更字用的多好.
生1:更不是.
师:小家伙厉害.
生1:不是.
生:对.
生1:是.
生:对.
师:掌声鼓励一下.
圆是曲线图形
可是和下面这些凹凸的或者椭圆这样的曲线图形相比,圆看起来又是那样的丰满,那样的光滑,那样匀称.20xx多年前,伟大的数学家毕达哥拉斯赞美”在一切平面图形中圆最美”,
画圆
张老师发现绝大多数的同学画的都非常的好,不过也不排除有个别同学到现在也没画完,有个别同学画完了,可似乎还有缺口,明明是这样画的,可是怎么就绕不回去了呢?聪明的小朋友猜一猜,他们之所以没有胜利的画一个圆,你们觉得可能是哪里的问题,
生2:我认为是圆的半径变了.
师:半径是个新词,我们用圆规来说,院的半径变了,也就是画圆的时候,量角的距离变了.在画圆的过程中能不能改变?
生:不能.
师:除了这个地方改变以外,还有那些地方不能动?
生3:圆心改变了.
师:在画圆的过程中,针不能改变.
画圆看起来简单,大家琢磨一下,里面还是有学问的.下面我们把刚才大家提出的建议综合起来,手握柄,中间扎的地方固定,两角的距离不能变,三个要素综合起来,轻轻的绕一圈,圆就画出来了.小朋友们,掌握了这三要素,有没有信心,比刚才画的又快又好?
生:能.
师:先别动笔,边画边考虑.
圆和什么有关系?
生:圆心和半径.
师:我知道你们说的半径是什么意思?
谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察
生4(到黑板前画出远的半径)
师:对不对?
生:对.
师:同学们,可千万不要小看这条线段,在圆中,这条线段有着特殊并且很重要的地位,我发清闲,刚才这位同学画完圆以后,还擦了擦,对这两条线段似乎有特殊的要求,大家来看一下,一端在哪里?
生:圆心.
师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?
生:O.
师:请在你刚才画的圆上,标出圆心,写出字母O.
继续看这条线段,圆心的另一端在哪里?
生;圆上.
师:象这样,连接圆和圆上两个点的线段,叫做半径.半径可以用小写字母r来表示,现在画出一条半径,写出字母r.刚才我发现哟个同学,上次画的非常快.刻画司这次画的非常慢,你们知道是什么原因吗?不知道是他没有听清楚,还是自身在想方法,在琢磨.因为我们画的是一条圆的半径,他画的是四条,我们想一想:一个圆里只有一条半径吗?
生:不是.
师:那有多少个?
生:无数个.
师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?
生;不知道.
师:不知道不怕,怕的是他人说这三个字:为什么?
我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.
生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.
师:因为平滑,所以有无数条.
生6:因为圆心到圆上的距离全部相等
生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.
师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?
生:随便
师:请问,在圆上有多少个这样随便的点?
生:无数.
师:有无数个点,就对应无数个半径.所以小朋友们,在学习数学时,不能只图于外表,要问自身三个字?
生:为什么?
师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?
生:相等.
师:同意的请举手,我的三个字又来了.
生:为什么.
师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?
生:圆规.
师:还有尺寸,尺寸让你们用来干什么的?
生:量.
师:现在就动手量一量.
虽然是有无数条,但是我们不必全都量,找几条代表一下就可以了.同学们,刚才我们画一画,量一量,在你们的圆中,半径都相等的请举手.有没有同学说,老师我不用画,不用量也知道,有吗?
生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.
师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.
生:半径有无数条,长度都相等,都一样.
师:其实早在20xx多年前,中国古时候的哲人也对这个问题进行了研究,你们猜他们的出结论了吗?
生:得出来了.
师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.
生:错.
师:我还没有画呢,聪明的小朋友不看结果,看过程就知道了,画直径要通过圆心,概括一下,通过圆心,并且两端都在圆上,这样的饿线段才叫直径.可以用小写字母d来表示,现在请画出圆的直径,并用小写字母d来表示.小朋友们,数学学习,除了问刚才的三个字为什么以外,还要善于联想,不要一切都从头在来,.刚才我们已经证实了半径,知道它的特点:半径有无数条,而且都相等.那直径呢?
生:也有无数条,直径都相等.
师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?
除了六个举手的同学以外,其他同学可不恩能够丧失一次考虑的机会呀.带工具了吗,一起来画一画.通过画一画,量一量,我们发现圆里的直径的长度都是一样的.有没有同学说我不量也知道这个结果?
生9:因为我们知道所有的半径都相等.
师:聪明的眼睛看出的不一样,我们看这条线段,看出的是一条直径,他除了看出一条直径以外,还看到了两条半径,一条直径包括两条半径,而所有半径的长度相等,所以直径也相等.我们又一次借助推理,完成了直径的发现.刚才这个男同学,不只告诉我们为什么直径相等,还给我们带出了一个新的结论,在同一个圆里,直径和半径有关心吗?
生:有.直径是半径的二倍.
师:这样描述太复杂了,用简洁的数学语言来描述好吗?也就是d=2r,,就这样.两个字母加一个数字,我们刚才的结果就出来了.我们刚才学习了圆心,半径,直径,而且半径和直径有无数条,长度相等.我们试想一下,在同一个圆里,假如它们的半径不是都相等的,而是有的长,有的短,那你觉得最后连起来的还是一个圆吗?还可能光华丰满匀称光华丰满匀称吗?想一想是什么原因,使圆看起来那样光华丰满匀称?
生:半径和直径都相等.
师:很准确.是半径的长度都相等.在一个圆里有无数条半径,长度都相等,所以才使圆看起来光华丰满匀称,圆的美通过研究终于在这里找到了.有人会说在同一个图形中,具有等长线段的又不是只有圆一个,,你们相信吗?我们来看一下,这是一个正三角形,从中心动身,连接三个顶点,这三条线段一样长,这样的线段有三条.正方形有几条?
生:四条.
师:正五边形,有几条?
生:五条.
师:正六边形?
生:六条.
师:正八边形?
生:八条.
师:圆形?
生:无数条.
师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最 的地方和曲线图形圆交融在一起.
现在把张老师给你们准备的圆拿出来,哪个女小朋友一直在观察,看这个圆是否有圆心,肯定有,只是我没有标,请看大屏幕,这是一个半径( )厘米的圆,聪明的你们能量出它的半径吗?看看谁能想到好方法?同伴合作,开始.这边的同学量得的半径是5厘米.这边也是5厘米,这边是4厘米,这边是3厘米,大家请考虑,张老师画的圆很奇怪,居然有的是半径3厘米,有的是4厘米,有的是5厘米,那半径不同,你就想象一下,圆的大小一样吗?
生:不一样.
师:半径几厘米的圆比较大?
生:5厘米.
半径几厘米的圆比较小?
生:3厘米.
师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?
生:半径.
师:虽然量出来了,可是我要看看是怎样能够量出来的?谁愿意给大家交流一下,你是怎样量出半径的?
生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.
师:在三年级的时候,我们也学过对折,这就说明圆是一个轴对称图形,折线就是它的对称轴.圆有无数条对称轴,这名同学是对折两次,那么对折一次是否可以量出?
生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.
师:有的同学是通过量得出的结果,虽然比我们刚才说的方法都在混却,但是在数学学习过程中,要先尝试,在调整,其实也是一种可行的方法.嘎嘎年菜有个女小朋友悄悄的问我,张老师,你这个圆怎么就没有针眼呢?那没有针眼,想一想,我这个圆是用圆规画出来的吗?
生:不是.
师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?
生12:用一个碗扣在白纸上,描一下.
师:有可能,但不是.
生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.
师:人造圆规.
生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.
师:这个方法至少给我们开拓了思路,他用的是三年集学的轴对称图形的知识,也可以,很善于考虑.可是你们都猜错了,
正确的答案是用电脑画的.但是我们发现用电脑画圆的的大小太随意了,怎么能更好的画出半径是3厘米,4厘米或者5厘米呢?看,双击一下,对于圆来说,高度就是直径.假如我要画一个半径3厘米,那高度就是6厘米,不对呀,怎么变成椭圆了?
生15:少了宽度.
师:多精明的小朋友呀!所以光有高度还不行.还要有宽度,宽度也要是6厘米,我再按一下回车,就出来一个半径是3厘米,直径是6厘米的圆.我们来看一下是不是这样的.概括一下,画圆的方法,只有圆规一种吗?
生:不是.
师:可以是多种多样的,在所有画圆的方法中,有一种是最最基本的,是圆规.假如张老师非要用圆规画一个半径是5厘米的圆,你觉得我的两角应该张开有多大?
生:5厘米.
师:4厘米呢?
生:4厘米.
师:假如半径是3厘米,那么直径呢?
生:6厘米.
师:是不是我把圆扯开6厘米,就可以画圆了/
生;不是.要扯开3厘米.
师:所以圆规两角张开的距离是半径,回顾一下,今天我们一起认识了圆,又近一步感受了圆的特别,其实圆、还有一个更特别的地方,我们一起来看大屏幕:这是一个正三角形,现在我们把它的中心点稍微选中一下,结果发现和原来的三角形没有完全吻合.现在来看看圆,饶着中心旋转,随便怎样转,都能吻合.数学上我们把圆的这个特点叫做旋转不变性.那三角形有旋转不变性吗?
生:没有.
师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?
生:近似一个圆,
师:想一想,刚才我们旋转的是什么呀?
生:中心.
师:假如不用中心旋转,就不行.这里有一个正方形,饶这个顶点来旋转,不知道行还是不行?一边观察,一边考虑,能转成一个近似的圆吗?所以可以知道正方形,三角形,绕着一边,随便旋转,都可以得出一个近似的圆.一条线段绕中点旋转,请同学们仔细盯着线段的两个端点,看它的运动结束以后,成了一个什么?
生:圆.
师:其实就是特定的点运动的轨迹.今天我们还接触了什么平行四边形,梯形,甚至是任意的区别行等等,那么它们绕某一点旋转,能出现圆吗?回家去试试,也许一幅一幅美伦美幻的图形就在你们的手下诞生了,到时别忘了带给咱班的数学老师和其他同学一起去交流和欣赏
圆的认识教学设计8
教材分析:
本节课要研究的“圆的认识”。是在学生学过了长方形、正方形、平行四边形、三角形、梯形等这些由线段围成的平面图形之后,新接触的一种由曲线围成的平面图形,以及在圆的初步感性认识的基础上进行教学的,它既是前面所学知识的延伸,又是后面学习圆的周长和面积的重要的预备知识,所以它在教材中处于非常重要的位置。此外,这节课通过引导学生多种感官参与学习活动,可以培养学生的观察能力、语言表达能力和抽象概括能力、发展学生的思维能力。因此,这节课无论在知识上还是对学生的能力能力培养上都起着举足轻重的作用。
学情分析:
圆的各部分名称学生容易明白,可是圆的特征比较抽象,需要多种感官参与学习活动,最后通过引导、归纳、概括而出,此外画圆是学生必须掌握的技能,所以本课的重点是:理解和掌握圆的特征,学会用圆规画圆的方法。学生很容易把圆内和圆的“上方”当作“圆上”,所以我把理解“圆上”的概念作为重点之一,归纳圆的特征也是本课的重点,同时也是难点。 教学内容:新人教版六年级数学上册56---58页
教学目标:
1、知识与技能:通过画一画、折一折、量一量等活动,观察、体会圆的特征,认识圆的各部分名称,理解在同圆或等圆中直径与半径之间的关系。了解、掌握多种画圆的方法,并初步学会用圆规画圆。
2、过程与方法:通过想象与验证、观察与分析、动手操作、合作交流等活动,使学生体会到圆的各点分布均匀性和广泛的对称性,同时获得思维的进一步发展与提升。
3、情感态度价值观:结合具体的情境,体验数学与日常生活的紧密联系,并能用圆的知识来解释生活中的.简单现象。
教学重点:
探索圆的各部分名称、特征和关系,体会圆的各点均匀性:到定点的距离等于定长。
教学难点:
通过实际的动手操作体会圆的特征及各点均匀性。
教学方法:
本节课我主要采用了一学生探究为主的学习方式,开展小组合作性学习,充分调动学生学习热情,活跃课堂气氛。通过引导学生动手操作、观察、比较、抽象、概括来完成所提出
的问题,在此基础上归纳出圆的特征和用圆规画圆的方法,以突出重点;以小组合作讨论、并辅以游戏引趣、教师适时点拨等为手段来突破难点。
教学过程
一、铺垫孕伏
1、检查家庭作业。
提问:把你昨天剪好的圆举起来,说一说你是怎样得到手中圆的?
2、交流画圆的方法。
用实物画、用圆规画、用半圆仪画。
3、说一说身边有哪些东西是圆形的?
4、欣赏圆的图片,说一说有什么感受?
生活中圆无处不在,圆很美,用途很多??
5、小结导课 。
车轮为什么要做成圆形的?圆到底有什么神秘之处能使他在生活中无处不在呢?今天我们来共同探究——圆的认识(板书课题)
二、探究新知
(一)圆的初步认识
1、把手中的圆摸一摸,看一看,说说你的发现。
面:平平的,边:光滑、弯曲
2、出示立体图。
圆能和它们放一组吗?为什么?(学生可能回答:不能,它们是立体图形,圆不是。)
3、出示平面图形。
圆能和它们放一组吗?为什么?圆和它们有什么不同?
4、小结、圆是平面上的一种曲线图形。(板书:平面 曲线 )
(二)认识圆心
1、通过操作找圆心
(1)学生跟老师一起操作:把圆对折、打开,换个方向,再对折,再打开······这样反复几次。
(2)提问:折过若干次后,你发现什么?(在圆内出现了许多折痕。)
2、仔细观察一下,这些折痕总在圆的什么地方相交?(圆中心一点)教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母o来表示。(板书:圆心o)
3、学生在自己的圆里标出圆心并用字母o来表示。
(三)认识半径 直径及二者的关系
1、教师从上衣兜里神秘的掏出一个系着一段细绳的小球,用手拽着绳子的一段,将小球甩起来(教师演示),你们看小球画出一个什么图形?(学生很容易说出:小球画出了一个圆。)
2、在黑板上展示小球成圆过程。
讲解小球转动轨迹上有无数个点,这些点都在圆上。明确圆外、圆内、圆上的范围。尤其强调“圆上”的概念,指圆的边缘上。
3、说一说圆上有多少个点?(无数个)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?(通过测量引导学生发现:圆心到圆上任意一点的距离都相等。)
4、教师指出:我们把连接圆心和圆上任意一点的线段叫做半径。(板书:半径) 提问:谁能说一说什么样的线段叫做半径?
教师说明:半径一般用字母r来表示。(板书:r)教师领学生读“r”,强调“r”的写法,让学生在自己圆里画出一条半径并用字母r来表示。
5、刚才我们把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?(每条折痕都通过圆心,两端都在圆上。)
学生回答后,教师指出:我们把这样的线段叫做直径。在圆内画出一条直径,并板书:直径)
提问:谁能说一说,什么样的线段叫做直径?
启发学生说出:通过圆心并且两段都在圆上的线段叫做直径。教师说明:直径一般用字母d来表示。(板书:d)教师领学生读“d”,强调"d"的写法,让学生在自己的圆里画出一条直径,并用字母“d”来表示。
7、画一画、比一比、折一折,量一量,在小组里讨论:
(1)、在同一个圆里可以画多少条半径?多少条直径?
(2)、在同一个圆里,半径的长度都相等吗?
(3)、同一个圆的直径和半径有什么关系?
8、小结与过渡:通过刚才的学习我们知道,在同一个圆里,有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。在同一个圆里,直径的长度是半径的2倍,半径的长度是直径的一半。
师:如何用字母表示这种关系?学生回答后,教师板书:d=2rr=d/2 。
师:这就是说,在同一个圆里,知道了半径的长度,乘以2就可以求出直径的长度;知道了直径的长度,乘以1/2就可以求出半径的长度。(组织学生说半径或直径的长度,让其他学生说直径或半径的长度,然后组内互说互评。)
(四)圆的画法
1、在工农业生产和日常生活中我们经常需要画圆。那么,如何才能很好的画一个圆呢?下面我们就来学习用工具画圆的方法。
2、介绍圆规,让学生看课本第87页有关画圆的知识,并尝试画一个圆。
学生看书后指名回答画圆的方法。教师归纳板书:1、定半径;2、定圆心;3、旋转一周。
3、为什么全班同学画的圆大小不一?怎样才能是全班同学画的圆一样大?你有什么发现?如果想把圆画在本子的右下角,你会怎么做?你有什么发现?半径决定圆的大小。圆心决定圆的位置。
三、巩固发展
(一)做“做一做”第1-4题
1、第1-3题
学生独立做,并集体订正。
2、第4题
先让学生在小组中讨论交流,再指名汇报。
(二)、判断下面说法是否正确。
1、两端都在圆上的线段叫做直径。
2、圆的直径是半径的2倍。
3、要画直径是4厘米的圆,圆规两脚间的距离是4厘米
4、半径2厘米的圆比直径3厘米的圆大。
(三)解决问题。
1、一些学生正在做投圈游戏,他们呈“一”字型排开,这样的队形对每个人公平吗?你认为他们应当排成什么样的队形?
2、体育课上,老师想在操场上画一个大圆圈做游戏,可是,没有一个这么大的圆规怎么办?(用绳子画圆)
四、全课小结:
通过本节课的学习你有什么收获?
五、布置作业:
练习十四第1、2题。
定点 d=2r 板书设计 决定 圆心 位置 决定 半径 大小 d2
直径 在同一个圆或等圆里 O r
圆的认识教学设计9
学习目标:
1、认识圆,知道圆各部分的名称;掌握圆的特征,理解直径和半径的相互关系;初步学会用圆规画圆。
2、通过小组学习,动手操作等活动,体验小组合作学习、分享学习成果的乐趣。
3、感受圆在生活中的广泛应用,体验数学与生活的密切联系。
学习重点:探索出圆各部分的名称、特征及关系,学会用圆规画圆的方法。
学习难点:通过动手操作体会圆的特征及画法。
学具准备:圆形纸片、圆形物体、直尺、圆规、线、剪刀等。
学习过程:
【纵横生活设疑激趣】
图图是个爱动脑筋的孩子,今天他坐车去上学,他发现汽车的轮子都是圆形的,他想为什么轮子都要做成圆形,而不做成正方形、长方形或三角形呢?生活中还有哪些物体也是圆形的?
【动手实践自主探究】
活动一:探究圆各部分的名称与特征
1、画一画:你能想办法在纸上画一个圆吗?
说一说你是怎么画的?
2、剪一剪:把你画的圆剪下来?
圆与我们过去认识的长方形、正方形、三角形等平面图形有什么不一样?(圆是由曲线围成的平面图形)
3、折一折:先把圆对折打开,换个方向,再对折,再打开……这样反复折几次。
仔细观察:折过若干次后,你发现了什么?(结合书理解)
在动手实验与合作交流中得出圆心、半径、直径的概念:在圆内出现了许多折痕,它们都相交于一点,这一点就是(),圆心一般用字母()表示。连接圆心和圆上任意一点的线段叫做(),半径一般用字母()表示。通过圆心并且两端都在圆上的线段叫做()。直径一般用字母()表示。
4、找一找:在同一个圆里,有多少条半径、多少条直径?
在同一个圆里,半径有()条,直径有()。
5、量一量:自己用尺子量一量同一个圆里的几条半径和几条直径,看一看,你有什么发现?
在同一个圆里,半径有()条,所有的半径都(),直径有()条,所有的直径都(),半径是直径的(),直径是半径的()。
活动二:探究圆的画法
1、想一想,画一画:怎样才能画出任意大小的圆?圆的位置和大小和谁有关?
看看书上的理解是不是和你想的一样,试用圆规画一个半径是2CM的圆。
2、思考:图图想在操场上画一个圆做游戏,没有那么大的圆规怎么办?
【巩固提高内化新知】
1、用圆规画一个半径是3cm的圆,并用字母O、r、d标出它的圆心、半径和直径。
2、用圆规画圆,如果半径是4cm,圆规两脚之间的距离取()cm,如果要画直径是10cm的圆,圆规两脚之间的距离取()cm。
【解惑释疑应用拓展】
思考:车轮为什么是圆形的?车轴应装在什么位置?
板书设计:圆
圆心:o
直径:d
半径:r
达标测评
一、填空
1.圆中心的一点叫做(),用字母( )表示。
2.通过(),并且两端都在圆上的(),叫做圆的直径。用字母( )表示。
3.从()到()任意一点的线段叫半径。用字母( )表示。
4.圆是平面上的一种()图形。将一张圆形纸片至少对折( )次可以得到这个圆的圆心。
5.在同一圆所有的线段中,()最长。
6.在同一个圆里,所有的半径(),所有的()也都相等,直径等于半径的()。
7.在同一个圆里,半径是5厘米,直径是()厘米。
8.画圆时,圆规两脚间的距离是圆的'( )。
9.()确定圆的位置,()确定圆的大小。
10.在一个直径是8分米的圆里,半径是()厘米。
11.用圆规画一个直径20厘米的圆,圆规两脚步间的距离是()厘米。
二、判断
1.所有的半径长度都相等,所有的直径长度都相等。()
2.直径是半径长度的2倍。()
3.两个圆的直径相等,它们的半径也一定相等。()
4.半径是射线,直径是线段。()
5.经过一个点可以画无数个圆。()
6.两端都在圆上的线段就是直径。()
7.画一个直径是4厘米的圆,圆规两脚应叉开4厘米。()
8.在画圆时,把圆规的两脚张开6厘米,这个圆的直径是12厘米。()
9.半径能决定圆的大小,圆心能决定圆的位置。()
圆的认识教学设计10
教学目标
1.使学生在观察、操作、交流中认识圆的各部分名称与感受圆的基本特征,会用圆
规画指定大小的圆;能应用圆的知识解释生活中的现象。
2.活动中进一步积累认识图形的学习经验,增强空间观念,发展数学思考。
3.进一步体验图形与生活的联系,感受平面图形的学习价值,提高数学学习
的兴趣和学好数学的信心。
重点难点
1.认识圆的各部分名称。
2.感受圆的基本特征。
3.会用圆规画指定大小的圆。
教学难点:应用圆的知识解释生活中的现象。
教学准备:课件、各种不同的含有圆形的实物、剪刀、直尺、圆规。
教学过程
教学例1。
(一)感知生活中的圆。听,一滴雨水滴在平静的水面上,荡起一层层涟漪,看,是什么形状?
出示图片,问:这些物体上也都有圆,谁来指一指。生活中哪些地方还能看到圆?
圆在生活中随处可见,扮演着重要角色。有必要进一步研究——圆
(二)自主画圆。先请你想办法画出一个圆,并在小组里交流你是用什么画的?
(三)交流感受。你觉得圆和以前学过的平面图形有什么不同?
二、圆规画圆,认识圆的各部分名称。
教学例2。
(一)圆规画圆。
1.认识圆规。如果要画一个更大、更小或指定大小的圆,借助你手里物品上的圆还行吗?得有一个能调节大小的画圆工具——圆规。谁能给大家介绍介绍它?
2.尝试画圆。你能试着用圆规画一个圆吗?试试看。(师同步在黑板上画圆)
3.展示作品,归纳画法。
(1)展示完美作品。问:你是怎样用圆规画圆的?课件出示画圆步骤:
①把圆规的两脚分开,定好两脚间的距离;
②把有针尖的一脚固定在一点上;
③把装有笔尖的一只脚旋转一周。
(2)展示问题作品。强调画圆时的'注意点。(定点,定长)
4.规范画圆。如果让你重新画一个圆,有信心画得更好吗?要让全班同学画的圆一样大,该怎么办呢?(脚距?厘米)
(二)认识圆的各部分名称。
1.圆心。师:画圆时,针尖固定的这一点,在圆的什么位置?你猜这一点叫什么?(板书:圆心)通常用大写字母O表示。(生标O)
2.半径。你能在圆内画一条线段表示圆规两脚间的距离吗?试一试。(指名板演)
小组交流:你是从哪画到哪的?(辨别圆内、圆上、圆外)
其实,连接圆心和圆上任意一点的线段是圆的半径,通常用小写字母r表示。板书:半径,r。(生标r)刚才画的圆半径是几厘米?如果要求画一个半径5厘米的圆,圆规两脚间的距离应为多少?
3.直径。
你能在圆内画一条线段将这个圆平均分成两份吗?画画看。(指名板演)。画好后在小组内说说你是怎样画的?
像这样通过圆心并且两端都在圆上的线段是圆的直径,通常用小写字母d表示。板书:直径,d。(生标d)刚才画的圆直径是几厘米?如果要求画一个直径5厘米的圆,圆规脚距应定为多少?(2.5厘米)。
4.练一练第1题。(课件出示)(以毫米作单位,要精确。)
三、合作探究,揭示圆的特征。
教学例3。
我们认识了圆心、半径、直径,其实,关于半径和直径还有许多奥秘呢,一起来探索好吗?
(一)合作探究:出示例3
师:先任意画一个圆,把它剪下来。(2分钟够不够?)
示:画一画,量一量,折一折,在小组里讨论:
(1)在同一个圆里可以画多少条半径?多少条直径?(课件反馈)
(2)在同一个圆里半径的长度都相等吗?直径呢?
(3)在同一个圆里半径与直径有什么关系?(课件反馈)
(4)圆是轴对称图形吗?它有几条对称轴?(对折引伸)
(二)汇报。(略)根据学生汇报板书。无数条,都相等,d=2r,r=
(三)你还有什么发现?在小组里交流。(你觉得对折时的折痕就是圆的什么?直径所在的直线就是圆的对称轴。)
五、回顾总结,赏析提升。
(一)通过这节课的学习,你有哪些收获?
(二)视频欣赏。后问:圆在建筑物中,艺术品中被广泛运用,大自然中也随处可见圆的身影。圆美吗?板书:圆
圆心(O)
同圆中半径(r)——无数条,分别都相等,d=2rr=d
直径(d)
作业实践活动
(四)练习:1.判断。
2.练习十七第1题。(说说是怎样想、怎样算的)。
3.练习十七第2题。(提醒:要在圆中标出相关条件。)
四、拓展延伸,感受生活中的数学。
请大家看动画片,高兴不?
为什么车轮要做成圆形?车轴要装在哪儿?
圆的认识教学设计11
教学内容:
四年级第一学期第74—76页
教学目标:
知识与技能:
(1)初步认识圆,知道圆心和半径及其作用。
(2)会正确使用圆规画圆。
过程与方法:通过实践操作活动初步认识圆,进一步发展空间观念和初步的探索能力,能发现问题并进行探究。
情感态度与价值观:体验到圆在日常生活中的应用并感受到圆的美。
教学重点:
通过操作和观察活动初步认识圆。
教学难点:
正确使用圆规画圆。
教学准备:
多媒体课件、一次性杯子、棋子、线、图钉、圆规、直尺、铅笔、投影仪。
教学过程:
一、激趣导入:
1、我们已经认识了平面图形长方形和正方形,这节课我们来认识另一个平面图形——圆。(出示课题:圆的初步认识)
2、出示:在我们生活中经常能看到圆,让我们一起来找一找生活中的圆。(媒体)
3、举例:你还在哪些地方看见过圆?(学生介绍)
二、尝试探索:
刚才大家举了很多圆在生活中应用的例子,说明圆和我们的生活有着密切的
联系。如果请你画一个圆,你会吗?请大家用桌上的工具试一试,你能用几
种方法画圆?
(一)尝试用各种工具画圆,并认识圆心、半径。
1、师提供的工具:线、图钉、一次性杯子、棋子、尺。生自备圆规。
2、学生尝试利用各种工具画圆。
3、交流画法:
(1)利用圆形物体画圆
(2)利用线、图钉画圆
(3)利用圆规画圆
4、同学们真会动脑筋,想出了用各种工具来画圆,画比较大的圆用第2种方法比较合适,比如体育老师要在操场上画个圆用的就是这种方法,出示媒体,认识圆心和半径。
5、师利用图钉、线、粉笔在黑板上示范画一个圆。(口头巩固圆心和半径)
6、如果请你在练习本上画比较小的'圆,你认为用什么工具画圆又准确又方便?(用圆规)
(二)尝试用圆规画的圆
1.介绍画圆的专用工具圆规:(圆规主要由3部分组成,它有两个脚,一个是带针尖的脚,另一个是带有铅笔的脚,还有一个把手,用来旋转的。)
2.学生尝试用圆规画圆。
3.交流画圆的体验(成功与失败),同伴互助,使画圆失败的同学画成圆。
4.小组讨论用圆规画圆的要点。(板书:定点、定长、绕一周)
5.小结:定点就是圆心,出示板书:圆心;定长就是圆的半径出示:半径;绕一周就画出了一个圆。
(三)尝试画半径是3厘米的圆
1、看视频
2、学生操作
3、组内互查
(四)探究圆心和半径的作用
1.出示:想一想:圆心和半径在圆中有什么作用?
2.出示同心圆,这两个圆位置相同吗?大小呢?为什么?
3.出示上下位置半径相同的两个圆,这两个圆呢?
4.出示左右位置半径不相同的两个圆,这两个圆呢?
5.通过观察你能不能说说圆心、半径在圆中有什么作用?(出示板书:决定圆的位置、决定圆的大小)
(五)质疑
1.通过今天的讨论我们初步认识了圆,下面我们再来看看书上是怎么说的,把书翻到P、75、P、76。
2.你有什么问题想提出来和大家讨论的吗?
三、总结:
在今天的学习活动中你有什么收获呢?出示:中国结,这是什么?它既是一种古老的编织艺术,又是吉祥挂饰,你们知道为什么人们喜欢用圆形来设计吉祥、喜庆的事物呢?因为在我国,圆象征着团圆。
四、拓展阶段:
通过今天的学习活动,同学们对圆有了初步的认识。圆不仅在生活中有广泛的运用,我们还可以用圆设计出各种美丽的图案。(出示媒体)弯月、奥运五环、小花,你想不想也来试试!那我们就来试试吧!(可选一个画,也可自己设计图案)
同学们很有创意,设计出了许多美丽的图案。下面我们一起做一个折纸游戏,学生操作,把一个圆对折、对折、再对折,你发现了什么?这些折痕叫什么?和圆有着怎样的关系?和圆有关的知识还有很多,下节课我们再来探究这些问题。
五、板书设计:
圆的初步认识
定点圆心决定圆的位置
定长半径决定圆的大小
绕一周
圆的认识教学设计12
教学目标:
1、让学生在操作、体验中认识圆,知道圆各部分的名称,掌握圆的特征,能正确画圆,初步利用圆的知识解释一些日常生活现象。
2、通过分组学习,动手操作,主动探索等活动,初步培养学生的合作意识和创新意识,以及抽象、概括等能力,进一步发展学生的空间观念,发展数学思考。
3、通过学习,进一步体验图形与生活的联系,感受平面图形的学习价值,提高学生对数学的好奇心与求知欲,体验数学活动的意义和作用。
教学重点:
掌握圆的各部分名称,圆的基本特征,学会用圆规画圆。
教学难点:
归纳圆的特征。
教学准备:
老师准备、教具圆规,学生每人准备一张白纸、一把圆规、两个大小不一的圆片。
教学过程:
一、溯源生活,导入新课
1.欣赏,走进圆的世界。
师:老师给同学们带来了一些图片,我们一起来看看吧。
师:这些图片中有什么相同之处?
(都是圆形物体。)
2.揭示课题。
今天这节课我们就一起走进圆的世界去探寻圆的奥秘。板书课题:圆的认识
3.师:生活中很多物体的面是圆形的,同学们能说说你们在哪儿看到过圆吗?
让学生说一说。
二、操作体验,感悟特征
1、教学画圆
师:说了这么多的圆,你想不想亲自动手画一个圆?(想)
师:现在请同学们利用手中的工具画一个圆,会吗?在白纸上试着画一个。
学生动手画圆。
引导学生交流所画的圆,并说说是怎样画的。
师:你能告诉老师用什么画的吗?有不是用圆规的画的吗?
师:你能告诉我为什么你们都喜欢用圆规画呢?
小结:用圆规画得圆很标准而且方便。
师:现在请同学们用圆规在纸上画一个圆。
师巡视,找出失败的作品。
师:同学们,你们觉得这些圆画得怎么样?
师:这些同学之所以没能成功地用圆规画出一个圆,可能在哪儿出问题了?
(1是没有固定好有针的那个脚;2是两脚之间的距离变化了;3是可能不会旋转;4拿圆规方法不对。)
师:其实同学们发现了没有,刚才你们说得问题就是在画圆的时候应该注意的地方。
师示范画圆。边画边说步骤。
第一步:把圆规两脚分开,定好两脚间距离。(板书:定长)
第二步:把有针尖的一只脚固定在一点上。(板书:定点)
第三步:把装有铅笔尖的一只脚旋转一周。(板书:旋转)
强调:针尖必须固定在一点,不可移动,重心放在针尖一脚上;两脚间的距离必须保持不变,要旋转一周。
师:现在,掌握了这些要求,有没有信心比刚才画得更好?
学生画圆。
师:刚刚老师发现,同学们画的圆有的大有的小,你们知道为什么会这样吗?
(画的时候圆规两脚之间的长度不一样。)
师:现在老师想请同学们画同样大小的圆,你们有办法吗?谁来帮老师想个办法?
师:好,现在我们就把圆规两脚间的距离统一定为4厘米。
师:大家动手画一个。圆我们画好了,但是如果有人要你介绍这个圆,你怎么说呢?
2.教学圆的各部分名称。
(如果有学生说出半径、直径这类的词)师:刚才同学们用到了半径、直径,我们把它写下来好吗?(板书)那么什么是半径、直径呢?下面我们把课本翻到94页,例2下面的一段话会告诉你答案,自学例2下面的一段话。
师:现在你会介绍了吗?什么叫半径呢?(引出下面的教学内容。)
师:那什么是圆的圆心呢?(针尖固定的一点是圆心。)
学生说,教师在黑板上标出。圆心通常用大写字母O表示。
师:圆心有什么作用?它可以确定圆的什么?
师:刚刚同学介绍说半径是连接圆心和圆上任意一点的线段。圆心我们已经知道了,那什么是圆上任意一点呢?你能找一找吗?你会画半径吗?
指名学生上黑板上画半径。其余学生在自己画的圆上画好。
师:半径通常用字母r表示。请同学们在自己的圆上标出。
师:什么是直径?(通过圆心,两端都在圆上的线段。)
师:老师这里在圆上画了一些线段,现在请同学们来帮忙判断是不是直径,可以吗?
师:好,请同学们在自己的圆上画上直径,直径我们可以用字母d表示,请同学们标出。
师:下面老师想考考大家,找出下面圆的直径和半径。(让学生说明是怎样想的。)
3.探究圆的基本特征。
师:我们已经认识了圆的圆心、半径、直径。大家想不想再深入地研究一下圆呢?单单圆心、半径、直径里面就蕴藏着很多知识,你想研究吗?
师:接下来请同学们拿出信封里的圆片,同桌之间一个大圆,一个小圆。请同学们折一折,画一画,量一量,比一比,议一议。相信同学们肯定有精彩的发现。
(1)圆有无数条半径和直径。
师:你是怎么发现的?
学生可能是通过画发现的,也可能是推想的。
(2)在同一个圆里,半径的长度都相等,所有的直径长度都相等。
预设:如果学生没有说是在同一个圆里,那教师就及时追问:你的圆的半径跟你同桌圆里的'半径一样长吗?跟老师黑板上画的圆的半径一样长吗?那怎么说更好呢?
师:你是怎样发现的,能说一说吗?
学生说明。有些学生是折的,有些学生是量的。
(3)同一个圆里直径是半径的2倍。
师:你是怎么知道的?
学生可能说是观察到的,也可能是量的。
师:你会用含有字母的式子来表示它们之间的关系吗?
d=2r r=d÷2
师:如果老师告诉你圆的半径或者直径,你能说出它的直径或者半径吗?
师:好,那老师就来考考大家。
(出示练习十七第1题。)
(4)圆是轴对称图形,有无数条对称轴。
师:你是怎么知道的?
师:还有其他发现吗?
师:刚才大家通过自己的努力又发现了圆这么多的特征,看来只要善于观察,善于探索,善于研究,就会有意想不到的收获。
三、巩固练习,深化认识
师:接下来,老师有几个问题想请同学们解答一下,你们愿意吗?
出示判断题
(1)直径长度是半径的'2倍。()
(2)圆心决定圆的位置,半径决定圆的大小。( )
(3)画一个直径4厘米的圆,圆规两脚的距离应该是4厘米。( )
(4)在同一个圆内只可以画100条直径。 ( )
四、走进历史,探索信息
师:今天我们一起认识了圆。其实,早在两千多年前,我国古代就有了关于圆的精确记载。墨子在他的著作中这样描述道:&ldqu;圆,一中同长也。&rdqu;你怎么理解这句话?
师:我国古代这一发现要比西方整整早一千多年。说到这里你有什么想法!
师:其实在我们古代对圆的研究远不止这些,有兴趣的同学可以利用课余时间通过网络去了解。现在老师还为大家带来了一个古代的圆,你们认识吗?对了,这是我们古代的太极图,有句话说,太极生两仪,两仪就是我们图上的黑和白,表示阴和阳。谁来说说看这幅图是由什么构成的?
师:原来它是用一个大圆和两个同样大的小圆组成,假如小圆的半径是3厘米,你又能知道哪些信息呢?
师:同学们发现的信息还真不少,只要同学们肯动脑筋,善于联系,在以后的学习中肯定会有更多收获。
五、全课总结
师:在古代我们很早有了圆的发现和研究,在现代圆一直扮演着重要的角色,并一度成为美的使者和化身。接下来我们一起再来欣赏一下关于圆的一些图片。感觉怎么样?美吗?想说点什么吗?
师:的确圆是非常漂亮的图案,以前有位思想家说过,圆是世界上最美丽的图形。可见这句话不是随便说的,那么其中到底蕴涵了什么深沉的意义呢?这个问题就留给同学们课后思考。相信随着你们学识的增长,会有更多更深的理解。
圆的认识教学设计13
教学内容:
义务教育课程标准实验教科书六年制小学五年级下册P93-94例1-例3及P94练一练、练习十七第1、2题
教学目标:
1、让学生在观察、操作等活动中感受并发现圆的有关特征,知道圆的各部分名称,发现同一圆内半径、直径的特征及关系,学会用圆规画圆。
2、培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念。
3、进一步提高学生与他人合作交流的能力,激发学生学习的热情,培养自主意识,增强学好数学的信心
4、使学生初步学会用数学知识解释、解决生活中的实际问题,进一步体现数学的应用价值。
教学重点:
1、学会用圆规画圆。
2、在观察、操作等活动中感受并发现圆的有关特征。
教学难点:
引导学生归纳圆的特征。
教具准备:
自制多媒体课件、圆规、直尺。
学具准备:
1个圆形物体、圆规、白纸、直尺、图钉、线、2个大小不同的圆形纸片。
教学过程:
一、创设情景,初步感知圆的特征
1、找一找(多媒体出示平面图形)
师:同学们,这些平面图形大家还认识吗?在这些平面图形中,有一个图形与众不同,你能把它找出来吗?为什么?(学生说出弯曲的后多媒体演示)
2、看一看
师:古希腊有一位数学家曾经说过,在一切平面图形中,圆是最美的。下面请你欣赏。(多媒体出示教材97页的你知道吗图片:自然现象、工艺品和建筑物、运动现象、生活用品)
2、 说一说
美不美啊?圆在我们的生活中随处可见,请你说说哪些地方还能看到圆。(学生举例)今天这一节课我们一起来进一步的认识圆(板书课题)
二、实践操作,探索圆的特征
1、画圆:同学们,圆这样美,想不想把它画下来?
师:请你借助老师提供的工具画一个圆。(小组合作)
反馈:你是怎样画的?(学生回答后多媒体随即动画演示)。
(1)借助圆形实物画:你是这样画的吗?还有不同的画法吗?
(2)借助图钉和线段画:你是怎样画的?
(3)借助圆规画:你是怎样画的?
师:同学们,刚才我们用不同的方法画了圆,但是通常我们会借助圆规来画圆。请拿出圆规。师简单介绍:圆规有2只脚,一只脚是针尖,另一只脚是用来画圆的笔,两脚可以随意叉开。那怎样用圆规画圆呢?谁能说一说?(然后老师边示范边讲解)
(4)请你用圆规画一个圆
2、体验:在画圆的过程中,你觉得圆是怎样的一个平面图形?
3、认识圆心、半径、直径
(1)结合圆规画的圆(屏幕),师介绍圆心、半径、直径的概念。并分别用字母表示。
半径有什么特点?直径呢?
(2)学生在自己的圆上画一条半径和直径,并分别用字母表示圆心、半径、直径。
看一看、比一比:圆规两脚间的距离和半径的长度(同样长)
(3)画一个半径是2厘米的圆(圆规两脚间的距离是多少)
师:刚才我们认识了圆心、半径、直径。下面我们一起来研究圆的特征。
4、探索圆的'特征
(1)小组合作探索
出示例3:在圆形小纸片上画一画、量一量、比一比、折一折,思考下列问题。
在同一个圆里可以画多少条半径,多少条直径?
在同一个圆里,半径的长度都相等吗?直径呢?
同一个圆的半径和直径有什么关系?
圆是轴对称图形吗?它有几条对称轴?
(2)交流
(3)电脑演示,加深理解。 (多媒体将学生验证的圆的特征运用了旋转、重合等手段,进行动态演示)这些都是圆的特征。多媒体出示::所有的直径都相等,所有的半径都相等,d=2r,R=d/2)
通过验证,你们发现的这些圆的特征正确吗?
质疑:那老师的圆的半径和你的圆的半径相等吗?(强调:在同一个圆内)
(4)学生概括,总结特征。谁能把圆的特征用自己的语言来归纳概括一下。
三、巩固练习(多媒体出示)
1、练一练第1题(指名说一说,说出理由)
多媒体出示
2、练习十七第1题:多媒体出示,学生口答
3、判断题(指名说一说,说出理由)
(1)圆的直径是半径的2倍
(2)圆有无数条半径
(3)通过圆心的线段是直径
(4)画直径4厘米的圆,圆规两脚间的距离是4厘米
(5)半径2厘米的圆比直径3厘米的圆小。
4、练习十七第2题
四、实际应用
1、体育老师要画一个半径是3米的圆,怎么办?(商量商量,帮老师出出点子)学生交流后看动画演示,说明和圆规画圆的道理是一样的。(固定点就是圆心,绳子长就是半径)
2、师:同学们,圆不仅给我们的生活带来美,还给我们的生活带来方便,所以生活中的很多东西都设计成了圆形,比如:车轮为什么要设计成圆形,车轴应装在哪里?(学生讨论)
(多媒体播放车轮是圆形的行进动画)
附板书:
圆的认识
画圆:两脚叉开、针尖固定、旋转成圆
(圆形图)
在同一个圆里,半径的长度都相等,直径的长度都相等。直径的长度等于半径的2倍。
圆的认识教学设计14
教学重点:
通过观察和操作活动初步认识圆。知道圆心、半径的含义。学会使用圆规画圆。
教学难点:
正确使用圆规画圆。
策略:
1、通过现场操作和录像、动画相结合的方式展示圆的形成过程,引导学生有意观察,感知圆的定点、定长的本质特征,以此达到教学重点。
2、组织学生多层次的操作,通过现场展示操作过程,操作成果,录像展示错误操作及其导致的结果,以正误对比,以及对操作成功或失败的反思,感悟用圆规画圆的动作要领及其深层内涵,以此突破难点。
技术应用特色及整合点
以电子幻灯片和实物投影为主要展示平台,集成录像、动画等多种展示方式。
1、以大量配音图片出示生活中的圆,激活学生已有生活经验,并让学生了解圆的文化内涵。
2、通过动画的形式展示圆的定义化过程和半径的概念,有助于激发学生兴趣,以此动态表象来帮助学生理解,强化学生记忆。
3、将难以集中观察到的各种画圆的方式和适用个别指导的教师用学具圆规画圆的动作细节用录像的形式进行放大展示,有助于学生观察,掌握规范的使用圆规的方法。
教学环节
教学内容
第一环节:联系生活导入
联系生活,出示课题
展示大量生活中的圆的图片,引出课题
观察图片,唤起生活经验,了解圆的文化内涵。
利用电子幻灯片展示大量图片,通过配音旁白,带领学生进入圆形的世界
第二环节:模仿、思考、尝试
1、了解圆的形成过程
2、感悟圆中定点和定长不能变,定长决定圆的大小。
展示绳栓小球成圆,绳栓铅笔成圆,体育老师在操场上画圆,数学老师在黑板上画圆等使用简单工具画圆,多种成圆方法,引导学生通过有意观察,思考圆在形成过程中的不变的是什么?圆的大小由什么决定?
观察教师提供的学习内容,思考圆在形成的过程中什么不能变(定点和定长不能变,定长决定圆的'大小)。在讨论中将不连贯的思考点加以系统化,连贯化。
利用动画、录像展示生活中使用简易工具成圆的过程,激发学生兴趣,引发学生思考,帮助学生有意观察。
第三环节:建立概念、学习技能
1、学习使用圆规,学习画定圆。
2、知道圆心半径和概念,知道同圆半径的特点。
3、展示各种不同形态的圆规,帮助学生了解圆规相同的结构组成。
4、展示使用圆规画圆的规范操作过程。
5、在画圆的过程中引导学生归纳定点和定长的作用。出示圆心、半径概念。
6、组织讨论思考同一个圆的半径具有什么特点。
7、展示画规定大小的圆的方法。
8、展示各种由大小不一的圆组合成的图案。
9、了解圆规的结构。
10、尝试操作圆规画不定大小的圆。观看错误操作录像,找出错误动作。
11、在操作中感悟定点和定长的作用。观看动画,知道圆心和半径的概念,交流讨论得出圆规的针尖脚即圆心,针尖脚和笔芯脚间的距离就是半径。
12、通过猜想和验证得出结论:同圆半径相等以及圆的半径有无数条。
13、模仿操作,画规定大小的.圆。
14、模仿、创新设计由圆组成的美图。
15、通过录像、实物投影,清晰放大展示画圆的过程,辨析错误的操作。对学生的动手操作有明确而细致的指导作用。
16、以动画形式表述概念的形成过程,动态的表象便于学生理解和记忆相关概念。
第四环节:课外拓展
1、了解中国古代对圆的有关论述。
2、学会使用网络工具查找相关知识。
3、出示“圆,一中同长也,引导学生根据今天所学的知识讨论理解句子。
4、为什么生活中圆形应用如此广泛,推荐学生电子读物。展示相关页面。
5、交流对句子的理解。上网搜索相关答案。
6、阅读网上文章“为什么轮子的侧面是圆形的”“圆规是谁发明的”
7、观看电脑动画。激发无限遐想。
圆的认识教学设计15
教学内容:九年义务教育人教版六年制小学数学第十一册第106---109页,圆的认识和圆的画法,完成练习二十五。
教学目标:
1.进一步认识圆,知道并理解圆的各部分名称;了解圆的特征,理解直径和半径的关系;学习用圆规画圆,初步能按要求画圆。
2.在数学活动中让学生经历知识再发现、再创造的过程,完成知识的意义赋予,从中培养探究意识、发现能力和解决简单实际问题的能力。
3.体验圆的美,享受成功的喜悦。
教学具准备:圆规、剪刀、水彩笔、白纸、直尺、一副三角尺、绳子、羊的头饰、一元硬币。
教学过程
一、揭题
1.直线图形
师:(出示三角形、长方形、正方形、平行四边形、梯形的平面图)三角形、四边形都是由线段围成的平面图形,线段有什么特点?
生:线段有两个端点,是直的,可以度量。
师:所以我们称三角形、四边形是平面上的直线图形。(板书:直线图形)
2.曲线图形
师:(出示圆的平面图)这是我们学过的……
生:齐说“圆”(板书:圆)
师:相对于线段围成的直线图形,圆是由曲线围成的,所以我们称圆是平面上的一种曲线图形。(板书:曲线图形)
3.引入圆的特征讨论
师:想一想:你周围的物体上哪里有圆?
生:(举例略)
师:同学们一年级时就初步认识过圆,现在都六年级了,你现在知道多少有关圆的知识?
生①:圆是一种优美的图形,建筑设计中应用广泛,如:圆形花坛,圆形装饰图案。生②:圆形便于滚动,所以车轮都是圆的。
生③:一张白纸经折叠后可以剪出一个近似的圆。
生④:(举起自己的圆规)这是圆规,用它可以画圆。
师:车轮为什么是圆的?为什么用圆规可以画出圆来呢?这就需要认识圆有什么特征,下面就来学习“圆的认识”。(板书:圆的认识)
二、新课
1.圆的画法
(1)自由画
师:拿出自己的圆规,在白纸上画一个圆。(师板书:画圆)
生:独立画
师:谁能说说你是怎样画出来的?
生:……(用自己的话描述)
师:谁能用老师的教具圆规上黑板上画圆?(让两名同学上黑板画,提醒其余同学仔细观察他们是怎样画的?)
反馈①:一只手摁住圆规固定的脚,另一只手使圆规的另一只脚旋转,顺利画出圆。
反馈②:教具圆规不好使唤,想固定的那只脚不停移动,用力过猛又使圆规两脚的距离发生变化,无法画出圆。
师:为什么这位同学用圆规能轻巧地画出圆,而另一位同学却画不出圆呢?
(点拨总结出画圆的步骤:“分开”、“固定”、“旋转”。分别板书)
2.认识圆心
师:(以黑板上学生画的圆为例)用圆规画圆时针尖固定的这一点(用彩色粉笔点出)叫圆心(板书“圆心”)一般用字母O来表示(标出:O)。请同学们在自己画的圆上点出圆心,标出字母O。
生:独立完成。
3.认识半径
师:举起你们刚才画的圆,互相看一下,都一样大吗?
生:不一样大。
师:为什么大的大,小的小,与什么有关?
生:与圆规两脚分开的大小有关。
师:你们的意思是圆规两脚间的距离长时,画出的圆大,两脚间的距离短时,画出的圆就小。请在你的圆上画出一条表示两脚间距离的线段。
生:独立画。
师:(以黑板上学生画的圆为例)请同学们仔细看,圆规的一只脚固定在圆心O,当另一只脚旋转到A点时,圆规两脚间的距离是OA(画出线段OA);当另一只脚旋转到B点时,两脚间的距离是OB(再画出线段OB)
问:线段OA和OB相等吗?
生:相等。
师:你是凭观察得出的,那怎样验证呢?
生:测量。
师:指名上黑板测量OA与OB的长并报告测量结果。
生:确实一样长。
师:在这个圆的曲线上,像A、B这样的点可以找出多少个?
生:无数个。
师:表示两脚间的距离的线段可以画多少条?设想一下它们的长度如何?
生:无数条且长度都相等(板书)
师:我们刚才研究的画圆时圆规两脚间的距离就叫做圆的半径(板书:半径)一般用字母r来表示。给你们刚才画的半径标上r。
师;半径这条线段的一个端点在哪里,另一个呢?
生:一个端点在圆心,另一个端点在圆的曲线上。(板书:圆心圆的曲线上)
师:那什么叫半径呢?
生:用自己的话说(师完成半径定义的板书)
师:同一个圆里,半径有什么特点?
生:无数条且长度都相等。
4.认识直径
师:把自己画的圆剪下来
生:独立剪
师:示范对折,打开,出现一条折痕,用食指摸折痕;换个方向再重复一次。
生:在教师示范下同步进行。
师:像这样再重复折几次
生:独立对折、打开、摸折痕。
师:你折了好多次,可以发现什么?
反馈①:每折一次出现一条折痕。
追问:你折了几次,出现了几条折痕,与他不一样的呢?像这样的折痕在你的圆里能再折出来吗?
反馈②:对折后圆的两边能完全重合,圆被平均折成两份。
反馈③:每折一次出现一条折痕,每条折痕都是圆上的线段。
反馈④:这些折痕相交于圆心。
追问:你对折出几条折痕,谁折出的折痕比他多,他说的结论正确吗?在你的圆里,这样的折痕可以折出多少条?这个结论正确吗?
反馈⑤:这些折痕都一样长。
追问:怎样验证?
生:测量
师:量出你圆里每条折痕的长度
生:汇报结果。(指导学生说:“在我的圆里,……”)
师:刚才说了这样的折痕有无数条,所以可以怎样下结论?
生:同一个圆里,所有的折痕长度都相等。
师:谁能给“折痕”起个名字?
生:直径(板书:直径)
师:直径一般用字母d来表示,在自己的圆里给折痕画出一条直径,标上字母d。
生:完成
师:同一个圆里,直径有多少条,长度有什么特点?
生:略
师:直径这条线段,它通过了…?它的两个端点分别在哪里?
生:通过圆心,两个端点都在圆的`曲线上。(完成直径定义的相应板书)
反馈⑥:这些折痕的长度是半径长度的2倍或直径的长度是半径的2倍。
师追问:你是怎样得出这个结论的,说说道理。
生①:直径通过圆心,以圆心为界,可以把直径分成两条半径。
生②:在我的圆里,经过测量可以验证这个发现,我的圆里直径的长度都是□厘米,半径的长度都是□厘米,所以说直径是半径长度的2倍。
师:换过来说,半径的长度就是直径的……。生:略师:写出字母公式:d=2rr=d2,注意强调“同一个圆里”。
(以上6点反馈,学生说出多少就处理多少,先说出哪一点,就先处理那一点。)
三、巩固
1.第108页“做一做”。用彩色笔标出下面各圆的半径和直径。
2.第109页练习二十五第3题。已知半径长求直径;已知直径长求半径。
(此项练习放在直径与半径长度关系揭示后进行)
3.学习按要求画圆。完成第108页“做一做”(画半径是3厘米的圆)。
教师示范,引导学生逐步完成。
(1)在作业本适当的地方点一个点做圆心,要考虑上、下、左、右的间距。
(2)以圆心为起点,向右水平方向画一条3厘米长的线段。
(3)圆规一脚固定在圆心,另一只脚在3厘米长线段的终点处,然后绕圆心旋转。
(4)标出字母o、r、d。
4.第109页练习二十五第2题。为什么车轮都要做成圆的,车轴装在哪里?
与圆的特征有关。因为圆曲线上的每一点到圆心的距离相等,车轴装在圆心,车轴到地面的距离永远是半径,这样车轮行驶平稳。(配图:如果车轮在水平的路面上行驶,车轮运行时车轴移动形成的直线(轨迹)与地面平行)
5.阅读第109页第5题,独立填书。
想:怎样测量1元硬币的直径?
让学生在实物投影上边演示边说。
【圆的认识教学设计】相关文章:
圆的认识教学设计11-16
《圆的认识》教学设计01-06
《圆的认识》教学设计01-04
圆的认识教学设计01-16
《认识圆》教学设计参考03-20
圆的认识教学设计及反思03-20
《圆的认识》优秀教学设计03-20
圆的认识教学设计范本03-19
《圆的认识》教学设计案例01-04
圆的认识优秀教学设计12-30