平方根教学设计
重点:算术平方根的概念和求法.
问:
1.625的平方根是多少?这两个平方根的和是多少?
2.-7和7是哪个数的平方根?
3.正数m的平方根怎样表示?
4.下列各数的平方根各是什么?
答:
1.625的平方根是25和-25,这两个平方根的和是0.
2.-7和7是49的平方根.
(2)0的平方根是0.
(5)因为-16<0,所以-16没有平方根.
(6)因为(-4)3=-64<0,所以(-4)3没有平方根.
问:已知正方形的面积等于a,那么它的一条边长等于多少?
用几何图形可以直观地表示算术平方根的.意义.如图所示,面积为a(a应是非负
(1)被开方数a表示非负数,即a≥0;
号,如a≥0
数a的正的平方根.
例1 求下列各数的算术平方根:
问:怎样求各数的算术平方根?
答:可以通过平方运算求一个正数的算术平方根.
解 (1)因为102=100,所以100的算术平方根是10,即
(4)因为(0。7)2=0。49,所以0。49的算术平方根是0。7,即
问:一个正数a的平方根与这个正数的算术平方根之间有什么关系?
指出:平方根与算术平方根这两个概念之间既有区别又有联系,区别在于正数的
它的算术平方根的相反数.
例2求下列各数的平方根及算术平方根:
(2)因为(±0。09)2=0。0081,所以0。0081的平方根是±0。09,即
0。0081的算术平方根则是
问:说明下列各式所表示的意义是什么?分别求出它们的值.
1.下列各式中哪些有意义?哪些无意义?
2.判断下列各题正确与错误,并将错误改正.
3.求下列各数的平方根及算术平方根:
4.求下列各式的值:
答案:1(3)无意义,其他各题均有意义.
2.(1)正确;(2),(3),(4)错误.
(6)正确. (7)正确.
3.(1)±100,100; (2)±2。7,2。7;
平方根和算术平方根是初中代数中的两个重要概念,要全面掌握它,就必须分清它们的区别,认清它们之间的联系.
1.平方根和算术平方根的区别.
(1)定义不同.如果x2=a,那么x叫做a的平方根.
一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.
如果x2=a,并且x≥0,那么x叫做a的算术平方根.
一个正数的算术平方根只有一个,非负数的算术平方根一定是非负数.
(3)平方根等于本身的数是0,算术平方根等于本身的数是0或1.
2.平方根和算术平方根的联系.
(1)二者有着包含关系:平方根中包含算术平方根,算术平方根是平方根中的非负的那一个.
(2)存在条件相同.非负数才有平方根和算术平方根.
(3)零的平方根和零的算术平方根都是零.
1.求下列各式的值:
2.求下列各数的平方根及算术平方根:
答案:
(4)±70,70; (5)±10-2,10-2.
平方根及算术平方根是两个重要的概念,是全章的教学重点.学生对平方根及算术平方根的概念常常混淆,因此,在教学中引导学生真正理解这两个概念的本质是什么,并能分清它们的区别与联系,这是这两节课的主要教学目标.在教学设计中,力求在以下两方面突出特点:
1.引导学生建立清晰的概念系统,首先在第1课时要求学生正确理解平方根的概念的意义和平方根的表示法;其次在第2课时专门讨论算术平方根的概念及其表示
2.编选了有针对性的、有梯度的、形式多样的课堂练习题,让学生在练习中巩固和加深知识的理解和掌握,促使学生尽快地把新知识纳入到自己原有的认知结构中.
在课堂练习中设计了一组纠正错误的练习题,实践表明,这种课堂练习是引导学生正确认知的一种有效方法.
【平方根教学设计】相关文章:
拼音教学设计04-05
《早》教学设计04-04
氓教学设计04-04
牧童教学设计04-02
《乘法》教学设计04-01
必备教学设计02-25
小班教学设计02-22
夏教学设计01-01
数学教学设计12-27
春酒教学设计12-26