我要投稿 投诉建议

《数学广角植树问题》教学设计

时间:2022-11-23 09:06:07 教学设计 我要投稿

《数学广角植树问题》教学设计范文(精选11篇)

  作为一名优秀的教育工作者,常常需要准备教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。写教学设计需要注意哪些格式呢?下面是小编为大家收集的《数学广角植树问题》教学设计范文(精选11篇),欢迎大家分享。

《数学广角植树问题》教学设计范文(精选11篇)

  《数学广角植树问题》教学设计 篇1

  教材分析:本单元教学间隔现象的规律。间隔现象在生活中普遍存在,几乎每一个学生都接触过间隔现象,间隔现象的要素不多,规律比较浅显,适宜四年级学生探究。这节课先是体会间隔现象,发现它的规律;然后应用规律解决简单的实际问题。

  学生分析:本班学生对这类探究性比较强的知识的学习上积极性很高,尤其是小组合作交流解决问题的能力往往会出乎我的意料。所以,在设计本节课时针对学生对间隔排列的规律在生活中有初步的感性认识的基础上,则着力于通过从实际生活中抽象出间隔排列,并通过学生的观察、比较、探索从而找出间隔排列的物体的规律。

  教学目标:

  1.学生通过解决条件开放的植树问题,并借助图式分析题意,初步体验到植树问题的常见类型,建立起相应的表象。

  2.通过题组练习、图表分析,发现(两端都种)植树问题中棵数与段数间的关系。

  3.学生会应用植树问题的模型去解决生活中类似的实际问题。

  4. 渗透数形结合的思想与解决问题的化归思想,培养学生借助图示解决问题的意识。

  教学重点:学生经历间隔排列规律的探索过程,找到两种物体间隔排列时,两端的物体比中间的物体多1,中间的物体比两端的物体少1这一规律。

  教学难点:学生能用恰当的方式表述找到的规律。

  教学资源:每小组若干小棒和圆片,课件,表格。

  教学课时:一课时

  教学过程:

  一、初步感知间隔的含义

  1. 导入:刚才,在做手操的过程中,我发现同学们的小手特灵活,哎,你们知道吗?在咱们的小手中,还藏着数学知识呢?想了解一下吗?

  请你们伸出右手,张开,数一数,5个手指之间有几个空格?在数学上,我们把空格叫做间隔,也就是说,5个手指之间有几个间隔?4个间隔是在几个手指之间?

  2. 其实,这样的数学问题,在我们的生活中,随处可见。你们看,这是同学们利用课余正在彩排节目呢?数一数,一共有几个小朋友,每2个小朋友之间牵着一根彩带,用了几根彩带,把一根彩带看成一个间隔,那6个小朋友之间是几个间隔?

  师:在画面上我们看到春天桃红柳绿,到处是一派生机勃勃的景象,你们知道吗?3月12日是什么日子,这一天全国上下到处都在植树,为保护环境献出自己的一份力量,瞧

  3. 再次感知,找到规律。这里从头到尾栽了几棵树,数一数,它们之间又有几个间隔呢?你发现了什么?谁来说一说?同时板书。

  那么8棵树、9棵树之间又有多少个间隔呢?

  你能像这样用一个图表示出来吗?请你们选择一种动手画一画吧!

  谁来汇报一下?

  边板书边说:画了8棵树,他们之间有7个间隔数,9棵树之间有8个间隔。

  (停顿)那你们想象一下,如果从头到尾有10棵树,他们之间又会有几个间隔呢?

  那20棵树呢?

  看来,告诉你们植树的棵数,让你们说出间隔数已经难不倒大家了,接下来,如果一排树之间有22个间隔,你知道有多少棵树吗?

  那30棵呢?(2人说)

  像这样的例子,还可以举出很多、很多

  仔细观察,你发现植树棵树和间隔数之间有什么规律呢?(自己先想想,再把你的想法和伙伴们互相交流一下)。

  反馈:谁来说说你的发现?评价:哦,这是你的发现你还能用一个算式来概括。

  边板书边说:同学们都发现了从头到尾栽一排树时,植树棵树比间隔数多1,(指表格),也可以写成两端要栽时,植树棵数=间隔数+1,间隔数=植树棵树-1。

  小结:同学们不仅会观察,而且还能发现其中蕴含的规律,真不错,那就让我们一起进入今天的数学广角,运用这些规律来解决生活中的实际问题吧!

  二、动手操作,验证规律:

  1.师:是不是这样排列的两种物体都有这样的规律呢?下面我们动手操作验证一下。

  2.动手操作:

  (课件出示要求:任意拿几根小棒,在桌上摆成一排,再在每两根小棒中间摆1个圆。数数小棒的根数与圆的个数,看看有什么关系。)

  让学生读操作要求。你知道怎么做了吗?

  3.集体交流:

  师:谁来和大家说说你是怎样摆的?你发现了什么?有没有和他摆的不同的?

  师:你们操作的结果也是这样的吗?

  其实这里的小棒就可以代表一切两端的物体,圆片就可以代表一切中间的物体。像这样排列,它们都有这样的规律:两端的物体比中间的物体多1。

  三、题组探索,发现棵数与段数之间的关系

  下面我们以小组合作的形式来找一找,解决这类植树问题的规律。

  (一)题组呈现,分组合作,完成表格。(课件出示题组)

  出示:

  1.在一条长60米的路的一边种树(两端都种),每隔15米种一棵,可以种几棵?

  2.在一条长60米的路的一边种树(两端都种),每隔10米种一棵,可以种几棵?

  3.在一条长60米的路的一边种树(两端都种),每隔( )米种一棵,可以种几棵?

  4.在一条长( )米的路的一边种数(两端都种),每隔( )米种一棵。一共需要多少棵树苗?

  合作建议:

  1.组长分工,合作中遇到困难能互相帮助。

  2.表格汇总后,整理小组发现,并准备汇报。

  (二)汇报交流,得到棵数与段数之间的关系。

  1.我们分两个阶段来完成汇报,首先请小组代表来汇报这4道题目你们是怎么解决的。(代表上台介绍,并展示线段图与表格)

  2.从解决问题到表格整理的过程中,你们小组发现什么规律了吗?

  路长间距+1=棵数 段数+1=棵数

  (三)学生质疑

  学到这里,关于植树问题你还有什么疑问?(或者你还想说什么?)

  三、应用模型,解决类似生活问题

  与植树问题相类似的生活问题在身边还是有很多的,我们一起去看看:

  (1) 基本练习:

  师:你能应用刚才找到的规律解决下面的问题吗?

  ①出示一组气球排列。填空:两端的物体是(),中间的物体是( ),()比( )多1个。

  ②这根绳子被打了6个结,这根绳子被分成了多少段?你是怎么想的?

  ③经过了15个白天,那么经过了多少个黑夜?

  (2) 变式练习:

  师:生活中还有很多类似这种规律的现象。

  ①间隔问题:(课件出示刘翔跨栏图)

  师:看!这是谁?刘翔在2004年雅典奥运会上一举夺得男子110米栏的冠军,为中国人争了一口气。其实在刘翔的运动场地上也有咱们今天研究的规律呢。

  出示:110米跨栏,10个栏中间有多少个间隔?

  师:同学们真聪明凭着自己的想象就解决了这个问题。那这个问题你能解决吗?

  ②锯木料问题:(课件出示想想做做第2题)

  把一根木料锯3次,能锯成多少段?

  你能把这个锯的过程用图表示出来吗?这表示的是什么?这个呢?这里把什么看作两端的物体,什么看作中间的物体,那你能得出什么结论?所以锯3次能锯成多少段?如果锯成6段,需要锯几次?

  ③圆周问题:

  师:前面我们研究了这些规律的问题,下面我们轻松一下,欣赏一段录象。(课件出示西湖苏堤春晓图)

  师:人们常说,上有天堂,下有苏杭,杭州的美在于西湖的美,前人在苏堤的岸边栽了一行柳树,再在每棵柳树中间栽一棵桃树,这样就有了桃柳夹岸,桃红柳绿之说。如果在西湖的一周栽75棵柳树,每两棵柳树中间栽一棵桃树,可以栽桃树多少棵?

  A:质疑:像这样栽柳树和桃树,它们的棵数之间有没有什么关系呢?

  B:探究规律:你们能找出来吗?在小组内试一试。

  C:汇报小结:谁给大家介绍介绍你们小组想到的方法,你们发现了什么?小结:把桃树和柳树像这样栽成一周,桃树和柳树的棵数怎么样?那在西湖的一周栽75棵柳树,中间间隔着栽桃树,可以栽多少棵桃树?

  D:对比联系:

  师:前面发现间隔排列的两种物体,两端的物体比中间的物体多1,而在圆周上,它们为什么又是相等的呢?

  课件演示:(把直线转化成圆周,两端的物体重合)

  四、反思学习过程

  今天我们学习的是在路的一边两端都种的植树问题,请你回忆一下,我们是经历了怎样一个学习过程来得到棵数=段数+1这一规律的?(如果规律忘记了,该怎么办呢?)

  《数学广角植树问题》教学设计 篇2

  单元教学目标:

  1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。

  2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学时数:4课时

  数学广角植树问题(一)

  第一课时教学内容:

  教科书第117页118页的例1、例2

  教学目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,让学生感悟分的段数与植树棵树之间的关系。

  2、通过小组合作、交流、使学生能理解段数与植树棵树之间的规律。

  3、通过实践活动激发热爱数学的情感,感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点、难点:

  教具:

  挂图、直尺

  教学过程:

  一、创设情境,引入课题

  1、每位小朋友都有一双灵巧的小手,它不但会写字,画画、干活,在它里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手,请每一位学生高举起右手,并将五指伸直,关拢。

  师:现在请每位小朋友将五指张开,数一数,张开后有几个空格?(4个)

  师:在数学上,我们把这个空格叫间隔。刚才,我们把五指张开,有4个空格,也就是4个间隔。

  2、举例说出生活中的间隔到处可见,比如:在马路边种树,每两棵树之间有一段距离,我们就把这一段距离叫做一个间隔,楼梯、锯木头等。

  3、大家清楚地看到,5个手指之间有4个间隔,那么,将手指换成小树,5棵小树之间有几个间隔(4个),6棵呢?7棵呢?

  今天,我们就来学习有趣的植树问题。

  (一)出示:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  1)同桌相互讨论。

  2)有线段图表示你的方法

  3)学生汇报

  4)引导总结:

  两端要栽的时候,比较间隔数和棵数,你得出什么规律?(生:棵树比间隔数多1)

  你能用一个式子表示两端都栽的棵数和间隔数的关系吗?

  板书:棵数=间隔数+1

  5)在线段图上,又有怎样的关系呢?

  点数=间隔数+1

  6)这个问题应是:1005=20(个)间隔数

  20+1=21(棵)棵数

  巩固练习

  (一)书第118页的做一做独立完成,指名反馈。

  (二)出示:大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?

  1)读题,理解题。

  2)分组看图讨论。

  3)尝试列式计算。

  4)交流:603=200间隔数

  两端不栽树:20-1=19(棵)

  192=38(棵)

  5)质疑:

  为什么减1?为什么乘2?

  比较例1与例2的不同?小组讨论,再交流

  例1两端要栽树,所以棵数比间隔大1:例2两端不栽树,所以棵数比间隔少1。

  巩固练习二:

  教科书第119页做一做1、2题

  学生独立完成,集体反馈。

  三、本课小结:

  通过今天的学习,你有什么收获?

  《数学广角植树问题》教学设计 篇3

  设计说明

  “植树问题”对于学生来说比较抽象,学生接受起来较为困难,本节复习课,就是让学生在已有知识的基础上,巩固所学,理清思路,让学生的数学能力得到进一步的提高。

  1.通过对比,提高学生解决问题的能力。

  植树问题的复习分为三个类型:两端都栽树、两端都不栽树和在封闭路线上栽树。由于它们之间都存有共性:都隐藏着间隔数与棵数之间的关系,因此,本节课把所有类型的植树问题归纳在一起,通过观察比较,得出公式,总结这一类问题的解决方法和策略。最后能够运用所学知识解决所有和植树问题相关的实际问题。

  2.通过变式练习,培养学生灵活运用所学知识的能力。

  在学生进一步明确了三个类型的“植树问题”的解决方法和策略之后,设计了不同难易程度的练习,让学生根据前面发现的规律来解决。同时做好植树问题和生活实际问题的对比沟通,培养学生的应用意识,提高学生学习数学的兴趣,提高学生运用所学知识解决实际问题的能力。

  课前准备

  教师准备:PPT课件、课堂练习卡

  学生准备:课堂练习卡

  教学过程

  ⊙创设情境,导入复习

  第七单元,我们共同研究了“植树问题”,想一想,“植树问题”存在几种情况,它们的关系是怎样的呢?指名回答后,老师小结。

  (1)在线段上栽树。

  ①两端都栽:棵数=间隔数+1

  ②两端都不栽:棵数=间隔数-1

  (2)在封闭路线上栽树:棵数=间隔数。

  设计意图:通过引导学生进行知识回顾,进一步理解植树问题中存在的规律,为下一步分层练习作铺垫。

  ⊙分层练习,强化提高

  1.基本练习。

  (1)在练习本上画一条10厘米长的线段,每隔2厘米画一朵小花,两端都要画,一共可以画多少朵小花?

  (2)一个堤坝长200米,沿堤坝栽一行小树,每隔10米栽一棵,只有一端栽,一共可以栽多少棵?

  (3)在一段公路的一边栽95棵树,两端都栽,每两棵树之间相距5米,这段公路全长多少米?

  (4)公园大门前的公路长80米,要在公路两边栽上树,每两棵树相距8米(两端也要栽)。园林工人共需要准备多少棵树?

  (学生自由解答,小组内交流,然后教师组织全班交流,指名学生回答,其他同学纠正错误)

  师:同学们真聪明,计算得这么准确,下面老师又为你们准备了一些题目,有没有信心完成?

  2.综合练习。

  一个挂钟,1时敲1下,3时敲3下,12时敲12下,当这个挂钟3时时敲3下共用了4秒钟。当12时时敲12下要用多少秒?

  (1)读题明确题意。

  (2)分组合作探究。

  设计意图:通过分层练习,层层深入地回顾了解决问题的步骤和方法,从而进一步提高了学生的解题能力。

  ⊙全课总结

  通过这节课的复习,我们对植树问题进行了回顾,大家有什么收获呢?

  ⊙布置作业

  1.校园里有一段长80米的路,在路的'一侧栽松树,每隔5米栽一棵,一共可以栽多少棵?

  2.要在100米的马路两旁栽树,每隔5米栽一棵,一共可以栽多少棵?

  3.一个圆形花圃周围长40米,沿花圃一周每隔4米插一面红旗,每两面红旗的中间插一面黄旗,花圃周围各插了多少面红旗和黄旗?

  4.一个小朋友以相同的速度在路上行走,从第1棵树走到第17棵树需要16分钟。如果这个小朋友走了30分钟,应走到第几棵树?

  《数学广角植树问题》教学设计 篇4

  教材分析

  两端植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树的要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。

  学情分析

  让学生学习应用植树问题的思想方法解决一些简单的实际问题,培养学生观察、分析及推理的能力,培养他们探索数学问题的兴趣和发现绿化的重要性。

  教学目标

  1、理解在线段上植树(两端栽)的情况中“棵数=间隔数+1”的关系。

  2、利用线段图理解“棵数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距的关系,解决生活中的实际问题。

  3、能将植树问题推广到生活中的其他问题中,学会通过画线段图来分析理解题意。

  教学重点和难点

  [教学重点]:用不完全归纳法总结并理解“点数=间隔数+1”。

  [教学难点]:掌握用线段图解决生活中的数学问题的方法。

  教学过程

  一、创设情境

  1、听唱歌曲《春天在哪里》,让学生感受春天的美好。

  2、比较两组图片的不同,让学生说出植树对人类的重要意义,引出本节课所要学习的的植树问题。

  二、探究新知

  (展示题目)

  (一)宝塔山下有一条长20米的小路,一边等距离植树,两端都栽,可以怎样植?用线段图表示你的方法。(小组讨论)、

  1、学生画线段图表示,教师巡视指导。

  2、指名回答。

  3、教师把学生的想法用表格出示如下:

  4、引导总结:

  5、生:手指线段图

  师:在线段图上,点数和间隔数又有怎样的关系呢?

  生:点数=间隔数+1

  6、师:总长与间距和间隔数又有怎样的等量关系呢?

  生:总长=间距×间隔数

  7、尝试应用:

  三、巩固新知

  四、小结本节内容

  五、教学作业

  《数学广角植树问题》教学设计 篇5

  【教学目标】

  知识目标:

  1、利用学生熟悉的生活素材、通过动手操作等实践活动,让学生感悟间隔数与棵数之间的关系。

  2、让学生自主探索、讨论、交流,使学生发现并理解植树问题(两端要种)的解题规律,并利用规律解决一些实际问题。

  能力目标:

  1、让学生经历分析、思考、解决问题的整个探究过程,并从中学习一些解决问题的方法和策略。

  2、通过探索间隔数与植树棵数之间的规律,初步体会化复杂为简单和一一对应的数学方法。

  情感目标:

  培养学生的分析意识,养成良好的交流习惯,感悟日常生活中处处有数学,体验学习的成功喜悦。

  【教学重点】

  教学重点:引导学生发现棵数与间隔数的关系。

  【教学难点】

  理解间隔与棵树之间的规律并运用规律解决问题。

  【教学过程

  一、激趣导入,谜语导入激发学生的兴趣。

  同学们!你们喜欢猜谜游戏吗?老师说一个谜语让同学们猜一猜,看谁能最先猜出来。

  一颗小树五个叉

  不长叶子不开花

  能写会算还会画

  天天干活不说话

  谜底:(手)

  出示课件,让学生举手回答谜底,并作表扬或鼓励。

  1、师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手。(五指伸直、张开)师:张开的五指中有了一些空隙。数学中我们把这个“空隙”叫“间隔”。同学们看一看,3根手指中有几个间隔?那么4根手指呢?5根呢?

  在我们的生活中,像这样的例子很多很多,比如路灯、公路边上的树和摆放的花盆,它们之间都有间隔。生活中的“间隔”到处可见,你能举几个例子吗?它们都有一个共同的特征,都有间隔,那么在数学上我们把研究与间隔有关的问题叫做植树问题,今天我们就一起来研究它。

  二、构建模型

  1、了解植树问题中棵数与间隔数之间的关系

  师:在植树问题中,有几种情况:一种是两端都栽,一种是只栽一端,还有一种是两端都不栽。今天这节课我们只学习“两端都栽”的情况(课件出示三种情况)。板书:两端都栽。那么两端都栽时,棵数与间隔数之间有什么关系呢?(出示课件,板书棵数、间隔数)当只有3棵树时,它们之间有几个间隔呢?4棵树时有几个间隔呢?5棵树呢?现在同学们想象一下,如果有10棵树呢?50棵树呢?100棵树呢?那么你们发现了棵数与间隔数之间有什么关系呢?(棵数比间隔数多1,间隔数比棵数少1)那谁会用一个等式来表示一下呢?(棵数=间隔数+1,间隔数=棵数-1)(出示板书)

  3、利用模型解决问题

  1、出示招聘启示:我们学校将对校园进行绿化,特聘请校园设计师设计一份植树方案,择优录取。同学们想成为这名设计师吗?出示设计要求:在操场边上,有一条20米长的小路,学校计划在小路的一边种树,每隔5米栽一棵(两端都栽),一共要栽几棵树?

  (1)说说从题中你知道了哪些数学信息?(让学生举手回答)

  (2)判断:下面哪种情况是一边种树呢?下面哪幅图是两端都栽的情况呢?(课件出示)

  (3)分析题意。

  “全长20米”是指小路的总长(板书:总长);“一边”是小路的一侧,指左边或右边;“每隔5米栽一棵”是每两棵树之间的距离,简称“间距”(板书:间距)。“两端要栽”指起点与终点处都要栽。

  (4)算一算一共需要多少棵树苗?(学生独立完成)

  (5)学生汇报交流。

  (6)反馈答案:

  方法1:20÷5=4(棵)

  方法2:20÷5=4(段)4+1=5(棵)

  到底哪一个是对的呢?大家都认为这种方法是正确的,那么算式中的“20”表示什么呢?“5”表示什么?“20÷5=4(个)”又表示什么?(板书:间隔)为什么“+1”?(两端要栽,它比间隔多1)“4+1=5(棵)”表示什么?(植树棵树)这其实就是运用了“间隔数+1=棵数”这个规律。(课件演示分析过程)

  谁能够完整地说一说这个算式的意思?

  2、试一试。师:如果老师把题目改一改,看看谁还会?课件出示例题1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  (1)和刚才这题比较,你想说什么?

  (2)学生独立列式并汇报。

  3、巩固新知师:恭喜大家,顺利完成了任务!你们还想接受新一轮的挑战吗?

  (1)出示第一关:说一说。让学生自己读题,抢答。

  (2)同学们真棒,现在老师想请同学们在小组内把我们今天学的知识整理一下,看哪一个小组最先完成。(老师课件出示题目,学生完成手里的学习单)学生完成后汇报交流(投影学生完成的情况,并请学生说说自己是怎样想的)

  (3)拓展练习。同学们真棒,这两道关卡都没有难住同学们,现在还有最后一道关卡,如果你能闯过最后一关,那今天这节课就要给同学们打100分了。课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (1)学生独立阅题,说说这个题目中又有哪些数学信息呢?

  (2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)

  (3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们应该先算什么?

  (4)学生独立解答并汇报:

  (5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个)35×6=210(米)

  (6)擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?

  (7)有谁听懂了这个算式的意思,说给大家听一听?

  四、回顾小结

  这么难的题目让你们解答出来了,看来今天收获一定不少?谁来说说你今天都有哪些收获?

  板书设计

  植树问题——两端都种

  棵数=间隔数+1

  间隔数=棵数-1=总长÷间距

  总长=间隔数×间距

  间距=总长÷间隔数

  《数学广角植树问题》教学设计 篇6

  教学目标:

  1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。

  2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。

  教学重点:建立并理解“点数=间隔数+1”的数学模型。

  教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。

  教学准备:课件。

  教学过程:

  一、情境出示,设疑激趣

  教师:同学们,我们都有一双勤劳的双手,它不仅能写,能画,其实我们的手指中还隐藏了许多数学知识!现在请大家伸出你们的左手,这里有几根手指呢?

  预设:5根

  教师:那手指与手指间的空隙叫什么呢?

  预设:间隔

  教师:在数学上,我们通常把两个手指间的空隙叫做间隔。大家观察一下,5根手指之间有几个间隔呢?

  预设:4个间隔

  教师:现在再看,现在伸出了几根手指呢?

  预设:4根间隔

  教师:4根手指之间有几个间隔呢?

  预设:3个间隔

  教师:5根手指之间有4个间隔,4根手指之间有3个间隔,你们发现手指数和间隔数之间有数量关系了吗?

  预设1:手指数比间隔数多1。

  预设2:间隔数比手指数少1.

  教师:那你能不能用数学式子来表示手指数与间隔数的关系呢?

  预设1:手指数=间隔数+1。

  预设2:间隔数=手指数-1.

  教师:连手上都有这么多数学奥秘,看来数学真是无处不在!这节课我们就来研究跟“间隔”有关的植树问题。(板书课题)

  二、引入新知,经历过程,感受方法

  教师:请看,请大家默读一下:(课件出示问题)。

  引例:同学们准备在全长20米的小路一边植树。每隔5米栽一棵(两端要栽)那么这条路的一边将被树隔成了几段?

  教师:告诉我们 哪些条件?(提问)要求什么问题?(提问)

  教师:同学们先用尝试用线段图来表示他们之间的关系。(学生动手并提问完成)

  教师:这里的有几个间隔?

  预设:4个

  教师:那你们能不能用一个数学式子来表示?

  预设:20÷5=4

  教师:20表示什么?5表示什么?4表示什么?(分别提问)

  预设:20表示这条路的长度(一般我们把它称为总长),5表示每隔5米栽一棵(我们一般把它称为间隔长),4表示有4个间隔。

  教师:4个间隔相当于4段,所以我们数学上通常把有几段称为段数。所以4后面的单位是段。因此我们就得到了公式:全长÷间隔长=段数(提问)。根据除法算式中的关系,间隔长该怎么求?(提问)段数该怎么求?(提问)

  教师:那现在如果我想在这条路上种树,一共需要几棵树苗呢?

  预设:5棵。

  教师:怎么列数学关系式?(提问)

  预设:4+1=5(棵)

  教师:为什么这样列呢?

  预设:因为两端都栽。

  教师:你们都跟他一样吗?所以你发现了树的棵树与段数之间的关系了吗?(提问推出棵树与段数的两个公式)

  教师:刚才我们是在20米长的路上种树,那现在如果在100米长的路上种树呢?你还会吗?请看例1(课件出示例1)。大家在书本上完成。

  例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?

  (请同学上台展示)

  三、利用新知,解决问题

  教师:连例题都难不倒你们!同学们真是太聪明了!可是,在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?大家请看(出示生活中的图片实例)可见植树问题的应用领域是非常广泛的,下面就请大家应用刚才学的知识帮老师解决几个问题。

  教师:今年的圣诞节刚结束,为了度过一个美好的圣诞节,张老师前几天在家可花了不少的心思!你们看——(分别出示3道练习)

  练习1.我买了装礼物的袜子,像这样每两只袜子之间隔0.5米,挂成一排长8米(两端都挂),一共买了几只袜子?

  教师:现在老师要把题目难度加大。(做完的同学可以把你的想法跟同桌说说)

  练习2.我又买了21只铃铛,挂成一排,长6米(两端都挂),每两只铃铛之间要隔几米?

  练习3.我还买了像圣诞树的衣服来装扮,15人排成一排,迎接圣诞老人(两端都排),每两个人之间隔2米,这个队伍有几米呢?

  四、回顾思考,全课总结

  教师:通过这一节的学习,你有什么收获?

  思考:假如只栽一端或两端都不栽,那又会是什么情形呢?同学们课后去探究吧!

  五、逆向思考,拓展新知

  教师:最后老师有一个难度很大的题目想留给同学们回家思考!请看:

  练习4.在圣诞节这天,老师看见100位圣诞老人一起来给我们送礼物,他们并列排成两队(两端都排),每前后两个圣诞老人之间相距1米,则这个队伍排了有多长?

  六、布置作业

  《数学广角植树问题》教学设计 篇7

  教学内容:

  人教版小学数学五年级上册第106页例1。

  教学目标:

  1、知识与技能目标:

  (1)、初步认识植树问题,理解并掌握在一条直线上“两端都栽”的情况下,间隔数和棵树之间的关系。

  (2)、在理解间隔数和棵树规律的基础上解决简单的“两端都栽”的实际问题。

  2、过程与方法目标:

  (1)、通过观察比较、动手操作、合作交流等活动探究新知,经历知识的形成过程。

  (2)、经历和体验“数形结合”、“化繁为简”的解题策略和数学方法。

  (3)、培养学生的合作意识,养成良好的交流习惯。

  3、情感态度与价值观目标:

  (1)、感受数学在生活中的广泛应用。

  (2)、在自主探究的过程中体验成功的喜悦,树立学生学习数学的决心。

  教学重点:

  通过动手操作、合作交流,探究出植树问题中两端都栽时,间隔数和棵树之间的关系,抽象出植树问题的数学模型。

  教学难点:

  把现实生活中类似的问题同化为“植树问题”,运用植树问题的模型解决一些相关的实际问题。

  教学过程:

  一、谜语导入。

  (1)、师:同学们一定喜欢玩猜谜语吧?(课件出示):两棵小树十个叉,不长叶子不开花。能写会算还会画,天天干活不说话。(谜底:手)

  谁能很快说出谜底?(生口答)。

  师:你思维真敏捷。

  (2)、师:同学们,伸出你的左手,仔细观察,你能看到数字几?

  (3)、认识间隔、间隔数。

  (预设1:数字5,5个手指;数字4,4个手指缝。)

  师:你观察得真认真!

  师:(课件出示)手指间的空隙,在数学上我们叫做间隔。(板书:间隔。)一只手上有四个间隔,我们就说它的间隔数是4。(板书:“间隔”后加“数”)

  (预设2:生:有5数字5,5个手指头;有数字4,手指之间有4个间隔。

  师:你懂得真多,能告诉大家什么叫做间隔吗?

  生口答,师出示手的图片,板书“间隔”和“间隔数”。)

  (4)、认识生活中的“间隔”。

  师:生活中间隔无处不在。(课件出示:人民大会堂柱子、路灯杆、摆花盆、钟声等),师边放课件边叙述说明。

  师:想一想,生活中还有哪些地方有间隔?

  生充分交流

  (5)、揭示并板书课题。

  师:像这样有间隔现象存在的问题,统称为植树问题。(板书:植树问题)。今天我们就一起来探究有关植树问题的知识。

  二、探究新知。

  (一)、创设情境,提出问题。

  1、出示题目信息:一条新修的公路,全长1000米,在它的一侧种树(两端都栽),每隔5米栽一棵,一共要栽多少棵?

  2、理解题意。

  (1)、从题目中你得到了哪些数学信息?

  (2)、理解题意。

  师:解决问题时,要善于抓住关键词或句子,分析题意。你认为哪些词是比较重要的?

  题目中,“两端都栽”是什么意思?

  师:既然有“两端都栽”的情况,就有“两端都不栽”的情况,也有“只在一端栽”的情况。(课件演示:两端都栽,两端都不栽,一端栽一端不栽三种情况。)今天我们重点研究两端都栽的情况。

  (3)、同学们大胆猜测一下,一共要栽多少棵?

  (指名生答)

  (4)、提出验证。

  a:师:到底哪个结论是正确的呢?我们怎么来验证一下?

  b:生尝试寻求方法。

  生:可以画一画图。

  师:你的想法非常好,可以用一条线段代表1000米长的公路,画一画图,数一数实际种了多少棵。)

  (5)、尝试验证,边叙述边课件演示:因为两端都栽,所以要先在起点栽一棵,然后每隔5米栽一棵,再隔5米再栽一棵,再隔5米再栽一棵……看看一共要栽多少棵。

  师:现在栽了多少米了?就这样一直栽到1000米处吗?

  (预设生:太麻烦了,浪费时间)

  (6)寻求“化繁为简”的数学方法。

  师:老师和你们有同感。1000米的路太长了,你觉得路的总长要是多少米好了?

  生尝试发表自己的想法。

  (预设生:50米、20米、10米

  师:我明白同学们的意思了,就是把路的总长换成比较小的数就行了。你们的想法太棒了!)

  师:在数学研究中,遇到比较复杂的问题时,我们就从简单的问题入手,即把“大数变成小数”进行研究,这样就可以“化繁为简”,找出规律。(板书:大数——小数,化繁为简)。比如,1000米太长了,我们可以转化成20米栽几棵,从而找出规律。

  师:老师在电脑上可以画成小树,你们在练习本上,也画成一棵棵小树吗?怎样表示小树比较简单?

  (预设生:画成小树太麻烦,可以用一个点表示一棵小树比较简单。)

  师:你的方法真好!用线段图来表示,简单明了。(课件演示:小树变点,成为线段图)

  (二)、自主探究。

  (1)、师:同学们,今天你们就来当一次“小小数学家”,研究一下当总长分别是10米,15米、20米、30米时,两端都栽的情况下,棵数有什么规律。请你们拿出题卡,认真画出线段图,并结合线段图把表格中的数据补充完整。

  (2)、生独立填表。

  (3)、汇报交流:谁把你的结果向大家展示一下?

  (师:谁和他的结果一样请举手?

  师:看来大家都做得非常认真!)

  师:为了便于大家观察,我把表格展示在大屏幕上。

  (4)、师:(边课件演示边引导)仔细回忆刚才画线段图填表的过程,认真分析这几组数据,能否说出总长、间隔、间隔数之间存在什么关系?(课件表格下出示:总长o间隔=间隔数)

  间隔数与棵数之间又存在什么样的关系?(课件表格下出示:间隔数o( )=棵数)。

  那么,当两端都栽时,如果知道全长和间隔,怎样求出棵数?

  (5)、学生独立思考,充分交流。

  结合生答,师完成板书:总长÷间隔=间隔数,间隔数+1=棵树。

  (6)、师:如果不画线段图,你能说出总长是50米时,每隔5米栽一棵,两端都栽,一共要栽多少棵吗?

  学生口述答案。

  师:你真了不起!

  (三)、应用规律,解决问题。

  (1)、出示前面的例题。

  师:利用刚才我们发现的两端都栽时,棵数和间隔数之间的关系,你能找到这道题的正确结果吗?

  (2)、生找出正确解法。

  (3)师:200表示什么意思?为什么要加1?(200表示间隔数,因为间隔数加一等于棵树,所以要加一。)

  (师:你讲得太棒了!老师真心佩服你!)

  (4)、师:以后再遇到生活中类似于“两端都栽”的实际问题时,就可以运用我们今天学到的知识进行解决。

  小练笔:运动会上,在一条长200米的笔直跑道的一侧插彩旗(两端都插),每隔10米插一面,一共要插多少面彩旗?

  师:请大家默读题目,然后在练习本上独立完成。

  三、学以致用。

  1、同学们,数学就在我们身边!看,我们的《小苹果》舞蹈比赛中同样蕴含着植树问题的知识。

  (课件配图片出示)五二班学生参加《小苹果》舞蹈表演,其中一列纵队全长18米,如果每两个同学之间相距2米,这列队伍一共站了多少人?

  生独立审题,尝试在练习本上独立完成。

  生交流方法和思路。

  2、钟声与钟声之间也有间隔,你能同化成植树问题进行解答吗?

  (课件出示)广场上的大钟,5时敲5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?

  指名读题,理解题意。

  师:同学们,认真倾听钟声敲响几下?仔细观察它们之间有几个间隔?(课件出示:结合5次钟声,线段图出示四个间隔)

  (学生结合课件演示,说出:钟声敲响5次,共有4个间隔。)

  大钟5时敲5下,有4个间隔,共用了几秒钟?由此能求出什么?那么12时敲12下,有几个间隔?敲完用多长时间吗?请同学们尝试独立在练习本上完成。

  汇报交流,说出思路。

  3、师:你们真了不起。请到知识城堡一展身手吧。

  (课件出示)8个同学站成一队,每两个同学之间距离1.5米。这列队伍全长多少米?

  师:线段图可以帮助我们解决许多数学问题。请同学们在练习本上画出线段图,再解答。

  生汇报交流。

  四、全课总结。通过今天的学习,你有什么收获?

  生充分交流。

  师:在今天的探究活动中,我们不仅发现了植树问题中“两端都栽”的规律,能运用这个规律解决生活中类似的问题,而且知道了数学研究中“化繁为简”方法,会通过画线段图帮助我们解决数学问题。其实,在植树问题中还有许多知识,比如两端都不栽时、只有一端栽时,或在封闭图形上栽时,棵数分别有什么规律呢?我们将在以后的学习中继续探究。

  《数学广角植树问题》教学设计 篇8

  学习目标:

  1.学生会探究发现一条线段上两端植树和一端植两种情况植树问题的规律。

  2.使学生经历和体验复杂问题简单化的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,激发数学兴趣,体会数学价值。

  学习过程:

  一、知识铺垫

  马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?

  1. 你都知道了些什么?

  2. 一共要栽多少棵树?你是怎样想的。

  二、自主探究

  大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树?

  1. 你都知道了 。

  2. 你认为一共要栽多少棵树?你会计算吗?试一试吧!

  总结

  植树问题

  总长( )=( )

  两 端 栽: 棵 数=( ) +1

  一 端 栽: 棵 数=( )

  两端不栽: 棵 数=( ) -1

  三、课堂达标

  1.小明家门前有一条35m的小路,绿化队要在路旁栽一排树。每隔5m栽一棵树(一端栽,一端不栽)。一共要栽多少棵?

  2.一条走廊长32m,每隔4m摆放一盆植物(两端不放)。一共要放多少盆植物?

  3. 一根木头长10m,要把它平均分成5段。每锯下一段需要8分钟。锯完一共要花多少分钟?

  《数学广角植树问题》教学设计 篇9

  教学内容:

  义务教育课程标准实验教材五年级上册《植树问题》,117页例1。

  教学目标:

  1. 使学生通过生活中的事例,初步体会解决植树问题的方法。

  2. 初步培养学生从实际问题中探索规律,找出解决问题的有效方法 的能力。

  3. 让学生感受数学在日常生活中的广泛应用,培养学生的应用意识 和解决问题的能力。

  教学重点:

  用解决植树问题的方法解决实际问题。

  教学难点:

  栽树的棵数与间隔数之间的关系。

  教具准备:多媒体。

  设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

  教学过程:

  一、谈话导入:

  师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

  二、揭示学习目标:(媒体出示)

  通过这节课的学习,我们要解决哪些问题呢?

  1. 能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

  2. 能利用植树问题,灵活解决生活中类似的实际问题。

  三、探究新知:

  1. 出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

  师:你会计算吗?(让学生回答)你算的对吗?请同学们自己动脑来验证一下。

  学习提示:(媒体出示)

  ①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段图来看看。(注意看图上有几个间隔和几个间隔点)

  ②通过上面的分析,你能找出什么规律?和同桌或小组内说说。

  ③现在你能算出一共需要多少棵树苗吗?

  ④你还有别的想法吗,在小组内说说。

  2. 学生自学探讨。(师巡视)

  3. 班内交流。学生回答后,师媒体演示间隔数和间隔点数的关系。

  总结规律:栽的棵数比间隔数多1。

  完成例题。

  四、变化巩固:

  1. 做一做:118页学生独立完成。订正时说说怎么想的,重点让学生明确先求出间隔数,即36棵树有35个间隔。

  2. 122页第2题。独立完成,同桌交流想法,可一生板演。

  五、检测反馈:(独立完成)

  1. 在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共可以种多少棵树?

  2. 5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  3. 从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

  学生完成后师批阅订正,发现问题及时解决。

  六、总结延伸:

  这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的情况,希望大家开动脑筋,灵活处理。

  《数学广角植树问题》教学设计 篇10

  教学内容:

  人教版五年级上册数学第七单元数学广角植树问题

  教学目标:

  知识技能目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

  2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、通过实践活动激发热爱数学的情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点:

  理解“植树问题(两端要种)”的特征,应用规律解决问题

  教学难点:

  理解“间距数+1=棵数,棵数-1=间距数

  教学过程:

  一、设计情景、引入课题

  1、教学“间隔”的含义

  师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

  (课件出示)师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

  2、举例生活中的“间隔”

  师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

  3、理解间隔数,引入课题。

  在一条路上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)

  二、探索新知,探究规律

  1、出示招聘启事

  在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。

  2、出示例题,理解题意:

  师:(课件出示例题。)

  师:谁能读一读?这道题告诉我们什么数学信息?求什么问题?你认为这道题中什么词语最关键?

  (课件解释关键词语,加深学生理解)

  师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。

  3、出示合作要求。

  (1)教师讲解小组合作要求。

  (2)学生4人小组开始合作学习,利用学具设计出植树方案。(可

  以用不同的形式表达)

  (3)教师巡视,指导学生小组合作。

  (4)小组作品展示,及小组评价。教师及时点评学生的设计方案,并及时鼓励学生。

  (5)引导学生总结出在实际生活中的植树情况可以分为三种:第一种两端都栽,第二种:只栽一端,第三种:两端都不栽。

  4、以小组为单位探究棵数与间隔数间的关系:

  (1)数一数:数出棵数和间隔数。

  (2)比一比:比较出棵数和间隔数之间的规律。

  两端都要栽时,植树的棵数比间隔数多1(棵数=间隔数+1)。

  只栽一端时,植树的棵数与间隔数相同(棵数=间隔数)。

  两端都不栽时,植树的棵数比间隔数少1(棵数=间隔数-1)。

  三、课堂小结、反馈练习

  1、公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  2、广场上的大钟5时敲响5下,8秒敲完。 12时敲12下,需要多长时间敲完?

  《数学广角植树问题》教学设计 篇11

  教学内容:人教版五年级上册第七单元第一课植树问题

  教学目标:

  知识与技能:

  (1)理解植树问题中一条线段两端都植树的特征,并能应用规律解决问题。

  (2)通过猜测操作,验证,交流的方式探究两端都不种的植树问题。

  (3)从封闭曲线(方阵)中发现植树问题的规律。

  过程与方法:

  培养学生观察能力、操作能力以及与人合作的能力。

  情感态度与价值观:

  学生通过观察、操作、交流等活动探索新知。

  教学重难点:

  教学重点:在探究活动中发现规律,抽取数学模型,并能够用发现的规律来解决生活中的一些简单实际问题。

  教学难点:基本规律的提炼和方法的应用。

  教学准备:

  教具准备:课件

  学具准备:练习本

  教学过程:

  一、课前谈话。

  同学们,学校旁边有一条长100米的小路,老师要在栽几棵树苗,想请你们当回小小设计师帮忙设计行吗?(行)今天我们来研究研究植树问题中的奥秘。

  二、探究规律。

  (一)1.出示题目

  这条小路长100米,每5米栽一棵小树苗(两端要栽),一共可以栽多少棵?可能会有部分学生会马上列出算式:100÷5=20(棵)

  ①理解题意

  a、 指名读题,从题中你了解到了哪些信息?

  b、 理解“两端”是什么意思?

  指名说一说,然后实物演示。

  指一指哪里是小棒的两端?

  说明:两端要栽就是小路的两头要种。

  ②学生动手操作。

  拿出小棒,同桌间互相说一说,画一画,摆一摆。

  ③同桌互相讨论后,全班汇报交流

  a、指名说一说:你一共摆了多少根小棒?

  上黑板上来摆给大家看一看。

  b、数一数你们刚才摆的小棒,它们之间有几个间隔?一共摆了几根小棒?

  c、间隔与种树的棵数有什么关系?

  ④师说明:开始大家算出的100÷5=20,这个20并不是表示可以栽20棵树,而是指共有20个间隔。

  2.改变题目条件变为:

  在全长20米的小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案,并说明理由。(可用线段图表示)

  1.学生试解答

  2.用小棒检验

  3.说一说你的想法

  间隔数与栽树的棵数又有什么关系呢?

  学生试说后,教师小结。

  4. 基本练习:同学们做操,某竖行从第一人到最后一人 的距离是24米,每两人之间相距2米,这一行 有多少人?

  5. 提高练习:园林工人沿公路一侧栽树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (二)出示例2

  1、学生读题,理解题意

  ①“两馆间的小路”指的是哪一段?

  ②“小路两旁”指的是要栽几边?

  2、学生互相合作,用小棒摆一摆

  师提示:我们现在可以假设大象馆和猩猩馆相距18米,其它条件不变,用小棒摆一摆,说一说。

  要求完成:

  ①你一共摆了几根小棒?

  ②每一边的小棒根数和间隔数之间有什么关系?

  3、全班交流

  4、教师小结

  这种情况属于两端都不种的植树问题,即植树棵数=间隔个数—1。

  (三)用摆小棒的方法教学例3

  教师小结:两端封闭的情况下 植树棵数=间隔个数

  三、练习应用

  1.一要木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

  2. 在教学楼前植树,每4米栽一棵,20米内可以在多少棵树?

  四、课堂总结

【《数学广角植树问题》教学设计】相关文章:

《数学广角-植树问题》教学设计及反思04-30

小学数学《数学广角-植树问题》教学设计12-28

数学广角沏茶问题教学设计11-19

《数学广角-烙饼问题》教学设计02-27

数学广角鸽巢问题教学设计02-27

《数学广角 - 重叠问题》教学设计范文03-04

数学广角重叠问题的优秀教学设计04-25

《数学广角搭配的问题》教学设计模板12-03

植树问题数学教学设计04-20