我要投稿 投诉建议

数学《比的意义》的优秀教学设计

时间:2022-10-09 09:09:48 教学设计 我要投稿

数学《比的意义》的优秀教学设计(精选7篇)

  作为一名优秀的教育工作者,通常需要准备好一份教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。教学设计要怎么写呢?下面是小编帮大家整理的数学《比的意义》的优秀教学设计,仅供参考,希望能够帮助到大家。

数学《比的意义》的优秀教学设计(精选7篇)

  数学《比的意义》的优秀教学设计 篇1

  教学内容:

  九年义务教育六年制小学数学课本第十一册“比的意义”。

  教学目标:

  1.掌握比的意义,会正确读、写比。

  2.记住比的各部分名称,会正确求比值。

  3.理解比与除法、分数之间的关系,明确比的后项不能为0的道理,同时懂得事物之间的相互联系性。

  4.通过自学讨论,激发学生合作学习的兴趣,培养学生分析、比较、抽象、概括和自学探究的能力。

  一、创设情境,诱发参与

  1、师:“2杯果汁”和“3杯牛奶”这两个数量之间有什么样的关系?你会用哪些方法表示它们的关系?可以提出什么问题,怎样列式解答?

  生1:牛奶比果汁多1杯。

  生2:果汁比牛奶少1杯。

  生3:果汁的杯数相当于牛奶的

  生4:牛奶的杯数相当于果汁的

  师:2÷3是哪个量和哪个量比较?

  生:果汁的杯数和牛奶的杯数比较。

  师:3÷2求得又是什么,又可以怎样说?

  生:牛奶的杯数和果汁的杯数比较。

  2、师述:用新的一种数学比较方法,可以说成果汁和牛奶杯数的比是2比3。今天这节课我们学习用一种新的方法对两种量进行比较。(板书:比)

  3、师:那么这节课你想学习比的哪些知识呢?

  (什么叫比,谁和谁比……)

  二、自学探究新知

  1.探究比的概念

  教师指着板书问:2÷3求的是什么?是哪个量和哪个量的比?

  生:2÷3求的是果汁是牛奶的几分之几,是果汁和牛奶的比。

  师:对!2÷3求的是果汁是牛奶的几分之几,也可以说成果汁和牛奶的比是2比3。

  (板书:果汁和牛奶的比是2比3,学生齐读。)

  师:照这样,牛奶是果汁的几分之几也可以说成牛奶和果汁的比。

  生:牛奶是果汁的几分之几也可以说成牛奶和果汁的比是3比2。

  (板书:牛奶和果汁的比是3比2)

  师:都是果汁和牛奶的比较,为什么一个是2比3,而另一个却是3比2呢?

  生:因为2比3是果汁和牛奶的比,而3比2是牛奶和果汁的比。

  师:对,研究两个数量的比较,谁和谁比,谁在前,谁在后,是不能颠倒的。

  出示试一试。

  师:1:8表示什么意思?

  生:1和8表示洗洁液1份,水8份。

  师:怎样表示容液里洗洁液与水体积之间的关系?

  生:先求出体积再比较。

  课件出示:走一段900米长的山路,小军用了15分钟,小伟用了20分钟。让学生填表。

  师:小军和小伟的速度是怎样求出来的?900:15表示什么?900:20又表示什么?

  师:说说900米和15分钟的意义。

  生:900米和15分钟分别是小军走的路程和时间。

  师:那么小军的速度又可以说成哪两个量的比?

  生:小军的速度可以说成路程和时间的比。

  师:什么叫比?(同桌互相说一说,然后汇报。)

  生1:除法叫比。

  生2:两个数相除叫比。

  师:两个数相除,以前叫除法,今天就叫做比。多了一种叫法,你觉得“比”字前面加上一个什么字比较妥当?

  生1:加上“又可以”。

  生2:加上“又”字。

  师:两个数相除又叫做两个数的比。想一想这个比表示的是两个数之间的什么关系?

  (随着学生的回答,教师在“相除”下面加上着重号,学生齐读比的概念。)

  2.自学探究比的各部分名称等知识。

  师:请同学们自学课本第68~69页。把自己认为重要的知识画出来,自学完后同桌互相说说“我自学到了什么”。

  (学生同桌相互说完后,集体汇报探究。)

  生:我学会了比的写法。

  (老师指着2比3,让学生到黑板上写出2∶3。)

  师:2、3中的符号“∶”是什么呀?

  生:这是比号。(板书:比号)

  师:写比号时,上下两个小圆点要对齐放在中间。(让学生同桌互相看看比号写得是否正确,并接着汇报。)

  生:我知道了比号前面的数叫做比的前项,比号后面的数叫做比的后项。

  师(指着2∶3)问:前项后项各是几呀?(学生答后接着汇报。)

  生:我知道了比的读法。

  (教师指着2∶3,指名学生试读2比3,然后学生齐读2比3。)

  师:我们已经知道比的读法、写法,以及各部分的名称,想一想,你还学到了什么知识?

  生:我还知道什么叫比值。

  师:什么叫比值?

  生:前项除以后项得到的商,叫比值。

  师:怎样求比值?

  生:求比值只要用前项除以后项。

  师:求下面各比的比值。

  3∶5=( )÷( )=( )(学生独立计算。)

  师:通过求比值,你发现比值可以是哪些数?

  生1:可以是分数。

  生2:可以是分数,也可以是小数或整数。

  师:对!我们学会了求比值,并且知道了比值可以是整数、小数、分数,那么你还自学到了什么知识?

  生:我还自学到了比与除法的关系。

  师:说具体些。

  生:比的前项相当于除法中的被除数,后项相当于除数,比值相当于商,比号相当于除号。

  师:说得真具体,我们知道分数和除法的联系,那么比和分数有联系吗?

  生:比的前项相当于分数的分子,比的后项相当于分数的分母,比值相当于分数值,比号相当于分数线。

  师:说得真好,谁还有补充吗?

  生:比的后项不能是0。

  师:为什么?

  生:因为比的后项相当于除数(或分母),而除数(或分母)不能为0,所以比的后项不能为0。

  师:比的后项不能为0,还有补充吗?

  生:比可以写成分数的形式。如2:3写成 。

  生:3∶2可以写成 ,也可以读作3比2。

  师:比可以写成分数形式,反过来,一个分数也可以看作一个比。

  质疑问难。

  师:还有什么疑问吗?(稍停片刻)

  生:我在电视中看到中国足球队以3∶0战胜马来西亚队,后项怎么可以是0?

  师:谁能解释一下?

  生:3∶0表示球赛双方进球的个数,和今天学的比是不同的。

  三、巩固深化

  反馈练习

  1.练一练(1)

  师:涂色部分与白色部分各有几格?

  生:涂色3格、白色4格。

  生:3比4 ,比值是 。

  生:白色4格、涂色3格。

  生:4比3,比值是 。

  练一练

  (2)张祥买3本笔记本用了10.5元,笔记本的总价和数量的比是( ),比值是( )。

  师:哪个量与哪个量比?

  生:总价与数量比。

  (⒊)11÷6 =( )∶( )=

  师:除法怎样改写成比和分数?

  生:根据除法中的被除数是前项、除号是比号、除数是后项。

  生:前项是分子、后项是分母。

  2.练习十三1~4题。

  第1小题

  师:红格和白格各有多少格?

  生 :红格有13格,白格有12格。

  第2小题

  师:比值就是每种水果的什么?

  生:单价。

  第3小题

  师:根据计算的结果,你发现了什么?

  生:直角三角形中30度角所对的直角边与斜边长度的比值是 。

  第4小题

  师:还可以怎样表示长与宽之间的关系?

  生:4:2。

  生:6:3。

  四、课堂总结(略)

  数学《比的意义》的优秀教学设计 篇2

  教学内容:

  《分数的意义》第一课时。

  学情分析:

  学生在三年级学习《分数的初步认识》时,已经借助操作、直观,初步认识了分数,已经知道了分数的各部分的名称,会读、会写简单的分数,还会比较分数大小及进行简单的同分母分数加、减法。

  教学设想:

  本节课中单位“1”和分数单位这两个概念教学非常重要,应从直观到抽象,利用操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,使学生真正题解这些概念的意义。

  教学目标:

  1.在学生原有知识基础上,使学生知道分数的产生,理解分数的意义,知道分数各个部分和分数单位的含义。

  2.利用操作、讨论及交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

  3.培养学生的抽象、概括能力。

  教学重点:

  明确分数和分数单位的意义,理解单位“1”的含义。

  教学难点:

  单位“1”的理解。

  教具和学具:

  长方形白纸、一米长的绳子、多媒体课件。

  教学过程:

  一、创设情景,温故引新。

  师:我们已经初步认识了分数。哪一位同学来说说几个分数?你知道分数各部分的名称吗?

  师:那你们知道分数是怎样产生的吗?

  二、教学分数的产生。

  1.在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。

  2.计算中也遇到这样的问题。

  3.课件展示分物不能得到整数的情况。

  .总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。因此分数是人类为了适用实际需要而产生的。

  三、教学分数的意义。

  1.师:下面老师要先考考大家,你能举例说明1/2的含义吗?(多媒体出示题目,学生口答)

  出示一个饼平均分成两份。

  师:每一块可以用什么分数表示?它表示什么意思?

  师强调:一定要平均分(板书:平均分)。

  展示把一个长方形和1米长的绳子平均分。

  学生说一说每份与总数的关系。

  2.重点对一些物体平均分,每一份与总数的关系,试着用分数来表示。认识单位“1”。

  师:利用这三种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

  生:一张长方形纸、一米长的绳子、6个小立方体。

  师:像这样把一张长方形纸平均分,我们可以称之为把一个物体平均分。

  把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。

  把8支笔平均分给4个同学,我们又可以称之为把一些物体平均分。

  师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

  师:像这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,

  教师强调:

  ①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个梨、一枝铅笔、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。

  ②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

  概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  用学具创造出一个分数,同桌间说说你这个分数的意义。

  理解分子分母的意义。

  师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份” 、“这样的一份或几份”分别是分数中的什么?

  小组交流。后教师小结。

  师:接下来老师想出几道题来考考大家,看看哪位同学学的又快又好。

  ①把文具盒里的所有铅笔平均分给4位同学,每个同学得到这盒铅笔的几分之几?

  生:1/4

  师:为什么可以用1/4来表示?

  师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?

  师:现在这个文具盒里有8支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

  师:如果我再增加2支铅笔,把10支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?

  师:为什么同样是1/2,铅笔的支数不一样?

  生:分小组讨论

  师:是啊,因为一个整体表示的具体数量不同,所以同样是1/2,铅笔支数也就不一样了。

  四、教学分数单位。

  师:整数有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

  多媒体出示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

  师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。

  师:举例说明,并说出几个分数让学生回答,后让学生自己也说一说。

  五、小结。

  今天这节课我们学习了?你有哪些收获?

  练习:数学书上做一做。

  数学《比的意义》的优秀教学设计 篇3

  一、成语引入:

  1、回顾分数,了解学生的起点。

  师:老师今天为大家带来了一个好吃的?猜猜看,是什么?哦,请看电视,是(蛋糕)

  师:你能用一个数表示其中的一份吗?(生答师板书)

  师:关于这个分数,你都知道些什么?

  生1:我知道“4”是分母,“1”是分子,1和4中间那条线叫做分数线。

  二、展开——分数意义的研究

  1、研究,理解单位1。

  (1)探究,用多种材料表示出。

  师:刚才同学们说,可以表示把一个蛋糕平均分成4份,取其中的一份。还可以表示什么?老师为大家提供了几种材料,你们能动手分一分,并且用来表示吗?我们准备的材料有哪些呢?

  课件边展示老师边说:奥,是一张长方形的纸,一米长的绳子一条,画有四个熊猫的图片一张,小圆片12个。请同学们选择你喜欢的材料表示出,然后互相说一说你是怎么表示的。

  师:同学们,你们听清要求了吗?那我们赶紧行动吧!

  小组活动。

  (2)反馈

  师:谁愿意来说说你是怎样来表示的?

  生1:我把一张长方形纸对折,再对折,展开后把其中的一份涂成了红色,就是这个长方形的。

  生2:我把一条绳子两次对折,其中的一份就是这条绳子的。

  生3:我把4只熊猫平均分成了4份,其中的一份(1只)就是这些熊猫的。

  生4:我把12个小圆片平均分成4堆,其中的一堆(3个圆片)就是这些小圆片的。

  (3)归纳

  师:同学们,刚才你们用了这么多的方式表示出了,我们一起来看电视,回顾一下:在表示的过程中,都有什么相同的地方和不同的地方。

  生:我们都是把一个物体平均分成4份的。

  师:是的,我们都是把这些物体平均分成4分表示其中一份的数是。(板书:平均分成4分,表示这样1份的数)

  师:刚才在表示有的过程中,有不同的地方吗?小组的同学可以商量一下。

  小组商量。

  师:谁来说一说?

  生说:有的是把一个物体平均分成4份,比如长方形的纸,1米长的绳子,有的是把一些物体平均分成4份,比如4只熊猫、12个小圆片。

  师:是不是这样?

  师:有的是把一个长方形分成4份,那么一个长方形我们可以把它叫做一个物体。(板书:一个物体)

  刚才我们把这根绳子平均烦人昵称4份,这根绳子的长度是多少?(生:1米)

  像这样1米长的线段,我们把它叫做一个计量单位。(板书:一个计量单位)

  像4个熊猫、12个小圆片,它们都是由许多物体组成的一个整体。(板书:一个整体)

  师:大家看,一个物体、一个计量单位、一个整体,都有什么字?(生说)

  师:“1”是吧,我们就把它通常叫做单位“1”。(板书:单位“1”及大括号)

  师:单位“1”有哪些呢?

  生:一个物体、一个计量单位、一个整体

  师:那么一个物体出了可以是一张长方形的纸外,还可以是什么?(生说)

  师:那一个计量单位还可以是什么呢?

  师:那一个整体还可以是什么呢?

  师:一个物体、一个计量单位、一个整体都叫做单位“1”,那刚才同学们在表示的时候,实际上是把谁平均分成4份?大家一起说。(单位“1”)

  (4)研究几分之几

  师:对我们是把单位“1”平均分成4份,表示这样的1份就是。(板书:把)

  那剩下的部分,如果用分数表示,应该是多少?( )

  师:表示什么?

  师:老师如果把单位“1”平均分成12份,表示这样7份的数,应该是多少(找生:)

  师:像这样的分数,你能说一个吗?表示什么?

  师:那像这样的分数能写多少个?

  师:这么多的分数,你能根大家说说什么叫分数吗?(生说师补充板书:若干份、几)

  再找生说,并板课题:分数。反问:什么叫分数?再找几个学生回答。

  师:这就是分数的意义。(补充课题)

  师:关于分数的意义,你清楚了吗?下面老师请你在演草纸上写一个分数,并和你的小组同学说说这个分数表示的意义。(生写交流)

  师:谁愿意把你写的分数说一说?(找生说)

  2。理解分数单位

  师:(指黑板上的分数)同学们,你们看,这里这么多的分数,它们的分母有的是4、6、12,那分母都表示什么?(生:把单位“1”平均分的份数)

  师:你们再看看这些分子?又表示什么呢?(生:取这样的几份)

  师:如果把单位“1”平均分成若干份,表示这样的1份的数,就叫做分数单位。(板:分数单位)

  反问:什么叫做分数单位?(生说)

  师:(指黑板任意一个分数)它的分数单位是多少?它有几个…?

  师:看看,刚才你写的分数,它的分数单位是多少?它有几个这样的分数单位?和你的同位说一说?。

  (三)练习

  师:看来大家对今天知识掌握的不错,下面我就来考考大家?

  1、课件出示:(教材63页第1题)。用分数表示下面各图中的涂色部分。

  师:会吗?(找生口答,并问为什么?说到第四幅图时有2种答案。可以问,还有补充吗?)

  2、教材63页第2题。(略)

  师:刚才这些图大家会用分数表示,接下来这些物体你能用分数表示吗?课件出示(喊声在黑板上做,并请这个学生订正,同学们把答案写在演草本上。)

  3、7题

  师:老师这里还有一些图片,你们看看它们又表示什么意思呢?

  课件出示:

  头部的高度约占身高的(图)

  长江干流约的水体受到不同程度的污染。(图)

  死海表层的水中含盐量达到。

  师:这里的、 、表示什么意思,请你说一说。

  生1:如果把人的身高看作单位1,平均分成8份,一个人头部高度就是这样的1份。

  生2:把长江干流水体所有的水看作单位1,平均分成5份,有3份受到了不同程度的污染。

  生3:这里的表示把死海表层海水看作单位1,平均分成10份,盐就有这样的3份。

  4。请你任选一个分数,并在图上用涂色表示出来。(苹果图)

  师:接下来,老师请每个同学都动手,(课件出示)请你任选一个分数,并在图上用涂色表示出来。请同学们拿出你们的练习卡,开始做。

  师:为什么都是十二个苹果,分得的每一份的数量却不一样呢?

  生说师结:刚才我们都把12个苹果平均分,分的份数不同,每一份的数量也不同。

  (五)拓展

  师:同学们今天这节课表现的非常不错,这节课有多少同学发言?站起来,。你能说说发言的同学占全班的几分之几吗?现在发言的人占全班的几分之几?,

  师:看来分数就在我们身边,你能联系实际举一个有关分数的例子吗?

  师:同学们,这节课我们一起研究了什么?(生说:分数的意义),那你知道分数是怎样产生的吗?课前我让同学们调查了分数的产生及历史,谁愿意上来为大家介绍。

  师:谢有学同学还做成了幻灯片呢!真用心,我们一起看看!

  师:这节课就上到这儿,同学们再见!

  板书设计:

  分数的意义

  一个物体分数单位

  把单位“1"一个计量平均分成若干份,表样的一份或几份的数,叫做分数。

  一个整体

  《分数的意义》教学案例这篇文章共7996字。

  数学《比的意义》的优秀教学设计 篇4

  【教材分析】

  方程在小学乃至初中整个学习过程中,都具有非常重要的地位。《方程的意义》这一节内容是学习其他方程知识的基础。本课只要求学生初步理解方程的`意义,知道什么是方程,能判别一个式子是不是方程。整个教学过程先通过天平演示引出等式和含有未知数的等式,然后对一些不同的式子通过观察.比较.分析对其进行分类,最后归纳.概括出方程的意义,培养了学生分析.比较.归纳.概括.创新等能力,为以后学习解方程和列方程解答应用题打下良好的基础

  【教学目标】

  1.理解和掌握等式与方程的意义,明确方程与等式的关系。

  2.通过自主探究.合作交流激发学生的学习兴趣,养成合作意识。

  3.感受方程与生活的密切联系,发展抽象思维能力和符号感。

  【教学重点】

  理解和掌握方程的意义。

  【教学难点】

  弄清方程和等式的异同。

  【数学思想】

  符号化思想,转化的思想,数形结合的思想。

  一.创设情境,引出问题

  教师活动

  学生活动及达成目标

  1.同学们,谁还记得《曹冲称象》的故事?

  2.谁能简单地说一下曹冲是利用什么原理称出了大象的重量呢?

  3.同学们其实在生活中有很多工具能帮我们测量出相同重量的物体。今天就先来认识其中的一种:天平。

  简单介绍《曹冲称象的故事》

  能说出让大象和石头的重量相等,再称石头的重量。

  达成目标:创设贴近学生实际不仅能集中学生注意力,调动学生的积极性,激发学习兴趣,也为下面出示天平做好铺垫。

  二.共同探索,总结方法

  教师活动

  学生活动及达成目标

  1.出示天平:让学生说一说对天平有哪些了解?

  如果学生说得不全教师做补充:使用天平一般是左盘放物体,右盘放砝码;指针在中间说明天平平衡。

  2.合作探究。

  (1)在天平的右边放一个100g的砝码,怎样才能让天平平衡呢?

  用算式怎样表示呢?

  让学生观察式子,等号左边与右边相等,这样的式子就是一个等式。(板书:等式)

  (2)把一个杯子放在天平的左边,右边放100g的砝码,让学生观察天平说一说发现了什么。

  教师质疑:如果我往杯子里倒些水,观察天平现在的情况。

  师:一杯水的重量是多少,怎样表示?你有办法吗?

  追问:如果用未知数x来表示水的重量,那么杯子和水一共有多重,又该怎样表示呢?

  (3)再次让学生观察现在的天平(天平右边放100g砝码),发现了什么?哪边重一些呢?你们能用数学算式来表示吗?

  (4)教师在右边依次加一个100g的砝码,加两个100g的砝码让学生观察,并说一说天平的情况,用数学算式怎样来表示吗?

  教师让学生继续操作,怎样才能使天平平衡呢?

  这说明了什么?

  (一杯水的重量等于250g)

  (5)你们能用数学算式来表示这天平的状况吗?

  (师板书)

  引导学生观察比较这三个算式有什么不同?

  lOO+x>200

  lOO+x<300

  lOO+x=250

  师总结:像这样两边相等的算式我们把它叫做等式。(板书:等式)

  (6)让学生比较50+50=100与lOO+x=250两个等式,有什么不同?

  教师小结:像lOO+x=250这样的含有未知数的等式,称为方程。(板书:方程)

  (7)引导学生思考归纳小结:

  是不是所有的等式都是方程?

  是不是所有的方程都是等式?

  那么,方程有哪些特点?

  (8)让学生仿照课本情境图,自己试着写一些方程。

  自由发言,可能会说:天平有两个托盘,中间有指针;天平一边放物品一边放砝码,物品的重量与砝码的重量相等;天平可以称量物体的质量,还可以判断两个物体的质量是否相等。

  让学生自主思考.交流操作,得出:在天平的左边放2个50g的砝码就可以保持平衡。

  用算式表示:50+50=100。

  学生认真观察,然后会发现:现在天平平衡,说明空杯子重100g。

  学生看出在空杯里加一杯水后天平不平衡了。

  思考得出:一杯水的重量=水的重量十杯子的重量。

  学生汇报:lOO+x

  学生回答:天平两边不平衡,用数学算式来表示lOO+x>100

  学生观察后分组讨论:

  汇报时用式子表示:

  lOO+x>200

  lOO+x<300。

  这时学生很容易发现这杯水的重量大于200g,小于300g。

  引导学生把右边的砝码换成250g,使天平左右两边平衡。

  学生自主思考,再全班交流汇报:lOO+x=250

  生观察后会发现:前面两个算式两边不相等,后面一个算式两边是相等的。

  达成目标:通过直观演示活动,在老师引导,学生积极参与讨论.交流的过程中得出上面的式子,为下面的分类讨论环节做准备,同时培养学生观察思考.发现问题和解决问题的能力。

  学生自主思考,并交流得出:第一个等式没有未知数x,第二个等式含有未知数x。

  不是

  是

  达成目标:这样的设计我主要是给学生创造了一个大胆设想,敢于发现,抽象概括的机会,真正体会到自己获取知识,发现知识的成功乐趣。

  三.运用方法,解决问题

  教师活动

  学生活动及达成目标

  完成教材第63页“做一做”第1题。

  完成教材第63页“做一做”第2题。

  让学生说一说什么样的式子是方程,再自主判断,最后集体交流。

  先说一说图意,再写方程表示数量关系。

  达成目标:通过学生自主分类比较,

  调动了学生的主动性和能动性,

  让学生自己发现知识的形成过程,

  层层递进,达到理解方程意义和掌握方程判断方法的目的,同时培养学生对比.概括能力和发散思维。

  四.反馈巩固,分层练习

  教师活动

  学生活动及达成目标

  基础练习:66页练习十四第1.2.3题。

  拓展练习:见课件

  达成目标:孩子大部分应该能发现存在的等量关系,但可能会出现40-28=x这样的式子,应该规范孩子的写法。

  五.课堂总结,提升认识

  教师活动

  学生活动及达成目标

  这节课你运用了哪些学习方法,你有什么收获?你对自己这堂课的表现是怎么评价的?

  达成目标:方程的特点:是一个等式,且含有未知数。

  1.像lOO+x=250这样含有未知数的等式叫做方程。

  2.方程有两个重要条件:一个是等式,一个是含有未知数。

  3.方程一定是等式,等式不一定全都是方程。

  数学《比的意义》的优秀教学设计 篇5

  教学内容

  人教版教材第33-34页比例的意义和基本性质。

  教学目标

  1、理解比例的意义,认识比例各部分的名称。

  2、能运用比例的意义判断两个比能否组成比例,并会组比例。

  3、理解并会应用比例的基本性质。

  教学过程

  一、情境导入,复习比的知识

  教师出示课件,结合画面引入。

  师:同学们请看,这是们祖国各地的风景图片,我们的祖国幅员非常辽阔,却能在一张小小的地图上清晰可见各地位置;科学家在研究很小很小的生物细胞时,想清楚地看见细胞各部分,就要借助显微镜将细胞按比例放大。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

  教师板书课题:比例的意义和基本性质。

  师:说到比例,我们很容易想起前面学过??(教师拖长声音)

  生:比(几乎异口同声地)

  师:下面就请同学们完成学案的“课前检测”部分,复习一下比的有关知识。

  [设计意图:借助现代电教媒体,用形象、直观的图片,来激发学生的求知欲望,同时也培养了学生爱祖国、爱科学的情感。]

  二、自主探究,学习比例的意义

  1、探求共性,概括意义

  师:刚才第三题10:6 与 4.5:2.7 的比值有何特点?

  生1:我发现这两个比的比值相等 。 师:既然这两个比的比值相等,请你想想用什么符号把这种关系表示出来!

  生2:用等号。(师把左右两个中间板书 = )

  师:同学们现在用了等号表示出这样一个式子,这是一个新的表达式,你能给它起个名字吗?

  生:比例(有几个学生低声说)

  师:这几位同学很聪明,数学上也起名为“比例”(师板书:比例)

  师:你现在想知道什么叫比例吗?

  生:想(学生声音响亮,愿望强烈)

  师:那就请同学们自学课本32-33页做一做之前的内容,并完成学案上自学引导部分的问题。(5分钟后多数学生停了笔,教师在学生的回答过程中板书比例的概念,并引导学生把文字语言转化成数学符号语言,得出比例的两种表达式: a:b=c:d或 = (b、d不能为0)

  2、根据意义,判断比例

  师:刚刚我们认识了新的式子比例,要是让你来判断两个比是不是能组成比例,你会怎么办?

  生:看比值是不是相等

  师出示课件:下面哪组中的两个比可以组成比例?把组成的比例写出来.(1)6∶10 和 9∶15 (2)20∶5 和 1∶4

  师:比一比 看谁说的又快又好!

  生1:因为 6∶10 = 0.6

  9∶15 = 0.6

  所以 6∶10 = 9∶15

  生2: 因为 20∶5 = 4

  1∶4 = 0.25

  所以 20∶5和1∶4不能组成比例. (学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)

  师:请同学们自己独立完成学案上的课堂训练

  (一)第1题。(再次巩固判断两个比是否成比例的方法,并熟练解题思路。)

  [设计意图:从学生熟悉的比入手教学,充分重视了学生原有的认知基础,找准了新知识的生长点。然后放手让学生自学,让学生亲自经历知识的发生、发展过程,充分发挥了学生的主体作用。]

  三、合作探究,学习比例的基本性质

  1、组织看书,认识名称

  师:a:b里比号前面的a叫——(生齐答:前项)比号后面的b叫——(生齐答:后项)。那么在比例里的各部分有哪些名称呢?请同学自学课本,并汇报。然后完成学案上的课堂训练

  (一)第2题进行巩固。

  2、活动探究,总结性质

  小组活动内容:

  ①观察比例的两个内项与两个外项,算一算,你发现了什么。

  ②如果把比例写成分数形式,是否也有上面发现的规律?

  ③是不是每一个比例的两个外项与两个内项都具有这种规律,请你再找几个比例进行验证。

  ④通过以上研究,你发现了什么?(5分钟后,学生基本停止了讨论。)

  师:请汇报你发现的规律。

  生1:两个外项的积等于两个内项的积

  生2:不对,老师,我有个反例:0:1=1:0 0×0=0,1×1=1,所以??

  还没等生2说完,生3迫不及待:不对,比的后项不能为0的,你这个不是比例。

  生2:那我0:1=0:2 (很着急的改了)

  生4:那0×2=0 ,1×0=0,还是两个外项积等于两个内项积。

  师:同学们验证得非常认真,现在我们可以一致公认——(生齐答:任何一个比例里,两个外项的积等于两个内项的积。)

  师:和比的基本性质一样,我们把这种性质叫做比例的——(生齐答:比例的基本性质。)(板书:基本性质)

  3、应用性质,自主判断

  师:刚才我们应用比例的基本性质解决了这两个问题(课件展示刚才的问题:下面哪组中的两个比可以组成比例?把组成的比例写出来(1)6∶10和9∶15 (2)20∶5和1∶4)

  师:学过比例的基本性质后,你有新的方法解决这个问题吗?不一会,就有学生举起了小手。

  生1:第(1)题,只要算一下6×15=90,10×9=90,乘积相等,所以能组成比例.

  生2:第(2)题,20×4=80,5×1=5,乘积不相等,所以不能组成比例.

  师:很好!同学们发现了一种新的判断两个比是否成比例的方法,现在请大家用你发现的方法完成学案课堂训练

  (二)。

  4、总结方法,辨析概念

  师:我们学了比例的意义和基本性质后,你有几种方法判断两个比能否组成比例?

  生:两种,一种是利用比例的意义,通过计算两个比的比值来判断;另一种是利用比例的基本性质,通过计算能够构成内项与外项的两个数的积是否相等来判断。

  师:(惊喜!)这节课我们一直类比着比学习比例,比与比例仅一字只差,它们会有什么区别呢?

  生1:比是两个数相除,是一个算式;比例是两个比相等,是一个等式

  生2:比有两项,比例有四项。

  生3:比与比例各部分的名称不同,比的项分别叫做前项和后项;比例的四项,有两个叫做外项,有两个叫做内项。

  师:同学们的概括能力很强,你们真的很棒!

  师:把你们回答的内容总结一下,边说边展示课件:从意义上、项数上进行对比:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。 [设计意图:以上比例基本性质的教学,把知识的探究过程留给了学生。问题让学生去发现,共性让学生去探索,充分尊重学生主体。将学习内容“大板块”交给学生,体现了学习的自主性和主动性,有利于探究和创新意识的培养。同时小组共同探讨有助于培养学生的合作意识。]

  四、灵活运用,大显身手

  师:以上就是我们这节课学习的内容,大家想要知道自己掌握的情况,请认真完成学案灵活运用与拓展天地的部分。

  [设计意图:这一部分设计了活用知识点与拓展天地两个部分,其中活用知识点侧重于考察基础知识、而拓展天地则侧重于培养学生的发散思维。拓展天地的这个问题要想写出全部的八个比例式,需要综合运用比例的意义与基本性质,难度比较大,而教师的教学设计就是要善于把学生已有的知识引向纵深,并以此为载体促进学生能力的提高。]

  五、归纳小结,交流收获

  师:同学们,通过本堂课的学习,你有什么收获,还有什么疑问?

  [设计意图:培养学生反思自己学习过程的意识,有利于学生掌握、巩固新知,并促使学生能深入思考和探索。

  数学《比的意义》的优秀教学设计 篇6

  教学内容:

  人教版六年级下册《比例》

  教学目标:

  1、知识目标:理解比例的意义,能正确判断两个比能否成比例,会组比例。

  2、能力目标:通过探索国旗中蕴含的数学知识,提高认知能力。

  3、情感目标:体验获得成功的乐趣,建立学好数学的自信心。

  教学重难点:

  教学重点:理解比例的意义。

  教学难点:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。

  教学工具:

  多媒体课件

  教学过程:

  一、回顾旧知,复习铺垫

  同学们,今天我们开始学习新的单元比例,看到这两个字你有没有联想到一些我们学过的知识呢?(比)上学期我们学过比的相关知识,现在大家回想一下:

  (一)复习

  1、什么叫做比? (表示两个数相除)

  2、你能举例说明比的各部分名称吗?

  比包括前项、后项和比值,比值就指的是比的前项除以后项所得的商,比值是一个数。

  3、请你计算下面各比的比值。

  2:16 2.7:4.5

  (二)谈话导入

  大家对比的知识掌握得很好,接下来我们就进入比例的第一课时比例的意义的学习,首先需要明确本节课同学们的学习目标。请读记一遍:

  1、理解和掌握比例的意义。

  2、能根据比例的意义正确判断两个比能否组成比例并会组比例。

  3、探索国旗中蕴含的数学知识,增强爱国精神。

  二、比较分析,探究新知

  同学们,每周一早上我们学校会举行升国旗仪式,对于国旗你了解多少呢?

  (一)观察

  观察这三幅情境图,它们有什么相同之处呢?(都有国旗)分别在什么地方?(xx广场、校园的操场和教室里。)

  这些国旗有大有小,长宽不同(点击PPT出示数据),但通过观察我们学校操场和教室里的国旗发现它们的形状都是相似的,都接近这样的一个长方形国旗(点击PPT出示图片),看上去庄严和谐统一。那你有没有见过这样的国旗呢?这说明我们的五星红旗的长与宽一定隐含着某种特点,想弄明白吗?

  (二)计算

  1、我们先来看看学校里的两面国旗的长和宽的比值有什么关系?(点击出示图片文字)

  (1)请同学们在练习本上写出操场与教室的国旗的长与宽之比,再计算出它们的比值。(计算要保证准确)

  32.4:1.6?2.4?1.6?(1.5)(2)指名汇报:操场上的国旗 23(1.5)2描述:操场上的国旗长宽之比为2.4:1.6,比值为3/2….(2名学生描述)(板书) 教室里的国旗

  60:40?60?40?(3)同意他们的结果吗?通过计算你能发现什么吗?(这两幅国旗的长宽虽然不同,但长宽之比都是3/2,是相等的。)(板书等式)既然两个比的比值相等,可以用什么符号把这种关系表示出来?(=)(板书不同颜色)

  (三)讲解

  1、其实不光这三面国旗,在国旗法中规定所有国旗都必须按长与宽的比3/2来制作,而且也只有指定企业才能制作,这是对国旗的尊重!

  2、那谁来说一说像这样的一个式子表示了什么?(表示两个相等的比;表示两个比值相等的比)你们都说出来了重点(板书:比相等)。在数学中,像这样(板书:表示两个比相等的式子叫做比例)。这就是比例的意义。同学们读记一遍。比可以写成分数形式,那比例的呢?(板书)

  三、合作探究,提升理解

  (一)小组讨论,代表发言

  探讨一:判断两个比能否组成比例,关键是什么?(各组的看法是什么?根据比例的概念可知)

  探讨二:你还能从三面国旗中找出哪些比例?(代表发言,xx的国旗长宽之比为5:10/3,比值为3/2,所以还可以找出其他的。) 探讨三:比和比例是一样的吗?如果不是,两者有什么区别? (结合同学的回答,可以从两个角度来区分,形式上,意义上。)

  四、巩固应用,提升能力

  对于比例,现在已经有了初步认识,接下来就让我们学以致用。 首先我们观察做一做的两道题,可以发现一道关于数的比例,一道关于形的比例,那我们就从这两个方面去理解比例。先独立完成第一题。

  (一)数的比例

  (出示习题和答题规范,提问两组同桌,2分钟完成,订正答案2分钟。出示答案,对板演,对台下答案)

  (二)形的比例

  先观察图形并结合数据,分析边长之间的关系,找出比例。

  一组同桌上台展示,讲解:图中有一大一小两个直角三角形,观察每个三角形两条直角边的数据可得出,每个三角形各自的直角边之比相等;而且两个三角形短直角边之比等于长直角边之比。因此一共能找出8对比例。

  (三)综合提升

  写出比值是5的两个比并组成比例。(提问多名学生汇报)

  五、拓展

  喝过蜂蜜水吗?你会调制吗?下图是调制蜂蜜水时蜂蜜和水的配比情况。怎样调配的呢?(蜂蜜水A用两杯蜂蜜和10杯水调配,蜂蜜水B用3杯蜂蜜和15杯水调配)

  哪种更甜呢?你能用今天所学知识判断出来吗? 同桌或小组讨论,点名:

  学生甲:A和B两种蜂蜜水中蜂蜜比是2:3,水的比是10:15,两个比的比值都是2/3 ,所以我们认为两种蜂蜜水一样甜。

  学生乙:蜂蜜水A的水和蜜的比是10:2,蜂蜜水B的水和蜜的比是15:3,两个比的比值都是5,我们认为两种蜂蜜水一样甜。

  其他同学的想法呢?看来你们很善于动脑筋,这些题都没有难倒你们,但同学们在学习中依然要谦虚努力。

  六、总结

  今天的学习就结束了,相信大家都有自己的收获。孔子有句话说,“学而不思则殆”。所以课后大家独立主动地梳理今天所学知识,形成思维导图,并与同学交流。

  数学《比的意义》的优秀教学设计 篇7

  单元总目标

  1、经历分数产生的过程,理解分数的意义,明确分数与除法的关系。

  2、认识真分数与假分数,知道带分数是一部分的假分数的另一种书写形式,能把假分数化成带分数或整数。

  3、经历分数的基本性质的形成过程,理解和掌握分数的基本性质,会比较分数的大小。

  4、现实情境与数学知识相结合,理解公因数与最大公因数、公倍数与最小公倍数,能找出两个数的最大公因数和最小公倍数,能比较熟练地进行约分和通分。

  5、会进行分数与小数的互化。

  6、培养灵活的思维方式和解决实际问题的能力,培养收集、处理问题的能力。

  7、加强数学知识与现实生活的联系,培养学习数学的兴趣,获得学习的成功体验,增进学好数学的信心。

  本课教学目标

  知识与技能

  1、在具体情境中认识、理解单位“1”

  2、在具体情境中进一步理解分数的意义

  3、通过自学理解分数单位的含义

  4、能用分数进行简单的表述和交流,提高数学应用的意识和能力

  5、了解分数的产生

  过程与方法

  在具体情境中学习知识,通过自学学习知识

  情感态度价值观

  6、感受和体会数学与生活的紧密联系,树立学习数学的信心

  课时目标

  同上

  教材解读

  教材第60页通过两幅插图1、古人度量物体时遇到的困惑,2、两个小朋友平均分一个物体的情境,揭示了分数产生的现实需要:在进行测量和分物时,往往不能正好得到整数的结果,这时常用分数来表示。

  教材61页“举例说明1/4的含义”是想通过学生的实践来理解1、一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。2、一个整体可以用自然数1来表示,通常把它叫做单位“1”。

  教材62页“做一做”是对分数意义描述的具体化和巩固,也为紧接着学习分数单位提供具体的实例。结合做一做让学生理解分数单位。

  “你知道吗”是对分数的写法的历史的介绍。

  学情分析

  学生在三年级上学期,已初步认识了分数(基本是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数的大小,会比较同分母分数的大小,还学习了简单的同分母分数加减法。所以说分数的经验学生已经积累的较多,在学习本课时已有了一定的知识基础。我认为学生在学习本课时应把理解分数的意义,单位“1”,分数单位作为重点,并通过不同类型的习题帮助学生巩固掌握所学。在理解分数的意义时重点要放在单位“1”,平均分,平均分成几份分母就是几,取几份分子就是几,在理解的基础上使学生学会准确表达,如1/4表示把单位“1”平均分成4份,取其中的1份。其中的典型习题:7米长的绳子平均分成9段,每段长( ),每段长( )米,作为重点处理的内容

  教学重点

  理解平均分,单位“1”,分数单位;理解平均分成几份分母就是几,取几份分子就是几,在理解的基础上使学生学会准确表达。

  教学难点

  理解平均分成几份分母就是几,取几份分子就是几,在理解的基础上使学生学会准确表达

  教学方法

  实践法、讨论法、自学法

  教学准备

  课件(师),学生学习材料

  预习作业

  1/4,1/5,5/6,2/7,3/8

  读出以上各分数,并说各部分的名称

  教学板块

  教师课堂行为(注明时间)

  学生课堂行为

  完成目标

  课前活动:检查预习内容

  师课件介绍:分数的演变经历了这样一个过程

  学生读出分数,说明各部分的名称。

  学生观看课件演示

  完成

  目标5

  一、了解分数的产生

  1、课件演示古代人在测量时的方法,遇到的困惑,提出问题:剩下的不足一个单位得不出整数怎么办?

  2、课件演示平均分东西的情境:

  提出问题:小男孩能分到个石榴,每人平均分到块月饼,包饼干。

  3、师小结:在进行测量、分物时,往往不能得到整数的结果,这时常用分数来表示。

  (如学生说出小数,教师也应肯定学生的想法)

  4、教师直接板书课题,指出本课的学习目标:

  分数的意义,分数单位

  学生说说自己的想法

  学生回答

  完成

  目标5、6

  二、学习分数的意义

  1、举例说明1/4的含义(板书1/4)

  生演示完过程后,教师引导提问:

  每一个图形为什么要分成4份?(引导学生说出分母是4,所以分成4份)(板书分成几份)

  课件或学生实物对比,这样分(不平均分)行不行?(引导学生说出必须平均分)(板书平均分)

  为什么只涂了1份?(分子是几就涂几份)(涂其他处行吗?)(板书取几份)

  (3)师:我们借助一个个图形弄懂了1/4的含义,你还能借助生活中的一些物体弄懂1/4的含义吗?

  课件演示:

  4根香蕉,一盘面包,12块水果糖

  一排书,一把荔枝

  两道文字叙述题

  师根据学生回答,演示分法

  (如学生回答不出,教师相机引导分母是4就平均分成4份,分子是1,就取其中的一份),

  (4)如果老师把图形或物体平均分好,你还能找到相应的分数吗?

  (第3、4环节在汇报时)应引导学生说一说怎样做的。

  2、总结(结合课件)

  一个物体、一些物体等都可以看做一个整体,这个整体可以用自然数1来表示,通常把它叫做单位“1”

  把单位“1”平均分成若干份,这样的一份或几份都可以用分数来表示。

  三、巩固练习

  1、把一个蛋糕( )分成5份,这样的3份就是( )。

  2、下面的涂色对吗?

  平均分和不平均分的情况

  3、把一堆苹果平均分成6份,2份是( )的2/6

  4、5厘米长的一条线段,其中1厘米是这条线段的1/5,这条线段是单位1、( )

  5、把单位1平均分成9份,7份是( )

  6、先判断下图能表示哪个分数,再圈一圈

  1/51/21/3

  (10个草莓)

  7、把一根木料平均分成4段,每段是这根木料的( )

  8、把一根7米长的木料平均分成4段,每段是这根木料的( )

  9、把一根8米长的木料平均分成4段,每段是这根木料的( )

  每段是( )米。

  10、一包饼干有12块,平均分给3名同学,每人分得这包饼干的( ),每人分得(  )块。

  11、把一根9米长的木料等距离锯了10次,每段是这根木料的( )

  12、一盒巧克力共有16块,平均分给4名同学,每人分得( )块,每人分得这盒巧克力的( ),每块巧克力是这盒巧克力的( )

  四、学习分数单位

  2、习题检验学习效果

  64页第8题

  学生比较分数单位的大小

  师:谁决定分数单位的大小?分母越( )分数单位越( )

  五、拓展练习

  64页第七题

  阴影部分占全图的几分之几

  (1)学生利用学习材料表示出1/4

  (2)全班交流

  学生在教师引导下回答

  学生回答

  学生做练习十一的1——4题,汇报。

  学生做题,汇报想法。

  1、学生自读分数单位的定义

  学生做题

  完成

  目标246

  完成

  目标1

  完成

  目标124

  完成

  目标3

  完成

  目标16

  板书设计

  平均分分子是几就取几份

  分母是几就平均分成几份

  作业设计

  (分层作业)

【数学《比的意义》的优秀教学设计】相关文章:

比的意义优秀教学设计02-09

《比的意义》优秀教学设计02-23

“分数的意义”数学教学设计03-06

《比的意义》小学数学教学设计03-06

方程的意义数学教学设计01-09

《分数的意义》优秀教学设计03-06

《分数的意义》的优秀教学设计12-21

《通分的意义及方法》数学教学设计04-21

分数的意义小学数学教学设计01-08