数学《加法交换律和结合律》教学设计
设计思路:
本节课我创造性的利用教材,创设学生体育活动的情景,从学生熟悉和贴近学生生活入手,通过具体情景,让学生体验加法意义注重学生的小组合作,充分利用学生间的交流初步感知规律,再通过学生举例验证进而总结出规律,最后抽象出用字母表示规律,体现学生学习的主体性、积极性、创造性。练习采用基本练习,巩固练习,深化练习培养学生演绎推理能力。
教学目标:
1、使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决进行比较和分析,发现并概括出运算律。
3、使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点:
使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:
使学生经历探索加法交换律和结合律的过程,发现并概括出运算规律。
课程资源的开发与利用:多媒体课件
教学过程:
一、 创设情境,初步感知
1、课前谈话(讲朝三暮四的故事)
我们先来听一个朝三暮四的成语故事:
战国时代,宋国有一个养猴子的老人,他在家中的院子里养了许多的猴子。日子一久,这个老人和猴子竟然能沟通讲话了。这个老人每天早晚都分别给每只猴子四只桃子。几年后,老人的经济越来越不好了,而猴子的.数目却越来越多,于是他跟猴子商量说:从今天起,我每天早上给你们三只桃子,晚上还是照常给你们四只桃子,不知道你们同意不同意?猴子们听了,都认为早上怎么少了一个?于是一个个就开始吱吱大叫,而且还到处跳来跳去,好象非常不愿意似的。老人看到这一情形,连忙改口说:那么我每天早上给你们四只,晚上再给你们三只,这样该可以了吧?猴子们听了,以为早上桃子已经由
三个变为四个桃子,跟以前一样,就高兴的在地上翻滚起来。听了这个故事,你们有什么想法?你想说些什么呢?(交换、不变)
(课前,讲了朝三暮四故事的目的是想告诉学生要思考生活中一些常见问题,并从中发现规律。)
2、情境引入
(1)谈话:一年一度的学校春季运动会又即将举行了,学校的同学们都在做充分的准备,
(2)媒体出示情境图,从图中你获得了哪些数学信息?
你能根据这些信息,提出几个用加法计算的问题吗?根据学生的回答,电脑依次出示:
①参加跳绳的一共有多少人?
②参加活动的女生一共有多少人?
③跳绳的男生和踢毽子的女生一共有多少人
④参加活动的一共有多少人?
师:今天这节课,我们就来解决这三个问题:板书1、2、4三个问题
(让学生自由的提问,可以培养学生发散性思维及学生的问题意识。学生能马上提出一些问题,为后面的探究学习做了铺垫。)
二、探索加法交换律
1、(1)出示问题:要求跳绳的有多少人,应怎样列式计算?(指名口答)生答后板书:28+17=45(人) 17+28=45(人)
(2)观察两道算式,你发现了什么?(交换两个。。。。。
(3)我们可以用什么符号连接这两道算式呢?
(4)女生有多少人?(教法同前)
(5)我们把用等号连接的算式叫做等式
(6)师:观察这些等式,你发现了什么?(同桌交流:交换两个。。。。。)
(7)像这样的等式还有很多,那么你能再举出几个这样的例子吗?并追问:这样的算式能写几个
(8)你能根据黑板上的等式以及你写的等式,说一说等号左右两边的算式有什么特点?
(8)师:板书:两个加数交换位置,和不变。这叫做加法交换律。
(9)你能用自己喜欢的方式表示加法交换律吗?
小组合作写一写
2、同学们都自己用自己的喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:a+b=b+a。
3、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:今天我们这节课主要研究加法的运算定律板书 :(整加法的运算定律)刚才研究的就是加法交换律(板书:加法交换律),学生齐读一遍。
小结研究方法:刚才我们在研究加法法交换律的时候,我们是怎样一步一步开展研究的?引导学生能得出:列式计算观察思考猜测验证得出结论。
(教师是教学的组织者和引导者,这样的设计紧密围绕并运用好问题情境,师生间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。充分调动了他们的自信心和自豪感。)
(7)交流:其实加法法交换律我们早就会用了,想想看什么时候我们曾用过这样的规律吗?(加法验算)
2、练习:你能在□里填上合适的数吗?
96+35=35+□ 204+57=□+204
□+△=△+64 S+□=□+S
您现在正在阅读的《加法交换律和结合律》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《加法交换律和结合律》教学设计三、探索加法结合律
1、谈话:我们班学生不仅解决了2个问题而且还学会了加法交换律,那么你会解决第3个问题吗?
2、出示问题:参加活动的一共有多少人?
师:能列出综合算式吗?(28+17+23)你想先算什么?就加上小括号
学生交流、回答,教师有意识地板书:
(28+17)+23=68(人)
28+(17+23)
(28+23)+17
28+(23+17)
(23+17)+28
23+(17+28)
让回答的同学说说你先算的是什么?还可以先算什么?
下面,我们就来针对这两个算式开展研究:(28+17)+23 28+(17+23)
3、质疑:你先算的是什么?还可以先算什么?
4、师:这两个算式可以用什么符号连接?比较两种算法,你发现了什么?或者问:两种算法有什么相同?有什么不同?(小组交流)
(28+17)+23=28+(17+23)
引导说出并板书:先把前两个数相加,或者先把后两个数相加,和不变。
5、练习:下面的○里能填上等号吗?
(45+25)+13○45+(25+13)
(36+18)+22○36+(18+22)
(10+20)+19○10+(20+19)
师:从上面这些等式中你发现了什么规律?
小组讨论交流汇报
引导说出并板书:先把前两个数相加,或者先把后两个数相加,和不变。
(学生在得出(28+17)+23=28+(17+23)后,我没有要求让学生自己写出这样的等式,而是出示了类似结构的几组等式,引导学生通过算一算,思考这些等式之间是否相等。毕竟,加法结合律这一数学模型相对而言要复杂些,由学生举例有一定困难。)
6、质疑:三个数相加,是不是都存在这样规律呢?能照样子再写出几个这样的等式吗?(生举例)
7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。
板书:(a+b)+c=a+(b+c)
教师揭示:这就是我们今天所学的第二个运算律加法结合律(板书:加法结合律)。
8、总结:加法结合律(a+b)+c=a+(b+c)
你能用自己喜欢的方式比如符号、图形、字母表示加法交换律吗?
(在学生形成数学模型猜想的基础上,再引导学生通过类比推理,进一步写出更多具有类似结构的算式组。)
四、巩固练习,深化理解
1、说说下面的等式各应用了加法的什么运算定律?
82+0=0+82
37+45=35+47
47+(30+8)=(47+30)+8
(84+68)+32=84+(68+32)
75+(48+25)=(75+25)+48
借助媒体演示加数交换和结合过程。
(充分发挥了多媒体的优势,让学生把抽象的思维过程转化成了形象的思维过程。突破了难点。)
2、你能在( )里填上合适的数吗?
96+35=35+() 204+57=( )+204
(45+36)+64=45+( + )
560+(140+70)=(560+ )+(
3、游戏:谈话:我们班有55位学生,那么老师就是班级中56号,老师想和班级中的4、14、24、34、44、54号交朋友。猜一猜老师为什么要和他们交朋友?(凑整,简便)
4、你想和班级中哪几号同学交朋友?
五、评价鼓励,全课总结
这节课你学到了哪些知识?你有什么感受?
(及时的总结评价,肯定了学生在学习过程中的点滴进步,使学生受到激励和鼓励,促进学生更加自觉地学习。)
板书设计:
加法的运算定律
加法交换律 加法结合律
1.跳绳的有多少人? 3.参加活动有多少人?
28+17=45(人) 17+28=45(人) (28+17)+23 28+(17+23)
28+17=17+28 =45+23 =28+40
2.女生有多少人? =68(人) =68(人)
17+23=40(人) 23+17=40(人)
17+23=23+17 (28+17)+23=28+(17+23)
a+b=b+a (a+b)+c=a+(b+c)
【数学《加法交换律和结合律》教学设计】相关文章:
《加法运算定律》教学设计09-20
乘法交换律教学设计11篇04-10
数学教学设计12-27
《牛和鹅》 教学设计03-24
《开花和结果》教学设计12-12
《锐角和钝角》教学设计08-21
初中数学优秀教学设计04-21
《比和比例复习》教学设计04-05
8和9的教学设计09-11
《元帅和小棋手》教学设计03-03