- 相关推荐
变量与函数的教学设计
作为一位杰出的教职工,常常要写一份优秀的教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。那么教学设计应该怎么写才合适呢?下面是小编精心整理的变量与函数的教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
变量与函数的教学设计 1
教学目标
1、运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义,能分清实例中的常量与变量,了解自变量与函数的意义。
2、通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力。
3、引导学生探索实际问题中的数量关系,培养对学习的兴趣和积极参与数学活动的热情。在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心。
教学难点
函数概念的形成过程
知识重点
正确理解函数的概念
教学过程
创设情境提出问题
一、引入
1、汽车以60千米/时的速度匀速行驶,行驶里程为千米,行驶时间为小时,先填写下表,再试着用含的式子表示。
(小时)
2、要画一个面积S为10的圆,圆的半径应取多少?圆面积为呢?怎样用含圆面积S的式子表示圆半径?
让学生充分发表意见,然后教师点评。
挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验。
动手实验
3.用10cm长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。记录不同的长方形的长度值。计算相应的长方形面积的值,探索它们的变化规律。设长方形的长为cm,面积为S,怎样用含的式子表示S?
cm
4. 如图所示,用火柴棒摆图形,按照这样的规律继续摆下去,第四个图形需要_________根火柴棒,第五个图形需要_________根火柴棒,第n个图形需要________根火柴棒。
分组进行实验活动,然后各组选派代表汇报。
通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的.关系,学会了运用表格形式来表示实验信息。
探究新知
二、变量与常量的概念
1、在学生动手实验并充分发表自己意见的基础上,师生共同归纳:上面的问题和实验都反映了不同事物的变化过程。其中有些量(例如时间,里程的值)是按照某种规律变化的。在一个变化过程中,数值发生变化的量,我们称之为变量。也有些量是始终不变的,如上面问题中的速度60(千米/时)等,我们称之为常量。
2、请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量。
3、举出一些变化的实例,指出其中的变量和常量。
分组活动,先独立思考,然后组内交流并作记录,最后各组选派代表汇报
三、函数的概念
在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?
师生分析得出:上面的每个问题和实验中的两个变量互相联系。当其中一个变量取定一个值时,另一个变量就有惟一确定的值。
一般来说,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有惟一确定的值与其对应,那么我们就说是自变量,是的函数。如果当时,那么叫做当自变量的值为时的函数值。
例如在问题1中,时间是自变量,里程是的函数。时,其函数值为60,时,其函数值为120。
四、例题
1、一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量(单位:L)随行驶里程(单位:km)的增加而减少,平均耗油量为0.1L/km。
问题1:写出表示与的函数关系的式子。
问题2:指出自变量的取值范围。
问题3:汽车行驶200km时,油箱中还有多少汽油?
学生分组讨论、交流、说出各自得到的结论,最后师生共同归纳,得出
⑴与的函数关系式是
⑵自变量的取值范围是0≤≤500。
⑶汽车行驶200km时,油箱中还有30L汽油。
教师提示:确定自变量的取值范围时,不仅要考虑到函数关系式必须有意义,而且还要注意问题的实际意义。
2、一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2m。
(1)在这一变化过程中反映了哪两个变量之间的关系?它们之间可建立怎样的函数关系?
(2)4.5秒时小球的速度为多少?
培养学生主动参与、合作交流并能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力。
巩固练习
1.说出下列公式中的常量和变量
(1)设圆的半径为R,周长为C,则,其中常量为_____,变量为______
(2)球的表面积S与球半径R的关系式为,其中常量为_____,变量为______
2.在△ABC中,设它的底边是a,底边上的高是h,则三角形的面积为,指出下列各式中的常量和变量:
(1)S=6h ,常量为_____,变量为______
(2)常量为_____,变量为______
(3)S=3a,常量为_____,变量为______
巩固变量与函数的概念,让学生充分体会到许多问题中的变量关系都存在着函数关系
小结与作业
课堂小结
1、常量与变量的概念
2、函数的定义;
通过总结与归纳,完善学生已有的知识结构。
本课教育评注
变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一天飞跃。因此,设计本课时应根据学生的认识基础,创设在一定历史条件下的现实情境,使学生从中感知到变量函数的存在和意义,体会变量之间的相互依存关系和变化规律。遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则,引导学生探究新知,引导学生在观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,并在概念的形成过程中培养学生的观察、分析概括和抽象等的能力。同时在引导学生探索变量之间的规律,抽象出函数概念的过程中,要注重学生的过程经历和体验,让学生领悟到现实生活中存在着多姿多彩的数学问题,并能从中提出问题、分析问题和解决问题。还要培养一种团队合作精神,提高探索、研究和应用的能力,使学生真正成为数学学习的主人。
变量与函数的教学设计 2
教学目标
1、使学生会发现、提出函数的实例,并能分清实例中的常量和变量、自变量与函数。
2、理解函数的定义,能应用方程思想列出实例中的等量关系。
3、培养学生用数学知识解决实际问题的能力。
教学重点
函数的定义与一一对应关系
教学难点
函数的定义与自变量的定义域
教学方法
启发式教学、探究式教学
教学过程
一、由下列问题导入新课
问题l、右图(一)是某日的气温的变化图
看图回答:
1.这天的6时、10时和14时的气温分别是多少?任意给出这天中的某一时刻,你能否说出这一时刻的气温是多少吗?
2.这一天中,最高气温是多少?最低气温是多少?
3.这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?
总结:从图中我们可以看出,随着时间t(时)的变化,相应的气温T(℃)也随之变化。
问题2一辆汽车以30千米/时的速度行驶,行驶的路程为s千米,行驶的时间为t小时,那么,s与t具有什么关系呢?
问题3设圆柱的底面直径与高h相等,求圆柱体积V的底面半径R的关系
问题4收音机上的刻度盘的波长和频率分别是用(m)和千赫兹(kHz)为单位标刻的'
同学们是否会从表格中找出波长l与频率f的关系呢?
二、自主学习
1.常量和变量
在上述两个问题中有几个量?分别指出两个问题中的各个量?
第1个问题中,有两个变量,一个是时间,另一个是温度,温度随着时间的变化而变化
第2个问题中有路程s,时间t和速度v,这三个量中s和t可以取不同的数值是变量,而速度30千米/时,是保持不变的量是常量,路程随着时间的变化而变化。
第3个问题中的体积V和R是变量,而 π是常量,体积随着底面半径的变化而变化
第4个问题中的l与频率f是变量,而它们的积等于300000,是常量
常量:在某一变化过程中始终保持不变的量,称为常量
变量:在某一变化过程中可以取不同数值的量叫做变量
2.函数的概念
上面的各个问题中,都出现了两个变量,它们相互依赖,密切相关,例如:
在上述的第1个问题中,一天内任意选择一个时刻,都有惟一的温度与之对应,t是自变量,T因变量(T是t的函数)。
在上述的2个问题中,s=30t,给出变量t的一个值,就可以得到变量s惟一值与之对应,t是自变量,s因变量(s是t的函数)。
在上述的第3个问题中,V=2πR2,给出变量R的一个值,就可以得到变量V惟一值与之对应,R是变量,V因变量(V是R的函数)。
在上述的第4个问题中,lf=300000,即l=,给出一个f的值,就可以得到变量l惟一值与之对应,f是自变量,l因变量(l是f的函数)。函数的概念:如果在—个变化过程中;有两个变量,假设X与Y,对于X的每一个值,Y都有惟一的值与它对应,那么就说X是自变量,Y是因变量,此时也称 Y是X的函数。
要引导学生在以下几个方面加对于函数概念的理解。
变化过程中有两个变量,不研究多个变量;对于X的每一个值,Y都有唯一的值与它对应,如果Y有两个值与它对应,那么Y就不是X的函数。例如y2=x
3.表示函数的方法
(1)解析法,如问题2、问题3、问题4中的s=30t、V=2 R3、l=,这些表达式称为函数的关系式,(2)列表法,如问题4中的波长与频率关系表;
(3)图象法,如问题l中的气温与时间的曲线图。
三、合作探究
1.用总长60m的篱笆围成矩形场地,求矩形面积S(m2)与边l(m)之间的关系式,并指出式中的常量与变量,自变量与函数。
2.下列关系式中,哪些式中的y是x的函数?为什么?
(1)y=3x+2
(2)y2=x
(3)y=3x2+x+5
四、课堂练习
课本第26页练习的第1、2,3题
五、课堂小结
关于函数的定义的理解应注意两个方面,其一是变化过程中有且只有两个变量,其二是对于其中一个变量的每一个值,另一个变量都有惟一的值与它对应。对于实际问题,同学们应该能够根据题意写出两个变量的关系,即列出函数关系式。
变量与函数的教学设计 3
一、教学目的
1.使学生理解自变量的取值范围和函数值的意义。
2.使学生理解求自变量的取值范围的两个依据。
3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。
4.通过求函数中自变量的取值范围使学生进一步理解函数概念。
二、教学重点、难点
重点:函数自变量取值的求法。
难点:函灵敏处变量取值的确定。
三、教学过程
复习提问
1.函数的定义是什么?函数概念包含哪三个方面的内容?
2.什么叫分式?当x取什么数时,分式x+2/2x+3有意义?
(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)
3.什么叫二次根式?使二次根式成立的条件是什么?
(答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0。)
4.举出一个函数的`实例,并指出式中的变量与常量、自变量与函数。
新课
1.结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。并指出,函数表示法除了解析法外,还有图象法和列表法。
2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是:
(1)自变量取值范围是使函数解析式(即是函数表达式)有意义。
(2)自变量取值范围要使实际问题有意义。
3.讲解P93中例2。并指出例2四个小题代表三类题型:
(1),(2)题给出的是只含有一个自变量的整式;
(3)题给出的是只含有一个自变量的分式;
(4)题给出的是只含有一个自变量的二次根式。
推广与联想:请同学按上述三类题型自编3个题,并写出解答,同桌互对答案,老师评讲。
4.讲解P93中例3。结合例3引出函数值的意义。并指出两点:
(1)例3中的4个小题归纳起来仍是三类题型。
(2)求函数值的问题实际是求代数式值的问题。
补充例题
求下列函数当x=3时的函数值:
(1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。
(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)
小结
1.解析法的意义:用数学式子表示函数的方法叫解析法。
2.求函数自变量取值范围的两个方法(依据):
(1)要使函数的解析式有意义。
①函数的解析式是整式时,自变量可取全体实数;
②函数的解析式是分式时,自变量的取值应使分母≠0;
③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。
(2)对于反映实际问题的函数关系,应使实际问题有意义。
3.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相庆原函数值。
练习:P94中1,2,3。
作业:P95~P96中A组3,4,5,6,7。B组1,2。
四、教学注意问题
1.注意渗透与训练学生的归纳思维。比如例2、例3中各是4个小题,对每一个例题均可归纳为三类题型。而对于例2、例3这两道例题,虽然要求各异,但题目结构仍是三类题型:整式、分式、二次根式。
2.注意训练与培养学生的优质联想能力。要求学生仿照例题自编题目是有效手段。
3.注意培养学生对于“具体问题要具体分析”的良好学习方法。比如对于有实际意义来确定,由于实际问题千差万别,所以我们就要具体分析,灵活处置。
变量与函数的教学设计 4
教学目标
①从学生熟悉的情境出发,经历从图中分析变量之间关系的过程,理解函数图象的意义。会对实际生活中的例子用两变量之间关系的图象进行描述表达,初步认识函数与图象的对应关系。
②学会观察图象、识别图象及理解图象所表示的含义。了解图象的意义及其与实际轨道之间的关系和区别。
③渗透数形结合思想,体会到数学来源于生活,又应用于生活。培养学生的团结协作精神、探索精神和合作交流的能力。
教学重点与难点
把实际问题转化为函数图象,再根据图象来研究实际问题。
教学准备
三角尺、CAI课件。
教学设计
提出问题
下图是自动测温仪记录的图象,它反映了北京春季某天气温T如何随时间t的变化而变化。你从下图中得到哪些信息?
注:挖掘和利用现实生活中与函数图象有关的背景,让学生在观察背景中认识、理解函数的图象。
“做一做”解决生活中的数学问题,为的是进一步理解函数图象的意义。引导学生主动参与学习过程,从而培养合作交流能力。
解决问题
下面的图象反映的过程是:小明从家里出发去菜地浇水,又去玉米地锄草,然后回家。其中x表示时间,y表示小明离他家的'距离。
根据图象回答下列问题:
1、菜地离小明家多远?小明走到菜地用了多少时间?
2、小明给菜地浇水用了多少时间?
3、菜地离玉米地多远?小明从菜地走到玉米地用了多少时间?
4、小明给玉米地锄草用了多少时间?
5、玉米地离小明家多远?小明从玉米地走回家的平均速度是多少?
注:以课本例题中的实际生活问题为素材,使学生感受到数学来源于生活,激发学生学数学的兴趣。师生共同参与合作,完成几个问题的探讨。体现了以学生为主体,教师成为问题解决的组织者、引导者与合作者这一新课程教学理念。
总结归纳
围绕下面两点,以师生共同交流的方式进行归纳:
(1)函数图象会使函数关系更为清晰,怎样画出函数的图象呢?
(2)如何根据函数图象中获得的信息来研究实际问题?
注:进一步加深对函教图象的理解。
【变量与函数的教学设计】相关文章:
幂函数教学设计优秀10-29
教学设计模板-教学设计模板08-02
蝉教学设计优秀教学设计04-05
ai教学设计 ai的教学设计05-29
流程设计教学设计12-09
《鸟岛》教学设计小岛教学设计及设计意图11-11
怎样教学生构思教学设计教学设计及教学思路12-28