- 相关推荐
读《几何原本》有感
品味完一本名著后,相信大家一定领会了不少东西,需要写一篇读后感好好地作记录了。可是读后感怎么写才合适呢?以下是小编帮大家整理的读《几何原本》有感,供大家参考借鉴,希望可以帮助到有需要的朋友。
读《几何原本》有感 篇1
只要上过初中的人都学过几何,可是不一定知道把几何介绍到中国来的是明朝的大科学家徐光启和来自意大利的传教士利玛窦,更不一定知道是徐光启把这门“测地学”创造性地意译为“几何”的。从1667年《几何原本》前六卷译完至今已有四百年,11月9日上海等地举行了形式多样的纪念活动。来自意大利、美国、加拿大、法国、日本、比利时、芬兰、荷兰、中国等9个国家及两岸四地的60余位中外学者聚会徐光启的安息之地——上海徐汇区,纪念徐光启暨《几何原本》翻译出版400周年。
“一物不知,儒者之耻。”
徐光启家世平凡,父亲是一个不成功的商人,破产后在上海务农,家境不佳。徐光启19岁时中秀才,过了16年才中举人,此后又7年才中进士。在参加翰林院选拔时列第四名,即被选为翰林院庶吉士,相当于是明帝国皇家学院的博士研究生。他殿试排名三甲五十二名,名次靠后,照理没有资格申请入翰林院。他的同科进士、也是他年满花甲的老师黄体仁主动让贤,把考翰林院的机会让给了他。
《明史·徐光启传》中开篇用33个字讲完他的科举经历,紧接着就说他“从西洋人利玛窦学天文、历算、火器,尽其术。遂遍习兵机、屯田、盐策、水利诸书”,可见如果没有跟随利玛窦学习西方科学,徐光启只是有明一代数以千万计的官僚中不出奇的一员。但是因为在1600年遇上了利玛窦,且在翰林院学习期间有机会从学于利玛窦,他得从一干庸众中脱颖而出。
利玛窦(MatteoRicci)1552年生于意大利马切拉塔,1571年在罗马成为耶稣会的见习修士,在教会里接受了神学、古典文学和自然科学的广泛训练,又在印度的果阿学会了绘制地图和制造各类科学仪器,尤其是天文仪器。
利玛窦于1577年5月离开罗马,于1583年2月来到中国。8月在广东肇庆建立“仙花寺”,开始传教。可是一开始很不顺利。为此,利玛窦转变了策略,决定采取曲线传教的方针,为了接近中国人,利玛窦不仅说中文,写汉字,而且生活也力求中国化。正式服装也改成了宽衣博带的儒生装束。
1598年6月利玛窦去北京见皇帝,未能见到,次年返回南京。在南京期间,利玛窦早已赫赫有名,尤其是他过目不忘、倒背如流的记忆术给人留下了深刻的印象,一传十,十传百,已神乎其神。加之利玛窦高明的社交手段,以及他的那些引人入胜的`、代表着西方工艺水平的工艺品和科学仪器,引得高官显贵和名士文人都乐于和他交往。利玛窦则借此来达到自己的目的——推动传教活动。
也正是利玛窦的学识和魅力吸引了徐光启。根据利玛窦的日记记载,约在1597年7月到1600年5月之间。徐光启和利玛窦曾见过一面,利玛窦说这是一次短暂的见面。徐光启主要向利玛窦讨教一些基督教教义,双方并没有深谈。和利玛窦分手之后,徐光启花了两三年时间研究基督教义,思考自己的命运。1603年,徐光启再次去找利玛窦,但利玛窦这时已经离开南京到北京去了。徐光启拜见了留在南京的传教士罗如望,和之长谈数日后,终于受洗成为了基督教徒。
1601年1月,利玛窦再次晋京面圣,此次获得成功,利玛窦带来的见面礼是自鸣钟和钢琴,这两样东西是要经常修理的,于是他被要求留在京城,以便可以经常为皇帝修理这两样东西。正好1604年4月,徐光启中进士后要留在北京。两人的交往也多起来。在此之前,徐光启对中国传统数字已有较深入的了解,他跟利玛窦学习了西方科技后,向利玛窦请求合作翻译《几何原本》,以克服传统数学只言“法”而不言“义”的缺陷,认为“此书未译,则他书俱不可得论。”利玛窦劝他不要冲动,因为翻译实在太难,徐光启回答说:“一物不知,儒者之耻。”
读《几何原本》有感 篇2
读《几何原本》的作者数学家欧几里得能够代表整个古希腊人民,那么我可以说,古希腊是古代文化中最灿烂的一支——因为古希腊的数学中,所包含的不仅仅是数学,还有着难得的逻辑,更有着耐人寻味的哲学..
《几何原本》这本数学著作,以几个显而易见、众所周知的定义、公设和公理,互相搭桥,展开了一系列的命题:由简单到复杂,相辅而成。其逻辑的严密,不能不令我们佩服。
就我目前拜访的几个命题来看,数学家欧几里得证明关于线段“一样长”的题,最常用、也是最基本的,便是画圆:因为,一个圆的所有半径都相等。一般的数学思想,都是很复杂的,这边刚讲一点,就又跑到那边去了;而《几何原本》非常容易就被我接受,其原因大概就在于数学家欧几里得反复运用一种思想、使读者不断接受的缘故吧。
不过,我要着重讲的,是他的哲学。
书中有这样几个命题:如,“等腰三角形的两底角相等,将腰延长,与底边形成的两个补角亦相等”,再如,“如果在一个三角形里,有两个角相等,那么也有两条边相等”,这些命题,我在读时,内心一直承受着几何外的'震撼。
我们七年级已经学了几何。想想那时做这类证明题,需要证明一个三角形中的两个角相等的时候,我们总是会这么写:“因为它是一个等腰三角形,所以两底角相等”——我们总是习惯性的认为,等腰三角形的两个底角就是相等的;而看《几何原本》,他思考的是“等腰三角形的两个底角为什么相等”。想想看吧,一个思想习以为常,一个思想在思考为什么,这难道还不够说明现代人的问题吗?
大多数现代人,好奇心似乎已经泯灭了。这里所说的好奇心不单单是指那种对新奇的事物感兴趣,同样指对平常的事物感兴趣。比如说,许多人会问“宇航员在空中为什么会飘起来”,但也许不会问“我们为什么能够站在地上而不会飘起来”;许多人会问“吃什么东西能减肥”,但也许不会问“羊为什么吃草而不吃肉”。
我们对身边的事物太习以为常了,以致不会对许多“平常”的事物感兴趣,进而去琢磨透它。牛顿为什么会发现万有引力?很大一部分原因,就在于他有好奇心。
如果仅把《几何原本》当做数学书看,那可就大错特错了:因为古希腊的数学渗透着哲学,学数学,就是学哲学。
哲学第一课:人要建立好奇心,不仅探索新奇的事物,更要探索身边的平常事,这就是我读《几何原本》意外的收获吧!
读《几何原本》有感 篇3
有这样一本书,它的思想影响过无数科学家,它的逻辑至今还被世界推崇,它的作者因它而成为数学鼻祖。它就是古希腊著名数学家欧几里得所撰写的《几何原本》。
《几何原本》这本书以几个看似简单的公理和公设出发,推导了大量复杂且不可错的数学定理,影响后世近千年,甚至成为了世界所有国家的教科书。它的内容通俗易懂,不需要我们有太多的数学基础,只要认真研读,必定大有裨益。
首先,《几何原本》带给我们的便是数学思维,从七年级开始我们就学习了几何。如果你没有掌握几何推导的过程,那书中一步一步的逻辑推导就能够大大训练我们的反应力和观察力。其中让我映象深刻的还是书中第5章的一个命题,众所周知最大公因数是指公因数中最大的,但如何求最大公因数呢?是一个数一个数的尝试,那也成了瞎子过河——摸不着边了吧,书中就给出了办法就是两数相减,差又和减数相减,直到差为0,则他们的最大公因数便是上个式子的差,这就是著名的辗转相除法。那么里面的思想便可见一斑。当你成功做出了一个命题的时候,你获得的除了知识本身以外,你的成就感必定难以言表。它还可以带给你许多的知识,有数学方面的,著名的还要数第一章的一个命题,它讲到等腰三角形两底角相等,这个结论我们似乎早已习以为常,但为什么呢?这本书就可以带给你答案。生活中无数的人就对周边的`一切麻木了,就像一个机器人一般,提不起兴趣,实则不然,不是没有,而是你没有善于发现。但《几何原本》便能激发你对周围事物的好奇心,对一个问题产生刨根问底的精神,更有对结论进行阐述的能力。除了数学方面,尤为重要的还是它训练你的头脑,打开新世界的大门。世界数学大师丘成桐就说过:欧几里得的定理不见得对社会有直接贡献,可它的推理方式确是最有效的逻辑训练。将来你无论是做科学家,政治家,还是一个成功的商人,都需要有系统的训练。可见《几何原本》这一本书对所有的青少年来说都是最甘甜的养料,给予给我们的比你想象的要更多。你读它可以是喜爱数学,从中汲取数学的养分,可以是体会里面的逻辑思维,帮助你学会思考问题,也可以是无聊时间里的一本趣味小说,同两千年前的欧几里得探讨世界的奥秘。
不管怎么样,如果你缺少信心和勇气,如果你需要异于常人的智慧,如果你没有生活的目标,那一定要读读这本名著,他就像我们的人生导师,手把手,耐心的教导我们,给我们通往成功的钥匙,激发我们对科学的热爱。如今我们的中国已经站在了世界的前面,但某些方面还是缺少一些人才。所以,我有理由有信心相信只要我们一丝不苟的读一读《几何原本》,体会其中的思想,养成对事物的好奇心与兴趣。我们以后不管从事什么行业,都一定对你自己有更好的思考能力,对社会有更大的作用,对祖国的未来有更好的贡献。科教兴国的大旗就抗我们青少年的肩上,让我们以《几何原本》为舟,在科学与真理的大海中畅游,成就自己向往的未来吧!
读《几何原本》有感 篇4
数学中最古老的一门分科。据说是起源于古埃及尼罗河泛滥后为整修土地而产生的测量法,它的外国语名称geometry就是由geo(土地)与metry(测量)组成的。泰勒斯曾经利用两三角形的等同性质,做了间接的测量工作;毕达哥拉斯学派则以勾股定理等著名。在中国古代早有勾股测量,汉朝人撰写的《周髀算经》的第一章叙述了西周开国时期(约公元前1000)周公姬旦同商高的问答,讨论用矩测量的方法,得出了著名的勾股定律,并举出了“勾三、股四、弦五”的例子。在埃及产生的几何学传到希腊,然后逐步发展起来而变为理论的数学。哲学家柏拉图(公元前429~前348)对几何学作了深奥的探讨,确立起今天几何学中的定义、公设、公理、定理等概念,而且树立了哲学与数学中的分析法与综合法的概念。此外,梅内克缪斯(约公元前340)已经有了圆锥曲线的概念。
希腊文化以柏拉图学派的时代为顶峰,以后逐渐衰落,而埃及的亚历山大学派则渐渐繁荣起来,它长时间成了文化的`中心。数学家欧几里得把至希腊时代为止所得到的数学知识集其大成,编成十三卷的《几何原本》,这就是直到今天仍广泛地作为几何学的教科书使用下来的数学家欧几里得几何学(简称欧氏几何)。徐光启于1606年翻译了《几何原本》前六卷,至1847年李善兰才把其余七卷译完。“几何”与其说是geo的音译,毋宁解释为“大小”较为妥当。诚然,现代几何学是有关图形的一门数学分科,但是在希腊时代则代表了数学的全部。数学家欧几里得在《几何原本》中首先叙述了一些定义,然后提出五个公设和五个公理。其中第五公设尤为著名:如果两直线和第三直线相交而且在同一侧所构成的两个同侧内角之和小于二直角,那么这两直线向这一侧适当延长后一定相交。《几何原本》中的公理系统虽然不能说是那么完备,但它恰恰成了现代几何学基础论的先驱。直到19世纪末,D。希尔伯特才建立了严密的欧氏几何公理体系。
第五公设和其余公设相比较,内容显得复杂,于是引起后来人们的注意,但用其余公设来推导它的企图,都失败了。这个公设等价于下述的公设:在平面上,过一直线外的一点可引一条而且只有一条和这直线不相交的直线。Η。И。罗巴切夫斯基和J。波尔约独立地创建了一种新几何学,其中扬弃了第五公设而代之以另一公设:在平面上,过一直线外的一点可引无限条和这直线不相交的直线。这样创建起来的无矛盾的几何学称为双曲的非数学家欧几里得几何。(G。F。)B。黎曼则把第五公设换作“在平面上,过一直线外的一点所引的任何直线一定和这直线相交”,这样创建的无矛盾的几何学称椭圆的非数学家欧几里得几何。
读《几何原本》有感 篇5
《几何原本》是古希腊数学家欧几里得的一部不朽之作,集整个古希腊数学的成果和精神于一身。既是数学巨著,也是哲学巨著,并且第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里,历经多次翻译和修订,自1482年第一个印刷本出版,至今已有一千多种不同版本。
除《圣经》以外,没有任何其他著作,其研究、使用和传播之广泛能够和《几何原本》相比。汉语的最早译本是由意大利传教士利玛窦和明代科学家徐光启于1607年合作完成的,但他们只译出了前六卷。证实这个残本断定了中国现代数学的基本术语,诸如三角形、角、直角等。日本、印度等东方国家皆使用中国译法,沿用至今。近百年来,虽然大陆的中学课本必提及这一伟大著作,但对中国读者来说,却无缘一睹它的.全貌,纳入家庭藏书更是妄想。
徐光启在译此作时,对该书有极高的评价,他说:“能精此书者,无一事不可精;好学此书者,无一事不科学。”现代科学的奠基者爱因斯坦更是认为:如果欧几里得未能激发起你少年时代的科学热情,那你肯定不会是一个天才的科学家。由此可见,《几何原本》对人们理性推演能力的影响,即对人的科学思想的影响是何等巨大。在高等数学中,有正交的概念,最早的概念起源应该是毕达哥拉斯定理,我们称之为勾股定理,只是勾3股4弦5是一种特例,而毕氏定理对任意直角三角形都成立。并由毕氏定理,发现了无理数根号2。在数学方法上初步涉及演绎法,又在证明命题时用了归谬法(即反证法)。可能由于受丢番图(Diophantus)对一个平方数分成两个平方数整数解的启发,350多年前,法国数学家费马提出了著名的费马大定理,吸引了历代数学家为它的证明付出了巨大的努力,有力地推动了数论用至整个数学的进步。1994年,这一旷世难题被英国数学家安德鲁威乐斯解决。
多少年来,千千万万人(著名的有牛顿(Newton)、阿基米德(Archimedes)等)通过欧几里得几何的学习受到了逻辑的训练,从而迈入科学的殿堂。
读《几何原本》有感 篇6
在文艺复兴以后的欧洲,代数学由于受到阿拉伯的影响而迅速发展。另一方面,17世纪以后,数学分析的发展非常显著。因此,几何学也摆脱了和代数学相隔离的状态。正如在其名著《几何学》中所说的一样,数与图形之间存在着密切的关系,在空间设立坐标,而且以数与数之间关系来表示图形;反过来,可把图形表示成为数与数之间的关系。这样,按照坐标把图形改成数与数之间的关系问题而对之进行处理,这个方法称为解析几何。恩格斯在其《自然辩证法》中高度评价了笛卡儿的工作,他指出:“数学中的转折点是笛卡儿的变数,有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就成为必要的了,……”
事实上,笛卡儿的思想为17世纪数学分析的发展提供了有力的基础。到了18世纪,解析几何由于L.欧拉等人的开拓得到迅速的发展,连希腊时代的阿波罗尼奥斯(约公元前262~约前190)等人探讨过的圆锥曲线论,也重新被看成为二次曲线论而加以代数地整理。另外,18世纪中发展起来的数学分析反过来又被应用到几何学中去,在该世纪末期,G.蒙日首创了数学分析对于几何的应用,而成为微分几何的'先驱者。 如上所述,用解析几何的方法可以讨论许多几何问题。但是不能说,这对于所有问题都是最适用的。同解析几何方法相对立的,有综合几何或纯粹几何方法,它是不用坐标而直接考察图形的方法,数学家欧几里得几何本来就是如此。射影几何是在这思想方法指导下的产物。
早在文艺复兴时期的意大利盛行而且发展了造型美术,与它随伴而来的有所谓透视图法的研究,当时有过许多人包括达·芬奇在内把这个透视图法作为实用几何进行了研究。从17世纪起,G.德扎格、B.帕斯卡把这个透视图法加以推广和发展,从而奠定了射影几何。分别以他们命名的两个定理,成了射影几何的基础。其一是德扎格定理:如果平面上两个三角形的对应顶点的连线相会于一点,那么它们的对应边的交点在一直线上;而且反过来也成立。其二是帕斯卡定理:如果一个六角形的顶点在同一圆锥曲线上,那么它的三对对边的交点在同一直线上;而且反过来也成立。18世纪以后,J.-V.彭赛列、Z.N.M.嘉诺、J.施泰纳等完成了这门几何学。
读《几何原本》有感 篇7
徐光启(公元1562—1633年)字子先,号玄扈,吴淞(今属上海)人。他从万历末年起,经过天启、崇祯各朝,曾作到文渊阁大学士的官职(相当于宰相)。他精通天文历法,是明末改历的主要主持人。他对农学也颇有研究,曾根据前人所著各种农书,附以自己的见解,编写了著名的《农政全书》,全书有六十余卷,共六十多万字。明朝末年,满族的统治阶级从东北关外屡次发动战争,徐光启曾屡次上书论军事,并在通州练新兵,主张采用西方火炮。他是一位热爱祖国的科学家。
他没有入京做官之前,曾在上海、广东、广西等地教书。在此期间,他曾博览群书,在广东还接触到一些传教士,对他们传入的西方文化开始有所接触。公元1600年,他在南京和利玛窦相识,以后两人又长期同住在北京,经常来往。他和利玛窦两人共同译《几何原本》一书,1607年译完前六卷。当时徐光启很想全部译完,利玛窦却不愿这样做。直到晚清时代,《几何原本》后九卷的翻译工作才由李善兰(公元1811—1882年)完成。
《几何原本》是我国最早第一部自拉丁文译来的数学著作。在翻译时绝无对照的.词表可循,许多译名都从无到有,当时创造的。毫无疑问,这是需要精细研究煞费苦心的。这个译本中的许多译名都十分恰当,不但在我国一直沿用至今,并且还影响了日本、朝鲜各国。如点、线、直线、曲线、平行线、角、直角、锐角、钝角、三角形、四边形……这许多名词都是由这个译本首先定下来的。其中只有极少的几个经后人改定,如“等边三角形”,徐光启当时记作“平边三角形”;“比”,当时译为“比例”;而“比例”则译为“有理的比例”等等。
《几何原本》有严整的逻辑体系,其叙述方式和中国传统的《九章算术》完全不同。徐光启对《几何原本》区别于中国传统数学的这种特点,有着比较清楚的认识。他还充分认识到几何学的重要意义,他说“窃百年之后,必人人习之”。
清康熙帝时,编辑数学百科全书《数理精蕴》(公元1723年),其中收有《几何原本》一书,但这是根据公元十八世纪法国几何学教科书翻译的,和欧几里得的《几何原本》差别很大。
到清朝末年废科举、兴学堂之后,几何学方成为学校中必修科目之一。到这时才出现了徐光启所预料的“必人人而习之”的情况。
读《几何原本》有感 篇8
读《几何原本》的作者欧几里得能够代表整个古希腊人民,那么我可以说,古希腊是古代文化中最灿烂的一支——因为古希腊的数学中,所包含的不仅仅是数学,还有着难得的逻辑,更有着耐人寻味的哲学。
《几何原本》这本数学著作,以几个显而易见、众所周知的定义、公设和公理,互相搭桥,展开了一系列的命题:由简单到复杂,相辅而成。其逻辑的严密,不能不令我们佩服。
就我目前拜访的几个命题来看,欧几里得证明关于线段“一样长”的题,最常用、也是最基本的,便是画圆:因为,一个圆的所有半径都相等。一般的数学思想,都是很复杂的,这边刚讲一点,就又跑到那边去了;
而《几何原本》非常容易就被我接受,其原因大概就在于欧几里得反复运用一种思想、使读者不断接受的缘故吧。
不过,我要着重讲的,是他的哲学。
书中有这样几个命题:如,“等腰三角形的两底角相等,将腰延长,与底边形成的两个补角亦相等”,再如,“如果在一个三角形里,有两个角相等,那么也有两条边相等”。
这些命题,我在读时,内心一直承受着几何外的震撼。
我们七年级已经学了几何。想想那时做这类证明题,需要证明一个三角形中的两个角相等的时候,我们总是会这么写:“因为它是一个等腰三角形,所以两底角相等”——我们总是习惯性的认为,等腰三角形的两个底角就是相等的;
而看《几何原本》,他思考的`是“等腰三角形的两个底角为什么相等”。
想想看吧,一个思想习以为常,一个思想在思考为什么,这难道还不够说明现代人的问题吗?
大多数现代人,好奇心似乎已经泯灭了。这里所说的好奇心不单单是指那种对新奇的事物感兴趣,同样指对平常的事物感兴趣。
比如说,许多人会问“宇航员在空中为什么会飘起来”,但也许不会问“我们为什么能够站在地上而不会飘起来”;
许多人会问“吃什么东西能减肥”,但也许不会问“羊为什么吃草而不吃肉”。
我们对身边的事物太习以为常了,以致不会对许多“平常”的事物感兴趣,进而去琢磨透它。牛顿为什么会发现万有引力?很大一部分原因,就在于他有好奇心。
如果仅把《几何原本》当做数学书看,那可就大错特错了:因为古希腊的数学渗透着哲学,学数学,就是学哲学。
哲学第一课:人要建立好奇心,不仅探索新奇的事物,更要探索身边的平常事,这就是我读《几何原本》意外的收获吧!
读《几何原本》有感 篇9
也许这算不上是个谜。稍具文化修养的人都会告诉你,欧几里德《几何原本》是明末传入的,它的译者是徐光启与利玛窦。但究竟何时传入,在中外科技史界却一直是一个悬案。以下是“读几何原本读后感作文”,希望能够帮助的到您!
读《几何原本》的作者欧几里得能够代表整个古希腊人民,那么我可以说,古希腊是古代文化中最灿烂的一支——因为古希腊的数学中,所包含的不仅仅是数学,还有着难得的逻辑,更有着耐人寻味的哲学,《几何原本》读后感作文。
《几何原本》这本数学著作,以几个显而易见、众所周知的定义、公设和公理,互相搭桥,展开了一系列的命题:由简单到复杂,相辅而成。其逻辑的严密,不能不令我们佩服。
就我目前拜访的几个命题来看,欧几里得证明关于线段“一样长”的题,最常用、也是最基本的,便是画圆:因为,一个圆的所有半径都相等。一般的数学思想,都是很复杂的,这边刚讲一点,就又跑到那边去了;而《几何原本》非常容易就被我接受,其原因大概就在于欧几里得反复运用一种思想、使读者不断接受的缘故吧。
不过,我要着重讲的,是他的哲学。
书中有这样几个命题:如,“等腰三角形的两底角相等,将腰延长,与底边形成的两个补角亦相等”,再如,“如果在一个三角形里,有两个角相等,那么也有两条边相等”,读后感《《几何原本》读后感作文》。这些命题,我在读时,内心一直承受着几何外的震撼。
我们七年级已经学了几何。想想那时做这类证明题,需要证明一个三角形中的两个角相等的时候,我们总是会这么写:“因为它是一个等腰三角形,所以两底角相等”——我们总是习惯性的认为,等腰三角形的两个底角就是相等的;而看《几何原本》,他思考的是“等腰三角形的两个底角为什么相等”。想想看吧,一个思想习以为常,一个思想在思考为什么,这难道还不够说明现代人的.问题吗?
大多数现代人,好奇心似乎已经泯灭了。这里所说的好奇心不单单是指那种对新奇的事物感兴趣,同样指对平常的事物感兴趣。比如说,许多人会问“宇航员在空中为什么会飘起来”,但也许不会问“我们为什么能够站在地上而不会飘起来”;许多人会问“吃什么东西能减肥”,但也许不会问“羊为什么吃草而不吃肉”。
我们对身边的事物太习以为常了,以致不会对许多“平常”的事物感兴趣,进而去琢磨透它。牛顿为什么会发现万有引力?很大一部分原因,就在于他有好奇心。
如果仅把《几何原本》当做数学书看,那可就大错特错了:因为古希腊的数学渗透着哲学,学数学,就是学哲学。
哲学第一课:人要建立好奇心,不仅探索新奇的事物,更要探索身边的平常事,这就是我读《几何原本》意外的收获吧!
读《几何原本》有感 篇10
在文艺复兴以后的欧洲,代数学由于受到阿拉伯的影响而迅速发展。另一方面,17世纪以后,数学分析的发展非常显著。因此,几何学也摆脱了和代数学相隔离的状态。正如在其名著《几何学》中所说的一样,数与图形之间存在着密切的关系,在空间设立坐标,而且以数与数之间关系来表示图形;反过来,可把图形表示成为数与数之间的关系。这样,按照坐标把图形改成数与数之间的关系问题而对之进行处理,这个方法称为解析几何。恩格斯在其《自然辩证法》中高度评价了笛卡儿的工作,他指出:“数学中的转折点是笛卡儿的变数,有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就成为必要的。了……”
事实上,笛卡儿的思想为17世纪数学分析的发展提供了有力的基础。到了18世纪,解析几何由于L。欧拉等人的开拓得到迅速的发展,连希腊时代的阿波罗尼奥斯(约公元前262~约前190)等人探讨过的圆锥曲线论,也重新被看成为二次曲线论而加以代数地整理。另外,18世纪中发展起来的数学分析反过来又被应用到几何学中去,在该世纪末期,G。蒙日首创了数学分析对于几何的应用,而成为微分几何的.先驱者。如上所述,用解析几何的方法可以讨论许多几何问题。但是不能说,这对于所有问题都是最适用的。同解析几何方法相对立的,有综合几何或纯粹几何方法,它是不用坐标而直接考察图形的方法,数学家欧几里得几何本来就是如此。射影几何是在这思想方法指导下的产物。
早在文艺复兴时期的意大利盛行而且发展了造型美术,与它随伴而来的有所谓透视图法的研究,当时有过许多人包括达·芬奇在内把这个透视图法作为实用几何进行了研究。从17世纪起,G。德扎格、B。帕斯卡把这个透视图法加以推广和发展,从而奠定了射影几何。分别以他们命名的两个定理,成了射影几何的基础。其一是德扎格定理:如果平面上两个三角形的对应顶点的连线相会于一点,那么它们的对应边的交点在一直线上;而且反过来也成立。其二是帕斯卡定理:如果一个六角形的顶点在同一圆锥曲线上,那么它的三对对边的交点在同一直线上;而且反过来也成立。18世纪以后,J。—V。彭赛列、Z。N。M。嘉诺、J。施泰纳等完成了这门几何学。
读《几何原本》有感 篇11
今天看了一本叫《几何原本》的书。它是古希腊数学家、哲学家欧几里得的一部不朽之作,将希腊数学家的成就和精神集于一册。
《几何原本》收录了原著13卷的全部内容,包括5个公理、5个公设、23个定义和467个命题,即先提出公理、公设和定义,再从中证明从简单到复杂,这里基于欧几里德几何系统。欧几里德认为,数学是一个贵族的`世界,即使你是世俗的君主,在这里也没有特权。与时间易逝的物质相比,数学揭示的世界是永恒的。 《几何原本》不仅是一部数学著作,而且充满哲学精神,首次完成了人类对空间的认识。古希腊数学是从哲学中诞生的。它用各种可能的描述来分析我们的宇宙,使它不再混乱和分离。它与世俗的中国和古埃及数学的起源和应用完全不同。它建立了一定的物质世界和精神世界体系,让渺小的人类从中获得一些自信。
本书的命题1提出了如何构造等边三角形,由此产生了三角形同余定理。即角、边、角或边、角、边或边、边、边相等,进一步提出等腰三角形——等边等于角;相等的角等于相等的边。就这样,欧几里得从点、线、面、角四个部分,由浅入深,提出了自己的几何理论。先前的命题为未来铺路;后面的命题是从前面的命题推导出来的,前后联系紧密,非常严谨。
读《几何原本》有感 篇12
公理化结构是近代数学的主要特征。而《原本》是完成公理化结构的最早典范,它产生于两千多年前,这是难能可贵的。不过用现代的标准去衡量,也有不少缺点。首先,一个公理系统都有若干原始概念,或称不定义概念,作为其他概念定义的基础。点、线、面就属于这一类。而在《原本》中一一给出定义,这些定义本身就是含混不清的。其次是公理系统不完备,没有运动、顺序、连续性等公理,所以许多证明不得不借助于直观。此外,有的公理不是独立的,即可以由别的公理推出。这些缺陷直到1899年希尔伯特(Hilbert)的《几何基础》出版才得到了补救。尽管如此,毕竟瑕不掩瑜,《原本》开创了数学公理化的正确道路,对整个数学发展的影响,超过了历史上任何其他著作。
《原本》的两个理论支柱——比例论和穷竭法。为了论述相似形的理论,欧几里得安排了比例论,引用了欧多克索斯的比例论。这个理论是无比的成功,它避开了无理数,而建立了可公度与不可公度的正确的比例论,因而顺利地建立了相似形的理论。在几何发展的历史上,解决曲边围成的面积和曲面围成的体积等问题,一直是人们关注的重要课题。这也是微积分最初涉及的问题。它的解决依赖于极限理论,这已是17世纪的事了。然而在古希腊于公元前三四世纪对一些重要的面积、体积问题的证明却没有明显的极限过程,他们解决这些问题的理念和方法是如此的超前,并且深刻地影响着数学的发展。
化圆为方问题是古希腊数学家欧多克索斯提出的,后来以“穷竭法”而得名的方法。“穷竭法”的依据是阿基米得公理和反证法。在《几何原本》中欧几里得利用“穷竭法”证明了许多命题,如圆与圆的面积之比等于直径平方比。两球体积之比等于它们的直径的立方比。阿基米德应用“穷竭法”更加熟练,而且技巧很高。并且用它解决了一批重要的面积和体积命题。当然,利用“穷竭法”证明命题,首先要知道命题的结论,而结论往往是由推测、判断等确定的。阿基米德在此做了重要的工作,他在《方法》一文中阐述了发现结论的一般方法,这实际又包含了积分的思想。他在数学上的贡献,奠定了他在数学史上的突出地位。
作图问题的研究与终结。欧几里得在《原本》中谈了正三角形、正方形、正五边形、正六边形、正十五边形的作图,未提及其他正多边形的作法。可见他已尝试着作过其他正多边形,碰到了“不能”作出的情形。但当时还无法判断真正的“不能作”,还是暂时找不到作图方法。
高斯并未满足于寻求个别正多边形的作图方法,他希望能找到一种判别准则,哪些正多边形用直尺和圆规可以作出、哪些正多边形不能作出。也就是说,他已经意识到直尺和圆规的“效能”不是万能的,可能对某些正多边形不能作出,而不是人们找不到作图方法。1801年,他发现了新的研究结果,这个结果可以判断一个正多边形“能作”或“不能作”的准则。判断这个问题是否可作,首先把问题化为代数方程。
然后,用代数方法来判断。判断的准则是:“对一个几何量用直尺和圆规能作出的充分必要条件是:这个几何量所对应的数能由已知量所对应的数,经有限次的加、减、乘、除及开平方而得到。”(圆周率不可能如此得到,它是超越数,还有e、刘维尔数都是超越数,我们知道,实数是不可数的,实数分为有理数和无理数,其中有理数和一部分无理数,比如根号2,是代数数,而代数数是可数的,因此实数中不可数是因为超越数的存在。虽然超越数比较多,但要判定一个数是否为超越数却不是那么的简单。)至此,“三大难题”即“化圆为方、三等分角、二倍立方体”问题是用尺规不能作出的作图题。正十七边形可作,但其作法不易给出。高斯(Gauss)在1796年19岁时,给出了正十七边形的尺规作图法,并作了详尽的讨论。为了表彰他的这一发现,他去世后,在他的故乡不伦瑞克建立的纪念碑上面刻了一个正十七边形。
几何中连续公理的引入。由欧氏公设、公理不能推出作图题中“交点”存在。因为,其中没有连续性(公理)概念。这就需要给欧氏的公理系统中添加新的公理——连续性公理。虽然19世纪之前费马与笛卡尔已经发现解析几何,代数有了长驱直入的进展,微积分进入了大学课堂,拓扑学和射影几何已经出现。但是,数学家对数系理论基础仍然是模糊的,没有引起重视。直观地承认了实数与直线上的点都是连续的,且一一对应。直到19世纪末叶才完满地解决了这一重大问题。从事这一工作的学者有康托(Cantor)、戴德金(Dedekind)、皮亚诺(Peano)、希尔伯特(Hilbert)等人。
当时,康托希望用基本序列建立实数理论,代德金也深入地研究了无理数理念,他的一篇论文发表在1872年。在此之前的1858年,他给学生开设微积分时,知道实数系还没有逻辑基础的保证。因此,当他要证明“单调递增有界变量序列趋向于一个极限”时,只得借助于几何的`直观性。
实际上,“直线上全体点是连续统”也是没有逻辑基础的。更没有明确全体实数和直线全体点是一一对应这一重大关系。如,数学家波尔查奴(Bolzano)把两个数之间至少存在一个数,认为是数的连续性。实际上,这是误解。因为,任何两个有理数之间一定能求到一个有理数。但是,有理数并不是数的全体。有了戴德金分割之后,人们认识至波尔查奴的说法只是数的稠密性,而不是连续性。由无理数引发的数学危机一直延续到19世纪。直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续20xx多年的数学史上的第一次大危机。
《原本》还研究了其它许多问题,如求两数(可推广至任意有限数)最大公因数,数论中的素数的个数无穷多等。
在高等数学中,有正交的概念,最早的概念起源应该是毕达哥拉斯定理,我们称之为勾股定理,只是勾3股4弦5是一种特例,而毕氏定理对任意直角三角形都成立。并由毕氏定理,发现了无理数根号2。在数学方法上初步涉及演绎法,又在证明命题时用了归谬法(即反证法)。可能由于受丢番图(Diophantus)对一个平方数分成两个平方数整数解的启发,350多年前,法国数学家费马提出了著名的费马大定理,吸引了历代数学家为它的证明付出了巨大的努力,有力地推动了数论用至整个数学的进步。1994年,这一旷世难题被英国数学家安德鲁威乐斯解决。
多少年来,千千万万人(著名的有牛顿(Newton)、阿基米德(Archimedes)等)通过欧几里得几何的学习受到了逻辑的训练,从而迈入科学的殿堂。
读《几何原本》有感 篇13
古希腊大数学家欧几里德是和他的巨著——《几何原本》一起名垂千古的。这本书是世界上最著名、最完整而且流传最广的数学著作,也是欧几里德最有价值的一部著作。在《原本》里,欧几里德系统地总结了古代劳动人民和学者们在实践和思考中获得的几何知识,欧几里德把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。而这本书,也就成了欧式几何的奠基之作。
两千多年来,《几何原本》一直是学习几何的主要教材。哥白尼、伽利略、笛卡尔、牛顿等许多伟大的学者都曾学习过《几何原本》,从中吸取了丰富的营养,从而作出了许多伟大的成就。
从欧几里得发表《几何原本》到现在,已经过去了两千多年,尽管科学技术日新月异,由于欧氏几何具有鲜明的直观性和有着严密的逻辑演绎方法相结合的特点,在长期的实践中表明,它巳成为培养、提高青少年逻辑思维能力的好教材。历史上不知有多少科学家从学习几何中得到益处,从而作出了伟大的贡献。
少年时代的牛顿在剑桥大学附近的夜店里买了一本《几何原本》,开始他认为这本书的内容没有超出常识范围,因而并没有认真地去读它,而对笛卡儿的“坐标几何”很感兴趣而专心攻读。后来,牛顿于1664年4月在参加特列台奖学金考试的时候遭到落选,当时的考官巴罗博士对他说:“因为你的几何基础知识太贫乏,无论怎样用功也是不行的。”
这席谈话对牛顿的`震动很大。于是,牛顿又重新把《几何原本》从头到尾地反复进行了深入钻研,为以后的科学工作打下了坚实的数学基础。
但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。由于历史条件的限制,欧几里得在《几何原本》中提出几何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在逻辑推理中起什么作用。又如,欧几里得在逻辑推理中使用了“连续”的概念,但是在《几何原本》中从未提到过这个概念。
读《几何原本》有感 篇14
古希腊大数学家欧几里德是与他的巨著——《几何原本》一起名垂千古的。这本书是世界上最著名、最完整而且流传最广的数学著作,也是欧几里德最有价值的一部著作,在《原本》里,欧几里德系统地总结了古代劳动人民和学者们在实践和思考中获得的几何知识,欧几里德把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。而这本书,也就成了欧式几何的奠基之作。
两千多年来,《几何原本》一直是学习几何的主要教材。哥白尼、伽利略、笛卡尔、牛顿等许多伟大的学者都曾学习过《几何原本》,从中吸取了丰富的营养,从而作出了许多伟大的成就。
从欧几里得发表《几何原本》到现在,已经过去了两千多年,尽管科学技术日新月异,由于欧氏几何具有鲜明的直观性和有着严密的逻辑演绎方法相结合的特点,在长期的`实践中表明,它巳成为培养、提高青少年逻辑思维能力的好教材。历史上不知有多少科学家从学习几何中得到益处,从而作出了伟大的贡献。
少年时代的牛顿在剑桥大学附近的夜店里买了一本《几何原本》。开始他认为这本书的内容没有超出常识范围,因而并没有认真地去读它,而对笛卡儿的“坐标几何”很感兴趣而专心攻读,后来,牛顿于1664年4月在参加特列台奖学金考试的时候遭到落选,当时的考官巴罗博士对他说:“因为你的几何基础知识太贫乏,无论怎样用功也是不行的。”这席谈话对牛顿的震动很大,于是,牛顿又重新把《几何原本》从头到尾地反复进行了深入钻研,为以后的科学工作打下了坚实的数学基础。
但是,在人类认识的长河中,无论怎样高明的前辈和名家。都不可能把问题全部解决。由于历史条件的限制,欧几里得在《几何原本》中提出几何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在逻辑推理中起什么作用。又如,欧几里得在逻辑推理中使用了“连续”的概念,但是在《几何原本》中从未提到过这个概念。
【读《几何原本》有感】相关文章:
创业失败的原因几何09-26
创业失败 原因几何?08-06
几何彩色求职简历封面08-07
公关人才薪酬几何09-25
简单几何求职信封面07-20
黑白几何求职信封面07-19
砖石几何形个人简历封面07-24
职场观察:公关人才薪酬几何07-30
灰色调几何求职信封面07-29