数据挖掘论文(精品)
在各领域中,大家肯定对论文都不陌生吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。写论文的注意事项有许多,你确定会写吗?以下是小编帮大家整理的数据挖掘论文,欢迎大家分享。
数据挖掘论文1
摘要:近年来,数据库挖掘技术的普遍应用,使数据价值实现最大化,在我国金融、商业、市场营销等领域得到广泛应用。然而在我国高校管理中并没有得到推广,为使高校管理系统中的数据充分发挥应有价值,在该系统中使用数据库挖掘技术意义深远。本文首先介绍了数据挖掘技术的流程,然后在教师教学质量评估中应用数据库挖掘技术,充分证明数据库挖掘技术在高校管理中能发挥重大作用。
关键词:管理 决策 数据挖掘技术
当前,大部分高校都拥有配套的管理系统,该系统具备海量数据储存和管理功能,彻底告别了手工记录信息和数据的年代。不但节约了纸张,更有效提高了高校管理数据和信息的效率。然而我国高校没有有效利用应用数据挖掘技术,因此研究数据库挖掘技术在高校管理中的应用十分必要。
1数据挖掘技术的流程
数据挖掘技术能够将海量数据展开分析和处理,再把整体数据库中存在规律的数据整合起来,实施该技术主要包括以下五个环节。目标定义:该环节中要与有关领域的背景知识相结合,清晰、精确的定义出数据挖掘目标。数据准备:在该环节中要搜集、选取数据源中的数据,处理已选数据,将其转换为适合数据挖掘的`形态。数据挖掘:该环节是数据挖掘技术的核心,即采用关联规则法、分类分析法等各种数据挖掘方法把数据中隐藏的知识和规律发掘出来。结果表示:在该环节中可以以用户需求为依据,将挖掘出来的知识和规律转变为用户能接受和理解的形态。知识吸收:该环节中,主要是把挖掘结果与指定领域中的需求相结合,在该领域中应用发掘出来的结果,为决策者提供知识,是数据挖掘的终极目标。
2数据挖掘技术在教学质量评估中的应用
2。1运用关联规则法挖掘数据库中的信息
评估老师教学质量不但是评定教学效果的重要部分,也是评定教师职称的重要根据,因此是高校管理工作中不可或缺的部分。目前评估教学质量的主要措施是搜集、统计学生的成绩和以及对老师的评价,然后加权算出老师的总得分,作为评估该老师教学质量指标。这种方法非但不科学,其权威性也较低,因此需要深挖数据的相关性,本文采用了数据挖掘技术中的关联规法挖掘数据中的规律和知识,为评估老师教学质量提供有力根据。运用关联规则法挖掘数据,其规则方法为“XY,置信度为c%,,支持度为s%”。关联规则中置信度为c%:在整体事件D集合中,如果既能够符合事件X中拥有c%的需求,也能够符合Y的要求。那么就用置信度来表示关联规则的强度,被记录为confidence(XY),置信度最小值用minConf来表示,通常置信度最小数值由客户提供。关联规则中置信度为s%:在整体事件D集合中,如果既能够符合事件Y中的s%的需求,又能够符合X要求。用支持度来表示关联规则的频度,把支持度的最小数记录用minsup(X)来表示,通常支持度最小数值由客户提供。频繁项集合:当X项集的支持度大于等于用户设定好的最小支持度时,那么频繁项集是X。通常关联规则包含两个环节:①把全部频繁项集从整体事件集中选出;②运用频繁项集产生关联规则。在这两个环节中关联规则效果和性能是否良好取决于第一个环节。
2。2关联规则分析在评估教学质量中的运用
第一步是准备数据期,在某大学的教学管理系统中将五百条与教学评价有关的记录从数据库中随机抽取,并挑选出老师编号、学历、性别、教龄、评估分和职称这六个属性,并将相关数据从数据库中提取。比如把讲师、副教授和教授等职称转化成11、01、00等编码,表1就是制定的评价教师教学记录表。第二步采用关联规则分析法把90分以上评价分数作为检索目标和判断标准,也就是将≥90分作为判断是否是高教学质量阙值。通过检索有143条记录符合标准,即设定最小的支持度为10%,置信度则为15%,得出下表2的关联规则。最后一步评价本次实验的结果。由上表得知,学生喜欢男老师和女老师的程度大致相同;学历愈高的老师,给予他们的教学评价也就愈高,即学历和教学评价成正比,这也说明了学历高的老师其基本功与学历低的老师相比,前者基本功更为稳固,也有较高的科学研究水平;有较长教龄和较高职称的老师,其教学质量也越高;此外,在支持度中可以看出,高校教授和高学历人才越多,说明其办学能力也就越高。
3结语
高校管理系统作为教学信息化的重要举措,只是起到搜集和储存海量教学信息的作用,并没有挖掘出海量数据之间的相关性,而在本文中把关联规则法运用在教师教学质量评估中,在数据中挖掘有价值的知识和规律,使评估教师教学质量更具有科学性,因此在高校管理中全面应用数据挖掘技术,能为高校深化教学改革提供新的契机。
参考文献
[1]江敏,徐艳。数据挖掘技术在高校教学管理中的应用[J]。电脑知识与技术,20xx,(24):541—545+560。
[2]杨雪霞。数据挖掘技术在高校图书馆管理系统中的应用研究[J]。软件,20xx(04):16—18。
数据挖掘论文2
摘要:中医临床理论多是由著名医家的经验升华形成的,反映了临床上不同学术派系以及不同学科的优势特征,但这其中不免掺杂了个人主观经验,因此本文就中医临床理论研究中医病案为基础,对应用病案数据挖掘结果来总结和重建中医临床理论的方式进行了探讨,认为该方法可为完善中医临床理论提供客观的数据支持,使中医临床理论的来源更具有科学性。
关键词:病案;数据挖掘;中医临床理论;转化医学;临床
科研一体化中医临床理论决定着中医临床学科的发展水平,是中医临床发展的动力。从古至今,中医名医名家辈出,他们的临床经验和学术思想不断提炼升华,逐步形成了传统的中医临床理论。新中国成立以来,中医不断汲取最新的科技成果,进行了大量临床实践,而中医临床理论发展缓慢,己经成为制约当代中医学术发展的瓶颈,对如何开拓中医临床理论的研究,可谓见仁见智,但各种新的临床理论常常裹挟着“各家学说”。在当今大数据和信息技术发达的背景下,运用数据挖掘技术对中医病案进行大数据分析,客观揭示当前中医临床理论的本来面目,尽可能减少个人见解的偏倚,对于推动中医临床理论发展具有重要的现实意义,本文就基于病案数据挖掘的中医临床理论重建进行探讨如下。
1传统中医临床理论的构建框架
1.1中医古典文献是传统中医临床理论的基础
众所周知,中医之所以能够屹立千年不倒,很大一部分原因是因为其有独特的理论体系,而在这其中,中医古典文献做出的贡献应该是第一位的。因为这些古典文献的记载和流传,为后世的医家提供了参考和借鉴,使得我们从前人的思维上不断创新,与临床进行有机结合,不断研究出新的适合于当前时代的临床理论。例如,中医学无论在理论研究还是在临床治疗方面的丰富,许多根本性的理论都是源自于《内经》。该书创立了藏象、经络、诊法等各方面的理论[1],勾画了中医理论的雏形,构建了中医理论体系的基本框架。到后期东汉时期张仲景的《伤寒论》则是创造了以六经辨证和脏腑辨证为主的局面,其所倡导的“观其脉证,知犯何逆,随证治之”使得辨证论治登上新的高度。到了金元时期,就是百家争鸣的时代,这期间以金元四大家为主的学派开始萌生,留下了许多可供后世医家参考的古典文献并创建了不同的临床理论,而明清时期以叶天士和吴鞠通为首确立的卫气营血和三焦辨证,使温病学的辨证理论逐步趋于完善,至今仍是指导临床治疗温热病的理论依据。总之,传统中医临床理论的构建和完善,离不开前人的摸索与贡献,也得益于著名医学家创建的传统中医理论,使得我们现在的中医体系不断的饱满和充实。
1.2当代著名中医的临床经验不断提升为中医临床理论
传统中医的临床理论,在很大程度上展示着著名医家的临床经验。在中医理论与实践发展的相互促进过程中,当代医家通过读书、临证、心悟将实践经验不断总结并升华为理论,又在实践中不断完善既有的理论,成为中医理论发展的重要途径和模式,而当代中医理论的发展则需要将传统理论与现代实践相互融合起来。例如上世纪60年代时,面对中医基础理论中新的思想相对匮乏的这一局面,邓铁涛结合其治疗的临床经验,首次提出了“五脏相关学说”。尽管当时的理论准备并不完善,但是这一理论的提出,在很大程度上完善并且取代了“五行学说”中某些模糊性和不确定性,并且随着时代的发展,逐渐验证了邓老的这一经验的正确性,也成为指导中医临床理论的一大重要体系[2]。又如,脑出血这一现代疾病在古代名为中风,多数是“从风而治”,认为肝脏与中风的关系最为密切。随着时代的推进,自20世纪80年代以来,许多学者根据微观辨证和中医理论“离经之血便是瘀”,提出急性出血中风属中医血证,瘀血阻滞是急性期脑出血的最基本病机,是治疗的关键所在[3]。故现代中医临床治疗上多以活血化瘀法治疗脑出血、脑梗塞这一系列疾病。若是仔细研读传统中医临床理论后,我们不难得出其构成和完善离不开当代著名医家的临床经验,它是在历经岁月的洗礼下不断塑造成型的。
1.3传统中医临床理论不断将现代医学相关内容中医化
传统中医临床理论不断吸收现代医学的理论,将其相关内容不断中医化,将病人的各种证型通过五脏辨证、阴阳五行辨证以及八纲辨证划分得越来越细化,以提供病人在中医临床上治疗的理论依据。中医吸取了现代医学理论后正在不断壮大其内容,现代医学相关内容中医化在许多难治疾病的辨证治疗中都起到了良好的指导作用[4]。如艾滋病是古代传统中医辨证论治的空白,通过对艾滋病中医病因病机、证候规律、治法方药的系统研究,提出了“艾毒伤元”“脾为枢机”“气虚为本”的病因病机学说,确立了艾滋病“培元解毒”“益气健脾”的治疗原则,为中医药防治艾滋病奠定了理论基础,为进一步提高艾滋病的中医药临床诊疗效果提供理论依据[5]。
2当前中医临床理论发展存在的不足
2.1中医主流理论不突出且与时俱进力度不够
不可否认的是,当代的中医临床理论发展也是存在诸多不足的,中医理论的完善和发展是中华五千年来集体智慧的结晶,个别医家提出的临床理论可能各有千秋,其所立的角度和思维也不尽相同。例如,同是治疗输卵管阻塞这一疾病时,朱南孙教授认为多是由于湿蕴冲任所致,其用自拟的清热利湿方来进行治疗;而李广文教授则认为这一疾病多是由于瘀血阻络为主,治疗上以活血祛瘀为法,拟通任种子汤进行治疗[6]。又如对于“和解法”这一治疗方法的理解,当代名医蒲辅周老先生认为“寒热并用,补泻合剂,表里双解,苦辛分消,调和气血,皆谓和解”。而方和谦教授则认为“在治法上扶正祛邪,表里兼顾,此法就为和解法”。不同的医家在面对不同的疾病,甚至是不同的理法方药时,所持的看法常常是“各家学说”,这就导致了当前中医临床理论发展比较混乱,不能全面地体现中国五千年来发展过程中的中医主流理论。目前中医基础理论还存在一个缺陷就是它的与时俱进力度还不够,很多古代经典方药的主治病症,在当今时代已经不再多见了。比如蛔虫导致的蛔厥这一致病因素在现代已经不再常见,对应的乌梅丸的主要适应病症也不再是蛔厥;在针对没有明显临床表现的疾病如乙肝时,按传统中医往往体现出“无证可治”的状态;传统的诊断与现代检查相结合的力度也不够,中医临床基础理论在某些程度上忽略了其与生化、B超、X光、CT等现代检查结果的结合,并没有用中医理论对其做一合理的陈述;且现在临床上很多中药的药理作用、性味归经的研究作用还不够深入、细致,其作用不能在微观上得以解释。这些都导致了临床上很多情况没有从中医理论来认识中医,不是“以中解中”,而是“以西解中”,形成了临床抛弃中医理论的状态[7]。由于中医学是一门实践性很强的学科,它是在哲学辨证的思想指导下,与临床经验不断结合,这与西医知识体系相比较,难免存在一定的滞后性,这都会使得中医临床理论发展相对的落后。
2.2部分中医理论带有权威专家的“个人学说”偏见
传统中医强调个人经验和学说,以中医内科学为例,第八版中的脑系疾病在第九版中已经删除,其涉及到的各种脑系疾病大多数归属于心系疾病与肝系疾病。根据其版本的不同,我们可以明显看出其凸显的中心内容及其思想不同,其多是体现编著者的理论思想,在一定程度上并没有客观地揭示疾病的本质,治疗理论也不够完善,一部分内容与最新研究得出的论文理论不符,这使得当代中医临床理论在某些程度上,带有权威专家的“个人学说”色彩。由于现代西方先进的科技文化流入,使得中医在一定程度上备受质疑,而正是因为人们对于中医理论的一些偏见,才使得中医长期让人诟病。
3新的时代背景下中医临床理论发展方向
3.1临床理论应具有真实性与系统性
中医临床理论的发展方形应当是建立在客观并且真实的临床实践基础上,从一次次临床实践中得出。由于历史时代的原因以及假设推理、模式建设的广泛使用,当代中医临床理论中理论与假说并存的现象较为普遍,如中医的五运六气学说对现代疫病预测和人体各经络脏腑在时间上对于人体治病效果的不同等,就需要我们在扎实的文献与临床实践基础上,对医案进行认真总结,利用科学的方法深入挖掘,开展中医理论的去伪存真研究,以促进中医理论的科学与健康发展。另外,传统的中医临床治疗上所用的理法方药,多是根据个人经验所进行的。随着科技的不断发展与时代的不断进步,当代的中医临床理论应该在成功的中医医案上进行系统的总结,不断挖掘和研究其微观的结构,并随着年月的更迭不断更新,不断完善,使其具有科学性和理论依据。同时,对近年来兴起的传染性非典型肺炎、艾滋病、禽流感等古人所没有经历过的疾病的诊治,中医就其病因病机的认识以及探究相应的诊疗方法,无疑也是一种理论上的创新[8]。通过对其进行深一层次的研究和发现,归纳出合适的治则治法,找到针对这一疾病的理法方药,使其更具有系统性,使得临床上中医治病可以循序渐进,注重整体,也是当代临床理论的一大发展方向。
3.2临床理论具有信息化的特点并可持续拓展
随着时代的`进步,当代的中医临床理论可以通过网络等方式进行共享,在大数据的这一时代背景下,随着病案的不断报道与积累,可以将各类成功的中医医案进行统计和挖掘,其结果也会不断进行更新和发展。不同的医家对于某一疾病的认识角度可能不同,其表现在病位、病性、病势和证候的判断标准也不一样,因此方药规律也不一样。而通过统计某一中医或西医疾病的较大样本病例,并对其进行数据挖掘,可以得出整个中医群体对于这一疾病诊治的证候分布、治则治法、处方用药等的规律,甚至可以根据统计的结果探索出新的方药,分析他们的共同点和所在差异。将中医临床理论具有信息化的这一特点不断地拓展下去,通过计算机等客观科学的手段进行分析,与主观的名老中医传承模式相比,更具客观性,更容易被临床医生接受,对各种疾病的中医临床用药也更具有指导价值。
4基于病案数据挖掘的中医临床理论重建
4.1病案研究是中医理论发展的重要基础
在当今大数据的时代背景下,中医固有的传统整体论科学特征有了越来越多的可供改变的空间。这种变化既为其按照自身特有的规律发展特点带来了机遇,也给未来中医理论的发展提出了挑战。同时,学习医案研究也是中医学相关大学生们应该学习的一项内容。阅读医案是必要的训练,也是中医入门的方法之一。医案的故事性引人入胜,在自然而然中接受中医思维方法和传统文化知识,同时医案中所呈现的名医风范,医德对学生起到潜移默化的影响,并培养对专业的热爱[9]。病案客观、真实地直接记录疾病诊断和治疗过程,医案研究作为中医理论发展过程中至关重要的一环,是中医理论发展的重要基础,以研究病案为基础,对于中医理论的形成和临床上中医积累经验,都起到了一定的辅助提升作用。
4.2数据挖掘方法是中医理论发展的现代技术手段
利用多种数据挖掘技术对中医病案中的有关信息行进行归纳、整理,是近年来传承中医临床经验的重要方法之一[10]。通过对同一种疾病的病案进行数据挖掘以分析医者的思路和探索其用药的方法,对中医临床病案进行规范化的整理,能够深入总结其临床经验,挖掘隐藏在大量病案背后的诊治规律,甚至探索出新的方药配伍,为中医理论的发展提供一定的科学依据的同时,使得中医理论的发展越来越现代化,不仅仅只是停留在以前的靠读书和个人经验的结合,也为广大的中医在日后的临床治疗上提供了新的思路和方向。
4.3临床实践推动理论发展,赋予转化医学新的内涵
目前,我们通过并按数据挖掘来总结一些中医对于治疗同一种疾病所采取的诊断和用药,可以获得新的思路,并且为完善我们现有的中医理论基础可以提供可靠的理论支持。采用数据挖掘技术对中医学术思想和临证经验进行研究,可以全面解析其中的规律,分析中医个体化诊疗信息特征,提炼出临证经验中蕴藏的新理论、新力法,可以实现经验的有效总结与传承[11]。与此同时,要求我们用发展的眼光将现代的科技手段整合加入到传统的中医学理论中去,推陈出新,通过临床实践与基础理论的不断结合,不断完善,推动祖国医学现代化,谱写有关于中医学在转化医学上新的篇章。
参考文献
[1]刘向哲.中医理论创新与发展的基础和机遇[J].中医学报,2010,25(5):884-885.
[2]邱仕君,吴玉生.在基础理论与临床医学之间———对邓铁涛教授五脏相关学说的理论思考[J].湖北民族学院学报(医学版),2005,22(2):36-39.
[3]顾宁,周仲英.通下法治疗急性脑出血研究进展[J].中国中医急诊,2000,9(5):227.
[4]靳士英.邓铁涛教授学术成就管[J].现代医院,2004(9):1-6.
[5]许前磊,徐立然,郭会军,等.艾滋病发病与防治中医理论的初步构建[J].中医杂志,2015,56(11):909-911.
[6]张少聪,周伟生.名老中医验方治疗输卵管阻塞性不孕症概况[J].中华中医药学刊,2010(3):489-491.
[7]孟静岩,应森林.试论中医基础理论指导临床研究的思考与途径[J].上海中医药大学学报,2009(3):3-5.
[8]邢玉瑞.新形势下中医理论发展的思考[J].中医杂志,2016,57(18):1540-1542.
[9]卢峰,聂达荣,彭美玉,等.中医内科学应用名老中医病案教学法的探索[J].中国中医药现代远程教育,2014(18):80-82.
[10]郭军.基于数据挖掘分析前名老中医病案整理的思路与方法[J].中医药信息,2011,28(2):49-50.
[11]吴嘉瑞,唐仕欢,郭位先,等.基于数据挖掘的名老中医经验传承研究述评[J].中国中药杂志,2014,39(4):614-617.
数据挖掘论文3
引言 数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。数据挖掘的过程也叫知识发现的过程。
一、数据挖掘技术 数据挖掘就是指
从数据库中发现知识的过程。包括存储和处理数据,选择处理大量数据集的算法、解释结果、使结果可视化。整个过程中支持人机交互的模式。数据挖掘从许多交叉学科中得到发展,并有很好的前景。这些学科包括数据库技术、机器学习、人工智能、模式识别、统计学、模糊推理、专家系统、数据可视化、空间数据分析和高性能计算等。数据挖掘综合以上领域的理论、算法和方法,已成功应用在超市、金融、银行、生产企业和电信,并有很好的表现。
二、数据挖掘的过程
挖掘数据过程可以分为3个步骤:数据预处理、模式发现、模式分析。
(1)数据预处理。实际系统中的数据一般都具有不完全性、冗余性和模糊性。因此,数据挖掘一般不对原始数据进行挖掘,要通过预处理提供准确、简洁的数据。预处理主要完成以下工作:包括合并数据,将多个文件或多个数据库中的数据进行合并处理;选择数据,提取出适合分析的数据集合;数据清洗、过滤,剔除一些无关记录,将文件、图形、图像及多媒体等文件转换成可便于数据挖掘的格式等。
(2)模式发现。模式发现阶段就是利用挖掘算法挖掘出有效的、新颖的、潜在的、有用的以及最终可以理解的信息和知识。可用于Web的挖掘技术有路径选择、关联分析、分类规则、聚类分析、序列分析、依赖性建模等等。
(3)模式分析。模式分析是从模式发现阶段获得的模式、规则中过滤掉不感兴趣的规则和模式。通过技术手段,对得到的模式进行数据分析,得出有意义的结论。常用的技术手段有:关联规则、分类、聚类、序列模式等。
三、数据挖掘在电力系统负荷预测中的应用
电力负荷预测是能量管理系统及配电管理系统的重要组成部分,是电力系统规划和运行调度的依据,也是电力市场化商业运营所必需的基本内容。负荷预测工作的关键在于收集大量的历史数据,建立科学有效的预测模型,采用有效的算法,以历史数据为基础,进行大量试验性研究,总结经验,不断修正模型和算法,以真正反映负荷变化规律。其过程为:
(1) 调查和选择历史负荷数据资料
多方面调查收集资料,包括电力企业内部资料和外部资料,从众多的资料中挑选出有用的一小部分,即把资料浓缩到最小量。挑选资料时的标准要直接、可靠并且是最新的资料。如果资料的收集和选择得不好,会直接影响负荷预测的质量。通过建立计算机数据管理系统,利用计算机软件系统来自动管理数据。
(2) 负载数据预处理
经过初步整理,还用于数据分析的预处理,平滑异常值的历史数据和缺失数据的异常数据主要是水平的,垂直的方法附录。正在分析数据之前和之后的两个时间的负载数据作为基准,来设置要处理的数据时,要处理的数据的范围中最大的变化的数据的处理的水平超过该范围时,它被认为是坏的数据,使用平均法平滑变化;垂直负载数据预处理中的数据处理的考虑其24小时的小循环,即,相同的时间的日期不同的负载应具有相似的,同时负载值应保持在一定范围内,校正外的范围内的数据进行处理,在最近几天的坏数据,力矩载荷的意思。
(3) 历史资料的整理
一般来说,由于预测的质量不会超过所用资料的质量,所以要对所收集的与负荷有关的统计资料进行审核和必要的加工整理,来保证资料的质量,从而为保证预测质量打下基础,即要注意资料的完整无缺,数字准确无误,反映的都是正常状态下的水平,资料中没有异常的.“分离项”,还要注意资料的补缺,并对不可靠的资料加以核实调整。通过建立数据完整性、一致性约束模型,来建立海量数据集为后面的数据挖掘做好充分的准备。
(4) 建立负荷预测模型
负荷预测模型是统计资料轨迹的概括,预测模型是多种多样的,因此,对于具体资料要选择恰当的预测模型,这是负荷预测过程中至关重要的一步。当由于模型选择不当而造成预测误差过大时,就需要改换模型,必要时,还可同时采用几种数学模型进行运算,以便对比、选择。
(5) 选择算法
选择聚类法又称聚类分析法,它是对一组负荷影响因素数据进行聚类的方法,聚类后的数据即构成了一组分类。聚类的标准是以数据的表象(即数据属性 值)为依据的,聚类的工具是将一组数据按表象而将相近的归并成类,最终形成若干个类,在类内数据具有表象的相似性,而类间的数据具有表象的相异性。聚类的算法也有很多,有遗传算法,划分法,层次法,基于密度方法,基于网格方法等。 四、CURE算法在负荷预测中的应用 CURE算法是一种分层聚类算法。典型的数据点来表示一个具有固定数目的聚类。的CURE算法需要作为参数输入的群集数?。由于CURE聚类的代表点的某些有代表性的,可以发现具有任何尺寸和形状的聚类。同时,在一个集群代表点的选择方式的中心“缩水”排除“噪音”。
历史上第一个数据库负荷预测,数据提取样品。的数据样本聚类,可以分为两种方法:一个是所有样本数据进行聚类,这个方法会使主内存容量是远远不够的,系统无法扫描一次完成。我们使用所有的样本数据被分成多个区域,每个区域的数据进行聚类,使每个分区可以品尝到所有的数据加载到主内存。然后,针对每个分区,使用分层算法的聚类。
电力系统的应用SCADA系统中的数据测量、记录、转换、传输、收集数据,并可能导致故障和负载数据丢失或异常。异常数据的生成是随机的,因此,在数据库中的不确定性的分布,不同类型的异常数据出现单独或在一个特定的时刻,或交叉混合发生在同一天连续,或在相同的连续天期的横分布,以及许多其他场合。异常数据的处理的关键影响的预测结果的准确性。使用两种不同的技术,以删除异常。第一种技术是要删除的集群增长缓慢。当簇的数量低于某一阈值,将只包含一个或两个集群成员的删除,第二种方法是在集群的最后阶段,非常小的集群中删除。
最后对样本中的全部数据进行聚类,为了保证可以在内存中处理,输入只包括各个分区独自聚类时发现的簇的代表性点。使用c个点代表每个簇,对磁盘上的整个数据库进行聚类。数据库中的数据项被分配到与最近的代表性点表示的簇中。代表性点的集合必须足够小以适应主存的大小。
结束语
数据挖掘技术虽然得到了一定程度的应用,并取得了显着成效,但仍存在着许多尚未解决的问题。随着人们对数据挖掘技术的深人研究,数据挖掘技术必将更加成熟,并取得更加显着的效果。
数据挖掘论文4
摘要:该文通过介绍电子商务及数据挖掘基本知识,分别从几个方面分析了电子商务中WEB数据挖掘技术的应用。
关键词:电子商务;数据挖掘;应用
1概述
电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。
2数据挖掘技术概述
数据挖掘(DataMining),也称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD)。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。
3Web数据挖掘特点
Web数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的'数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。
1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。
2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。
3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。
4电子商务中Web挖掘中技术的应用分析
1)电子商务中序列模式分析的应用
序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。
2)电子商务中关联规则的应用
关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。
3)电子商务中路径分析技术的应用
路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。
4)电子商务中分类分析的应用
分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。
5)电子商务中聚类分析的应用
聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性(如年龄、性别、收入等)的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。
5结语
随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用web挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。
参考文献:
[1]庞英智.Web数据挖掘技术在电子商务中的应用[J].情报科学,20xx,29(2):235-240.
[2]马宗亚,张会彦.Web数据挖掘技术在电子商务中的应用研究[J].现代经济信息,20xx(6):23-24.
[3]徐剑彬.Web数据挖掘技术在电子商务中的应用[J].时代金融,20xx(4):234-235.208
[4]周世东.Web数据挖掘在电子商务中的应用研究[D].北京交通大学,20xx.
[5]段红英.Web数据挖掘技术在电子商务中的应用[J].陇东学院学报,20xx(3):32-34.
数据挖掘论文5
随着互联网技术的快速发展,学术研究环境较以前更加开放,对传统的科技出版业提出了开放性、互动性和快速性的要求; 因此,以信息技术为基础的现代数字化出版方式对传统的科技出版业产生着深刻的影响。为了顺应这一趋势,不少科技期刊都进行了数字化建设,构建了符合自身情况、基于互联网B /S 结构的稿件处理系统。
以中华医学会杂志社为代表的部分科技期刊出版集团均开发使用了发行系统、广告登记系统、在线销售系统以及站。这些系统虽然积累了大量的原始用户业务数据; 但从工作系统来看,由于数据本身只属于编辑部的业务数据,因此一旦相关业务工作进行完毕,将很少再对这些数据进行分析使用。
随着目前人工智能和机器学习技术的发展,研究人员发现利用最新的数据挖掘方法可以对原始用户业务数据进行有效分析和学习,找出其中数据背后隐含的内在规律。这些有价值的规律和宝贵的经验将对后续科技期刊经营等工作提供巨大的帮助。
姚伟欣等指出,从STM 期刊出版平台的技术发展来看,利用数据存取、数据管理、关联数据分析、海量数据分析等数据挖掘技术将为科技期刊的出版和发行提供有力的帮助。通过使用数据挖掘( data mining) 等各种数据处理技术,人们可以很方便地从大量不完全且含有噪声或相对模糊的实际数据中,提取隐藏在其中有价值的信息,从而对后续科技期刊出版工作起到重要的知识发现和决策支持的作用。
1 数据挖掘在科技期刊中应用的现状
传统的数据库对数据的处理功能包括增、删、改、查等。这些技术均无法发现数据内在的关联和规则,更无法根据现有数据对未来发展的趋势进行预测。现有数据挖掘的任务可以分为对数据模型进行分类或预测、数据总结、数据聚类、关联规则发现、序列模式发现、依赖关系发现、异常或例外点检测以及趋势发现等,但目前国内科技期刊行业利用数据挖掘方法进行大规模数据处理仍处在起步阶段。张品纯等对中国科协所属的科技期刊出版单位的现状进行分析后发现,中国科协科技期刊出版单位多为单刊独立经营,单位的规模较小、实力较弱,多数出版单位不具备市场主体地位。这样就导致国内大部分科技期刊既没有能力进行数据挖掘,也没有相应的数据资源准备。以数据挖掘技术应用于期刊网站为例,为了进行深入的数据分析,期刊经营人员需要找到稿件与读者之间、读者群体之间隐藏的内在联系。目前,数据挖掘的基本步骤为: 1) 明确数据挖掘的对象与目标;2) 确定数据源; 3) 建立数据模型; 4) 建立数据仓库; 5)数据挖掘分析; 6) 对象与目标的数据应用和反馈。
2 期刊数据的资源整合
编辑部从稿件系统、发行系统、广告系统、站等各个系统中将相关数据进行清洗、转换和整理,然后加载到数据仓库中。进一步,根据业务应用的范围和紧密度,建立相关数据集市。期刊数据资源的整合过程从数据体系上可分为数据采集层、数据存储处理层和数据展现层。
要获得能够适合企业内部多部门均可使用、挖掘和分析的数据,可以从业务的关联性分析数据的准确性、一致性、有效性和数据的内在关联性。
3 期刊数据的信息挖掘
信息挖掘为了从不同种类和形式的业务进行抽取、变换、集成数据,最后将其存储到数据仓库,并要对数据的质量进行维护和管理。数据挖掘可以有效地识别读者的阅读行为,发现读者的阅读模式和趋势,对网站改进服务质量、取得更好的用户黏稠度和满意度、提高科技期刊经营能力有着重要的意义。作为一个分析推荐系统,我们将所分析的统计结果存储于服务器中,在用户或决策者需要查询时,只需输入要找寻的用户信息,系统将从数据库中抽取其个人信息,并处理返回到上网时间分布、兴趣点所在、适配业务及他对于哪些业务是有价值客户,甚至包括他在什么时段对哪类信息更感兴趣等。只有这些信息才是我们的使用对象所看重和需要的。
网站结构挖掘是挖掘网站中潜在的链接结构模式。通过分析一个网页的链接、链接数量以及链接对象,建立网站自身的链接结构模式。在此过程中,如果发现某一页面被较多链接所指向,则说明该页面信息是有价值的,值得期刊工作人员做更深层次的挖掘。网站结构挖掘在具体应用时采用的结构和技术各不相同; 但主要过程均包括预处理、模式发现和模式分析3 部分。为了反映读者兴趣取向,就需要对数据库中的数据按用户进行抽样分析,得到兴趣点的统计结果,而个人的兴趣分析也可基于此思路进行。下面以《中华医学杂志》为例做一介绍。
预处理预处理是网站结构挖掘最关键的一个环节,其处理得到的数据质量直接关系到使用数据挖掘和模式分析方法进行分析的结果。预处理步骤包括数据清洗、用户识别、会话识别、路径补充和事件识别。以《中华医学杂志》网站www. nmjc. net. cn 的日志分析为例。首先给出一条已有的Log,其内容为“20xx-03-04 12: 13: 47 W3SVC80003692 172. 22. 4. 3GET /index. asp-80-123. 185. 247. 49Mozilla /5. 0 +( Windows + NT + 6. 1; + WOW64 ) + AppleWebKit /537. 36 + ( KHTML,+ like + Gecko) + Chrome /28. 0.1500. 95 + Safari /537. 36 + SE + 2. X + MetaSr + 1. 0200 0 0”。从Log 的内容,工作人员可以得到相关信息,如用户IP、用户访问页面事件、用户访问的页面、用户请求的方法、返回HTTP 状态以及用户浏览的上一页面等内容。
由于服务器同时部署了多个编辑部网站,这就要求工作人员必须对得到的访问www. nmjc. net. cn 日志,去除由爬虫软件产生的记录。这些记录一般都会在日志结尾包含“Spider”的字样。同时,还需要去除不是由GET 请求产生的日志以及请求资源不是页面类型的日志。最后,工作人员还需要去除访问错误的请求,可以根据日志中请求的状态进行判断。一般认为,请求状态在( 200, 300) 范围内是访问正确的日志,其他如403、400 和500 等都是访问错误的日志。用户识别可以根据用户的IP 地址和用户的系统信息来完成。只有在IP 地址和系统信息都完全一致的情况下,才识别为一个用户。会话识别是利用面向时间的探索法,根据超时技术来识别一个用户的多次会话。如果用户在一段时间内没有任何操作,则认为会话结束。用户在规定时间后重新访问,则被认为不属于此次会话,而是下次会话的开始。
利用WebLogExplore 分析日志、用户和网页信息在获得了有效的日志数据后,工作人员可以利用一些有效数据挖掘算法进行模式发现。目前,主要的数据挖掘方法有统计分析、关联规则、分类、聚类以及序列模式等技术。本文主要讨论利用Apriori 算法来发现科技期刊日志数据中的关联规则。本质上数据挖掘不是用来验证某个假定的模式的正确性,而是在数据库中自己寻找模型,本质是一个归纳的过程。支持度( Support) 的公式定义为: Support ( A≥B) = P( A ∪B) 。支持度可以用于度量事件A 与B 同时出现的概率。如果事件A 与B 同时出现的概率较小,说明事件A 与B 的关系不大; 如果事件A 与B 同时出现非常频繁,则说明事件A 与B 总是相关的。置信度( Confidence) 的公式定义为: Confidence( A≥B) = P( A | B) 。置信度揭示了事件A 出现时,事件B 是否也会出现或有多大概率出现。如果置信度为100%,则事件A 必然会导致事件B 出现。置信度太低,说明事件A 的出现与事件B 是否出现关系不大。
对所有的科技期刊日志数据进行预处理后,利用WebLogExplore 软件可得到日志汇总表。表中存储了所有用户访问网站页面的详细信息,工作人员可将其导入数据库中。以查看到所选择用户访问期刊页面的详细信息。
同样,在WebLogExplore 软件中选择感兴趣的页面,可以查看所有用户访问该页面的统计信息,如该页面的访问用户数量等。工作人员可以对用户访问排名较高的页面进行进一步的模式分析。
步骤1: 将图2 日志信息汇总表中的数据导入数据库中,建立日志总表。
步骤2: 在数据库中建立一个新表命名为tj。
步骤3: 通过查询程序得到日志总表中每一个用户访问的页面,同时做distinct 处理。
步骤4: 将查询得到的用户访问页面记录进行判断。如果用户访问过排名前20 位的某个页面,则在数据库中写入true,否则写入false。依次循环判断写入数据库中。
步骤5: 统计每个访问排名靠前页面的支持度,设置一维项目集的最小阀值( 10%) 。
步骤6: 统计大于一维阀值的页面,写入数组,并对数组内部页面进行两两组合,统计每个组合2 个页面值均为true 时的二维项目集的支持度。
步骤7: 设置二维项目集支持度的阀值,依次统计三维项目集支持度和置信度( A≥B) ,即当A 页面为true 时,统计B 页面为true 的数量,除以A 为true 的数量。设置相应的置信度阀值,找到访问排名靠前页面之间较强的关联规则。
4 数据挖掘技术应用的意义
1) 对频繁访问的用户,可以使用用户识别技术分析此用户的历史访问记录,得到他经常访问的页面。当该用户再次登录系统时,可以对其进行个性化提示或推荐。这样,既方便用户使用,也可将系统做得更加友好。很多OA 期刊网站,不具备历史浏览记录的功能; 但浏览记录对用户来讲其实十分重要,隐含了用户对文章的筛选过程,所以对用户经常访问的页面需要进行优化展示,不能仅仅提供链接地址,需要将文章题名、作者、关键词等信息以列表的方式予以显示。
2) 由数据挖掘技术而产生的频繁项目集的分析,可以对网站的结构进行改进。支持度很高的页面,说明该页面的用户访问量大。为了方便用户以及吸引更多的读者,可以将这些页面放置在更容易被访问的位置,科技期刊的'网站内容一般以年、卷、期的形式展示。用户如果想查看某一篇影响因子很高的文章,也必须通过年卷期的方式来查看,非常不方便而且页面友好性不高。通过数据挖掘的分析,编辑部可以把经常被访问或者高影响因子的文章放在首页展示。
3) 对由数据挖掘技术产生的频繁项目集的分析,可以发现用户的关注热点。若某些页面或项目被用户频繁访问,则可以用这些数据对用户进行分析。一般来说科技期刊的读者,每个人的专业和研究方向都是不同的,编辑部可以通过数据挖掘技术来判断读者的研究方向和感兴趣的热点,对每一个用户进行有针对性的内容推送和消息发送。
4) 网站管理者可以根据在不同时间内频繁项目集的变化情况对科技期刊网站进行有针对性的调整,比如加入更多关于该热点的主题资源。目前大多数科技期刊网站首页的内容,均为编辑部工作人员后台添加、置顶、高亮来吸引用户的; 通过数据挖掘技术,完全可以摈弃这种展示方式。编辑部网站的用户访问哪些页面频繁,系统便会自动将这些页面的文章推向首页,不需要编辑部的人工干预,整个网站实现自动化运行。
5 后记
本文重点讨论了数据挖掘技术与科技期刊网站页面之间的关系。其实我们还可以从很多方面进行数据挖掘,比如可以对网站的用户和内容进行数据挖掘,通过分析可以为后期的期刊经营做好铺垫。
有一点很重要,没有一种数据挖掘的分析方法可以应付所有的需求。对于某一种问题,数据本身的特性会影响你的选择,需要用到许多不同的数据挖掘方法以及技术从数据中找到最佳的模型。
在目前深化文化体制改革,推动社会主义文化大发展、大繁荣的政治形势下,利用数据挖掘技术从中进行提取、分析和应用,能有效地帮助企业了解客户、改进系统、制订合理的市场策略、提高企业的销售水平和利润。通过利用数据挖掘技术准确定位优质客户,向客户提供更精确、更有价值的个性化服务。这将成为未来科技期刊经营十分重要的突破点和增长点。
数据挖掘论文6
摘要:随着科学技术的不断发展,数据挖掘技术也应运而生。为了高效有序的医疗信息管理,需要加强数据挖掘技术在医疗信息管理中的实际应用,从而提升医院的管理水平,为医院的管理工作及资源的合理配置提供多样化发展的可能性。笔者将针对数据挖掘技术在医疗信息管理中的应用这一课题进行相应的探究,从而提出合理的改进建议。
关键词:挖掘技术;医疗信息管理;应用方式
数据挖掘作为一种数据信息再利用的有效技术,能够有效地为医院的管理决策提供重要信息。它以数据库、人工智能以及数理统计为主要技术支柱进行技术管理与决策。而在医疗信息管理过程之中应用数据挖掘技术能够较好地针对医疗卫生信息进行整理与归类来建立管理模型,形成有效的总结数据的同时能够为医疗工作的高效进行提供有价值的信息。所以笔者将以数据挖掘技术在医疗信息管理中的应用为着手点,从而针对其应用现状进行探究,以此提出加强数据挖掘技术在医疗信息管理中应用的具体措施,希望能够在理论层面上推动医疗信息管理工作的飞跃。
1在医疗信息管理中应用数据挖掘技术的基本内涵
数据挖掘是结合信息收集技术、人工智能处理技术以及分析检测技术等所形成的功能强大的技术。它能够实现对于数据的收集、问题的定义与处理,并且能够较好地对于结果进行解释与评估。在医疗信息管理工作进行的过程之中,应用数据挖掘技术可以较好地加强医疗信息数据模型的建立,同时以多种形式出现,例如文字信息、基本信号信息、图像收集等,也能够用来进行医疗信息的科普与宣传。并且,数据挖掘技术在医疗信息中所体现出的应用方式有所不同,在数据挖掘技术应用过程之中,既可以针对同一类的实物反应出共同性质的基本特征,同时也能够根据具有一定关联性的事物信息来探究差异。这些功能不仅仅能够在医疗信息的管理层面上给予医疗人员较大的信息管理指导,同时在实际的医疗诊断过程之中,也可以向医生提供患者的患病信息,并且辅助治疗的进行[1]。所以,在医疗信息管理中应用数据挖掘技术不仅仅能够推动医疗信息管理水平的提升,也是医院实现现代化、信息化建设的重要体现,需要从根本上明确医疗信息管理应用数据挖掘技术的必要性与基本内涵,从而针对医院的管理现状实现其管理方式与技术应用的转变与优化。
2在医疗信息管理过程之中加强数据挖掘技术应用的重要措施
2.1实现建模环节以及数据收集环节的优化
在应用数据挖掘技术的过程之中,必须基于数据库信息的基础之上,其数据挖掘技术才能够进行相应的规律探究与信息分析,所以需要在源头处加强数据收集环节以及建模环节的优化。以医院中医部门为例,在对于中医处方经验的挖掘方法使用过程之中,需要针对不同的药物进行关联性建模,比如数据库中有基础性药物,针对药物进行频数和次数的统计,然后以此类推,将所有药物都按照出现的频数进行降数排列,从而探究参考价值。建模环节以及数据收集环节是医疗信息管理过程的根本,所以需要做好对于建模环节以及数据收集环节的优化,才能够为数据挖掘技术的应用奠定相应的基础[2]。
2.2细化数据挖掘技术应用类别
想要在医疗信息管理过程之中,加强对于数据挖掘技术的有效应用,就需要从数据挖掘技术应用类别处进行着手,从而提升技术应用的针对性与有效性。常见的技术应用类别有:医院资源配置方面、病患区域管理方面、医疗卫生质量管理方面、医疗急诊管理方面、医院经济管理方面以及医疗卫生常见病宣传方面等,数据挖掘技术都可以在这些类别之中实现应用,但是在应用的过程之中也有所不同。以病房区域管理为例,在应用数据挖掘技术之前,首先需要明确不同的科室状况以及病房区域分配状况等,加强病患区域的指标分析,因为病房管理不仅仅影响到科室的工作效率与工作效果,同时也是医疗物资分配与人员编制的主要参考标准。其次利用数据挖掘技术能够较好地实现不同科室工作效率、质量管理质量以及经济收益等多种指标的评估,建立其科室的运营模型,从而实现科室的又好又快发展。比如使用数据挖掘技术建立其病区管理的标准模型以及统计指标,从而计算出科室动态的工作模型以及病床动态的周转次数等[3]。另外在医疗质量管理过程之中,数据挖掘技术提供的不仅仅是资料数据的参考以及疾病的.诊断,也能够针对临床的治疗效果进行分析与评价,并且能够预测治疗状况:可以利用医院的医疗数据库,对于病人的基本患病信息进行分类,从而比对死亡率、治愈率等多个数据,实现治疗方案的制订。而在医疗质量管理过程之中也有很多的影响因素,例如基础医疗设备、病床周转次数、病种治愈记录等,所以也可以利用数据挖掘技术来进一步加强其多种数据之间的关联性,从而为提升医院的社会效益与经济效益提出合理的参考性建议。
2.3明确数据挖掘技术的应用方向
医院加强数据挖掘技术应用方向的探索上,可以从客户拓展这个角度出发实现对于医疗信息管理。例如通过数据挖掘技术多方进行患者信息比对,同时制订完善的医疗服务影响策略方式,加强对于客户行为的分析;在数据挖掘的基础之上,增强其技术应用的实用性,在分析的基础之上比对自身的竞争优势,实现医院资源的合理规划与合理配置,例如药品、资金以及疾病诊断等,从而实现经营状况的优化。目前医院也逐步向现代化、信息化方向发展,无论是信息管理还是医疗技术方面,医院都已经成为了一个信息化的综合行业体系,所以在加强数据挖掘应用的过程之中,还需要加强数据信息的管理,实现数据挖掘结果的维护,从而提升医院的决策能力,实现数据挖掘技术的高效应用。
3结语
医院在目前的医疗信息管理过程之中,还有很大的发展空间,需要综合利用数据挖掘技术,实现其信息管理水平的提升。通过明确数据挖掘技术的应用方向、应用类别以及建模数据环节的优化等,促进医院管理水平的提升,实现数据挖掘技术应用效果的提升.
参考文献:
[1]郑胜前.数据挖掘技术在社区医疗服务系统中的应用与研究[J].数字技术与应用,20xx(09):81-82.
[2]廖亮.数据挖掘技术在医疗信息管理中的应用[J].中国科技信息,20xx(11):54,56.
[3]牟勇.数据挖掘技术在医院信息化系统中应用[J].电子测试,20xx(11):23-24,22.
数据挖掘论文7
摘要:文章首先对数据挖掘技术及其具体功能进行简要分析,在此基础上对科研管理中数据挖掘技术的应用进行论述。期望通过本文的研究能够对科研管理水平的进一步提升有所帮助。
关键词:科研管理;数据挖掘;技术应用
1数据挖掘技术及其具体功能分析
所谓的数据挖掘具体是指通过相关的算法在大量的数据当中对隐藏的、有利用价值的信息进行搜索的过程。数据挖掘是一门综合性较强的科学技术,其中涉及诸多领域的知识,如人工智能、机器学习、数据库、数理统计等等。数据挖掘技术具有如下几个方面的功能:1.1关联规则分析。这是数据挖掘技术较为重要的功能之一,可从给定的数据集当中,找到出现比较频繁的项集,该项集具体是指行形如X->Y,在数据库当中,X和Y所代表的均为属性取值。在关联规则下,只要数据满足X条件,就一定满足Y条件,数据挖掘技术的这个功能在商业金融等领域中的应用较为广泛。1.2回归模式分析回归模式主要是通过对连续数值的预测,来达到挖掘数据的目的。例如,已知企业某个人的教育背景、工作年限等条件,可对其年薪的范围进行判定,整个分析过程是利用回归模型予以实现的。在该功能中,已知的条件越多,可进行挖掘的信息就越多。1.3聚类分析聚类具体是指将相似程度较高的数据归为同一个类别,通过聚类分析能够从数据集中找出类似的数据,并组成不同的组。在聚类分析的过程中,需要使用聚类算法,借助该算法对数据进行检测后,可以判断其隐藏的属性,并将数据库分为若干个相似的组。
2科研管理中数据挖掘技术的应用
科研是科学研究的简称,具体是指为认识客观事物在内在本质及其运动规律,而借助某些技术手段和设备,开展调查研究、实验等活动,并为发明和创造新产品提供理论依据。科研管理是对科研项目全过程的管理,如课题管理、经费管理、成果管理等等。由于科学研究中涉及的内容较多,从而给科研管理工作增添了一定的难度。为进一步提升科研管理水平,可在不同的管理环节中,对数据挖掘技术进行应用。下面就此展开详细论述。
2.1在立项及可行性评估中的应用
科研管理工作的开展需要以相关的科研课题作为依托,当课题选定之后,需要对其可行性及合理性进行全面系统地评估,由此使得科研课题的立项及评估成为科研管理的主要工作内容。现阶段,国内的科研课题立项采用的是申请审批制,具体的流程是:由科研机构的相关人员负责提出申请,然后再由科技主管部门从申请中进行筛选,经过业内专家的评审论证之后,择优选取科研项目的承接单位。在进行科研课题立项的过程中,涉及诸多方面的内容,具体包括申请单位、课题的研究领域、经费安排、主管单位以及评审专家等。通过调查发现,由于国家宏观调控政策的缺失,导致科研立项中存在低水平、重复性研究的情况,从而造成大量的研究经费浪费,所取得的研究成果也不显著。科研管理部门虽然建立了相对完善的数据库系统,并且系统也涵盖与项目申请、审评等方面有关的基本操作流程,如上传项目申报文件、将文件发给相关的评审专家、对评审结果进行自动统计等。从本质的角度上讲,数据库管理系统所完成的这些工作流程,就是将传统管理工作转变为信息化。故此,应当对已有的数据进行深入挖掘,从而找出其中更具利用价值的信息,据此对科研立项进行指导,这样不但能够使有限的科技资源得到最大限度地利用,而且还能使科研经费的使用效益获得全面提升。在科研立项阶段,可对数据挖掘技术进行合理运用,借此来对课题申请中涉及的各种因素进行挖掘,找出其中潜在的规则,为指标体系的构建和遴选方法的选择提供可靠依据,最大限度地降低不合理因素对课题立项带来的影响,对确需资助的科研项目进行准确选择,并给予相应的资助。在科研立项环节中,对数据挖掘技术进行应用时,可以借助改进后的Apriori算法进行数据挖掘,从中找出关联规则,在对该规则进行分析的基础上,对立项的'合理性进行评价。
2.2在项目管理中的应用
项目管理是科研管理的关键环节,为提高项目管理的效率和水平,可对数据挖掘技术进行合理运用。在信息时代到来的今天,计算机技术、网络技术的普及程度越来越高,国内很多科研机构都纷纷构建起了相关的管理信息系统,其中涵盖了诸多的信息,如课题、科研人员、研究条件等等,而在这些信息当中,隐藏着诸多具有特定意义的规则,为找出这些规则,需要借助数据挖掘技术,对信息进行深入分析,进而获取对科研项目有帮助的信息。由于大部分科研管理部门建立的科研管理信息系统时间较早,从而使得系统本身的功能比较单一,如信息删减、修改、查询、统计等等,虽然这些功能可以满足对科研课题进展、经费使用等方面的管理,但其面向的均为数据库管理人员,处理的也都是常规事务。而从科研课题的管理者与决策者的角度上看,管理信息系统这些功能显然是有所不足的,因为他们需要对历史进行分析和提炼,从中获取相应的数据,为决策和管理工作的开展提供支撑。对此,可应用数据挖掘技术的OLAP,即数据库联机分析处理,由此能够帮助管理者从不同的方面对数据进行观察,进而深入了解数据并获取所需的信息。利用OLAP可以发现多种于科研课题有关信息之间的内在联系,这样管理者便能及时发现其中存在的相关问题,并针对问题采取有效的方法和措施加以应对。运用数据挖掘技术能够对科研项目的相关数据进行分析,找出其中存在的矛盾,从而使管理工作的开展更具针对性。
3结论
综上所述,科研管理是一项较为复杂且系统的工作,其中涵盖的信息相对较多。为此,可将数据挖掘技术在科研管理中进行合理应用,对相关信息进行深入分析,从中挖掘出有利用价值的信息,为科研管理工作的开展提供可靠的依据,由此除了能够确保科研项目顺利进行之外,还能提高科研管理水平。
参考文献:
[1]刘占波,王立伟,王晓丽.大数据环境下基于数据挖掘技术的高校科研管理系统的设计[J].电子测试,20xx(1):21-22.
[2]史子静.高校科研管理系统中计算机数据挖掘技术的运用研究[J].科技资讯,20xx(6):65-66.
[3]丁磊.数据挖掘技术在高校教师科研管理中的应用研究[D].大连海事大学,20xx.
数据挖掘论文8
数据挖掘技术在金融业、医疗保健业、市场业、零售业和制造业等很多领域都得到了很好的应用。针对交通安全领域中交通事故数据利用率低的现状,可以通过数据挖掘对相关交通事故数据进行统计分析,从而发现其中的关联,这对提升交通安全水平具有非常重要的意义。
1数据挖掘技术概述
数据挖掘(DataMining)即对大量数据进行有效的分类统计,从而整理出有规律的、有价值的、潜在的未知信息。一般来讲,这些数据存在极大的随机性和不完全性,其包括各行各业各个方面的数据。数据挖掘是一个结合了数据库、人工智能、机器学习的学科,涉及统计数据和技术理论等领域。
2数据挖掘关联分析研究
关联分析作为数据挖掘中的重要组成部分,其主要作用就是通过数据之间的相互关联从而发现数据集中某种未知的联系。关联分析最初是在20世纪90年代初被提出来的,一直备受关注。已被广泛应用于各行各业,包括医疗体检、电子商务、商业金融等各个领域。关联规则的挖掘一般可分成两个步骤[1]:
(1)找出频繁项集,不小于最小支持度的项集;
(2)生成强关联规则,不小于最小置信度的关联规则。相对于生成强关联规则,找出频繁项集这一步比较麻烦。由R.Agrawal等人在1994年提出的Apriori算法是生成频繁项集的经典算法[2]。Apriori算法使用了Level-wise搜索的迭代方法,即用k-项集探索(k+1)-项集。Apriori算法在整体上可分为两个部分。
(1)发现频集。这个部分是最重要的,开销相继产生了各种各样的频集算法,专门用于发现频集,以降低其复杂度、提高发现频集的效率。
(2)利用所获得的频繁项集各种算法主要致力产生强关联规则。当然频集构成的联规则未必是强关联规则,还要检验构成的关联规则的支持度和支持度是否超过它们的阈值。Apriori算法找出频繁项集分为两步:连接和剪枝。
(1)连接。集合Lk-1为频繁k-1项集的集合,它通过与自身连接就可以生成候选k项集的集合,记作Ck。
(2)剪枝。频繁k项集的集合Lk是Ck的子集。剪枝首先利用Apriori算法的性质(频繁项集的所有非空子集都是频繁的,如果不满足这个条件,就从候选集合Ck中删除)对Ck进行压缩;然后,通过扫描所有的事务,确定压缩后Ck中的每个候选的支持度;最后与设定的最小支持度进行比较,如果支持度不小于最小支持度,则认为该候选项是频繁的。目前,在互联网技术及科学技术的快速发展下,人工智能、机器识别等技术兴起,关联分析也被越来越多应用其中,并在不断发展中提出了大量的改进算法。
3数据挖掘关联分析在道路交通事故原因分析当中的应用
近年来,我国越来越多的学者将数据挖掘关联分析应用于道路交通事故的研究中,主要是分析道路、车辆、行人以及环境等因素与交通事故之间的某种联系。Pande和Abdel-Aty[3]通过关联分析研究了美国佛罗里达州20xx年非交叉口发生的道路交通事故,重点分析了各个不同的影响因素与交通事故之间的内在联系,通过研究得出如下结论,道路照明条件不足是引发道路交通事故的主要因素,除此之外,还发现天气恶劣的环境下道路弯道的直线段也极易发生交通事故。Graves[4]利用数据挖掘技术中的关联规则对欧洲道路交通事故进行了分析,主要研究了交通事故与道路设施状况之间的关联,通过研究发现了易导致交通事故发生的`各个道路设施状况因素,此研究为欧洲路面建设及投资提供了强大的决策支持。我国学者董立岩在研究道路交通事故数据的文献中,将粗糙集与关联分析进行了融合,提出了基于偏好信息的决策规则简约算法并将其应用其中,通过分析发现了道路交通事故的未知规律。王艳玲通过关联分析中的因子关联树模型重点分析了影响道路交通事故最重要的因子,发现在道路交通事故常见的诱因人、车、路及环境中对事故影响最大的因子是环境。许卉莹等利用关联分析、聚类分析以及决策树分析三种数据挖掘技术对道路交通事故数据进行分析,最终得出了科学的道路交通事故预防和交通安全管理决策依据。尚威等在研究中,对大量的道路交通数据进行了有效整合,并在此基础上按照交通事故相关因素的不同特点整理出与事故发生有关的字段数据,形成新的事故数据记录表,然后再根据多维关联规则对记录的相关数据进行分析,从而发现了事故诱导因素记录字段值和事故结果字段值组成的道路交通事故频繁字段的组合。张听等在充分掌握聚类数据挖掘理论与方法的基础上,提出了多目标聚类分析框架和一个启发式的聚类算法k-WANMI,并将其用在道路交通事故的聚类研究中对不同权重的属性进行了多目标分析。同样,许宏科也利用该方法对公路隧道交通流数据进行了聚类分析,其在研究中不仅明确了隧道交通流的峰值规律,而且还根据这种规律制订了隧道监控设备的不同控制方案,对提高隧道交通安全的水平做了极大的贡献。徐磊和方源敏在研究中,提出了由简化信息熵构造的改进C4.5决策树算法,并将其应用在交通事故数据的研究中,对交通数据进行了正确分类,发现了一些隐藏的规则和知识,为交通管理提供了依据。刘军、艾力斯木吐拉、马晓松运用多维关联规则分析交通事故记录,从而找到导致交通事故发生次数多的主要原因,并且指导相关部门作出相应的决策。杨希刚运用关联规则为现实中的交通事故的预防提供依据。吉林大学的吴昊等人,基于关联规则的理论基础,定义了公路交通事故属性模型,并结合改进后的Apriori算法,分析了交通事故历史数据信息,为有关单位和用户寻找道路黑点(即事故多发点)提供了技术支援和决策帮助。
4结语
通过数据挖掘中的关联分析方法虽然能够对道路交通事故的相关因素进行清晰的分析,但是目前在这一方面的研究仍有不足之处。因为关联分析在道路交通事故的研究中往往只能片面发现某一种或几种因素影响交通事故的规律,很难将所有影响因素结合起来进行全面系统的分析。然而道路交通事故的发生通常都是由相应因素导致,而后事故当事人意识到危险源的存在并采取措施,直到事故发生的连续过程,整体来看体现了时序性。也就是说,道路交通事故是受到一系列按照时间先后顺序排列的影响因素组合共同作用而发生的,从整体的角度出发研究事故发生机理更加科学。
参考文献
[1]杨秀萍.大数据下关联规则算法的改进及应用[J].计算机与现代化,20xx(12):23-26.
[2]王云,苏勇.关联规则挖掘在道路交通事故分析中的应用[J].科学技术与工程,20xx(7):1824-1827.
[3]徐磊,方源敏.基于决策树C4.5改进算法的交通数据挖掘[J].微处理机,20xx,31(6):57-59.
[4]杨希刚.数据挖掘在交通事故中的应用[[J].软件导刊,20xx,7(26):18-20.
数据挖掘论文9
摘要:随着信息技术的发展与进步,大数据时代已经悄然走进人们身边,云计算技术的运用已经随处可见,并改变和影响着人们的生活。在此基础上,数据挖掘技术产生并发展,其在信息安全系统开发和建设方面产生重要影响和作用,以数据挖掘技术为依托构建相应的信息安全系统则更加能够让网络信息建设可靠、安全。
关键词:数据挖掘技术;信息安全系统;开发研究
一、数据挖掘的主要任务
在数据挖掘的主要任务中,包含关联分析、聚类分析、异常检测等任务。关联分析也叫频繁模式分析,其指的是就同一任务或者统一事件的查找过程中,另一事件也同样会发生相同规律,两者之间具有紧密联系。聚类分析主要是的是对各个数据内在的规律摸索,以及特点分析,通过对特点和规律进行对比,依照特点和规律进行数据源分类,使其成为若干个数据库。异常检测指的是对数据样本的范本进行建设,利用这一范本,与数据源中所存在的数据开展对比分析工作,将数据中的异常样本查找出来[1]。在监督学习中,主要包含分类与预测两种形式,利用已知样本的类型与大小,对新到样本开展有关预测活动。
二、基于数据挖掘的网络信息安全策略
1.安全的网络环境
(1)对控制技术进行隔离与访问,包括物理隔离、可信网络隔离、逻辑隔离与不可信网络隔离,相关用户如果需要进行网络资源搜集或者访问,需要得到相关授权。
(2)对防病毒技术进行运用,由于网络安全已受到病毒的严重威胁,应当对病毒预警、防护以及应急机制进行建设,确保网络的安全性;
(3)通过网络入侵检测技术的应用,能够对非法入侵者的破坏行为及时发现,并依照存在的隐患进行预警机制的建设。网络安全环境的建设还包括对系统安全性开展定期分析,在第一时间对系统漏洞进行查找,并制定有关解决措施;
(4)通过有关分析审计工作的开展,可以对计算机网络中的各种运行活动进行记录,不仅可以对网络访问者予以确定,而且还能够对系统的使用情况进行记录;
(5)通过网络备份与灾难恢复工作,能够利用最短的时间回复已破坏的系统。
2.保证数据挖掘信息安全的策略。安全的数据挖掘信息指的是数据挖掘信息的储存、传送以及运用工作的安全性。在数据挖掘信息的.存储安全中,主要包括其物理完整性、逻辑完整性以及保密性。利用数据完整性技术、数据传输加密技术以及防抵赖性技术,使数据挖掘信息传送的安全性得到充分保障。数据挖掘信息运用的安全性指的是针对网络中的主体,应当开展有关验证工作,预防非授权主体对网络资源进行私自运用。
3.基于数据挖掘的网络安全数据分析策略
(1)关联性分析。在一次攻击行为中,利用源地址、目的地址以及攻击类型这三要素,通过三要素之间的随意指定或组合,都能够将具备一定意义的网络攻击态势反映出来。
(2)事件预测机制。对某一事件的发展情况进行跟踪,通过数据聚类算法的应用,对依照网络事件所构建的模型进行分析,进而做出判定。一般来说,规模比较大的网络事件中,扩散一般是其所呈现的重要特征。
(3)可控数量预测模型。利用对事件中受控主机状态增长数量进行观测,判断该事件的感染能力。所谓的受控主机状态增长指的是,先前未检测出主机受到某类攻击,利用有关检测,对其状态变化增长情况予以发现[2]。
(4)分析处理模型。通过分析处理模型,能够科学分析运营商事件处理反馈情况,并对其针对被控主机的处理能力进行判定。利用对所有运营商所开展的综合评估,能够对其管辖范围内的主机处理能力予以综合判断。
(5)网络安全数据分析模型。针对网络事件进行数据分析,通过分析构建相应模型,结合模型进行异常情况的跟进和跟踪,从而为网络安全环境的营造创造条件。其运行过程主要包括两个阶段:
①在学习阶段中,用户主要是对事件进行确定,并在计算机系统中进行定义,对各个时间段所发生的安全事件数量进行统计。一般来说,统计以小时为单位,单位时间内的安全事件平均数为x,方差为σ。
②在实时检测阶段中,根据时间间隔各类安全事件的数量ix对安全事件数量是否出现异常情况进行判定,正常的安全事件数量轻度异常的安全事件数量中度异常的安全事件数量重度异常的安全事件数量在建设模型的过程中开展有关配置工作,依据不同的情形,对该参数进行调整,各类安全事件数量异常的最高值也就是安全事件数量指标值。
三、结语
云计算和大数据时代都对信息技术提出了更高的安全要求和标准,网络安全系统的构建影响着人们的生活和生产,并对相关的数据起到重要保护作用。结合数据挖掘技术进行信息安全系统的开发和建设,则能够更好地促进网络安全性的提升,能够有效抵制网络不法分子的侵袭,让网络安全性真正为人们的生活工作提供帮助。
参考文献
[1]赵悦品.网络信息安全防范与Web数据挖掘系统的设计与实现[J].现代电子技术,20xx,40(04):61-65.
[2]梁雪霆.数据挖掘技术的计算机网络病毒防御技术研究[J].科技经济市场,20xx(01):25.
数据挖掘论文10
摘 要:数据挖掘技术在各行业都有广泛运用,是一种新兴信息技术。而在线考试系统中存在着很多的数据信息,数据挖掘技在在线考试系统有着重要的意义,和良好的应用前景,从而在众多技术中脱颖而出。本文从对数据挖掘技术的初步了解,简述数据挖掘技术在在线考试系统中成绩分析,以及配合成绩分析,完善教学。
关键词:数据挖掘技术;在线考试;成绩分析 ;完善教学
随着计算机网络技术的快速发展,计算机辅助教育的不断普及,在线考试是一种利用网络技术的重要辅助教育手段,其改革有着重要的意义。数据挖掘技术作为一种新兴的信息技术,其包括了人工智能、数据库、统计学等学科的内容,是一门综合性的技术。这种技术的主要特点是对数据库中大量的数据进行抽取、转换和分析,从中提取出能够对教师有作用的关键性数据。将其运用于在线考试系统中,能够很好的处理在线考试中涉及到的数据,让在线考试的实用性和高效性得到进一步的增强,帮助教师更加快速、完整的统计考试信息,完善教学。
1.初步了解数据挖掘技术
数据挖掘技术是从大量数据中"挖掘"出对使用者有用的知识,即从大量的、随机的、有噪声的、模糊的、不完全的实际应用数据中,"挖掘"出隐含在其中但人们事先却不知道的,而又是对人们潜在有用的信息与知识的整个过程。
目前主要的商业数据挖掘系统有SAS公司的Enterprise Miner,SPSS公司的Clementine,Sybas公司的Warehouse Studio,MinerSGI公司的Mineset,RuleQuest Research公司的See5,IBM公司的Intelligent,还有 CoverStory, Knowledge Discovery,Quest,EXPLORA, DBMiner,Workbench等。
2.数据挖掘在在线考试中的主要任务
2.1数据分类
数据挖掘技术通过对数据库中的数据进行分析,把数据按照相似性归纳成若干类别,然后做出分类,并能够为每一个类别都做出一个准确的描述,挖掘出分类的规则或建立一个分类模型。
2.2数据关联分析
数据库中的数据关联是一项非常重要,并可以发现的知识。数据关联就是两组或两组以上的数据之间有着某种规律性的联系。数据关联分析的作用就是找出数据库中隐藏的联系,从中得到一些对学校教学工作管理者有用的信息。就像是在购物中,就可以通过顾客的购买物品的联系,从中得到顾客的购买习惯。
2.3预测
预测是根据已经得到的数据,从而对未来的情况做出一个可能性的分析。数据挖掘技术能自动在大型的数据库中做出一个较为准确的分析。就像是在市场投资中,可以通过各种商品促销的数据来做出一个未来商品的促销走势。从而在投资中得到最大的回报。
3.数据挖掘的方法
数据挖掘技术融合了多个学科、多个领域的知识与技术,因此数据挖掘的方法也呈现出很多种类的形式。就目前的统计分析类的数据挖掘技术的角度来讲,光统计分析技术中所用到的数据挖掘模型就回归分析、逻辑回归分析、有线性分析、非线性分析、单变量分析、多变量分析、最近邻算法、最近序列分析、聚类分析和时间序列分析等多种方法。数据挖掘技术利用这些方法对那些异常形式的数据进行检查,然后通过各种数据模型和统计模型对这些数据来进行解释,并从这些数据中找出隐藏在其中的商业机会和市场规律。另外还有知识发现类数据挖掘技术,这种和统计分析类的数据挖掘技术完全不同,其中包括了支持向量机、人工神经元网络、遗传算法、决策树、粗糙集、关联顺序和规则发现等多种方法。
4.数据挖掘在考试成绩分析中的几点应用
4.1运用关联规则分析教师的年龄对学生考试成绩的影响
数据挖掘技术中的关联分析在教学分析中,是一种使用频繁,行之有效的方法,它能挖掘出大量数据中项集之间之间有意义的关联联系,帮助知道教师的教学过程。例如在如今的一些高职院校中,就往往会把学生的英语四六级过级率,计算机等级等,以这些为依据来评价教师的教学效果。将数据挖掘技术中的关联规则运用于考试的成绩分析当中,就能够挖掘出一些对学生过级率产生影响的因素,对教师的教学过程进行重要的指导,让教师的'教学效率更高,作用更强。
还可以通过关联规则算法,先设定一个最小可信度和支持度,得到初步的关联规则,根据相关规则,分析出教师的组成结构和过级率的影响,从来进行教师队伍的结构调整,让教师队伍更加合理。
4.2采用分类算法探讨对考试成绩有影响的因素
数据挖掘技术中的分类算法就是对一组对象或一个事件进行归类,然后通过这些数据,可以进行分类模型的建立和未来的预测。分类算法可以进行考试中得到的数据进行分类,然后通过学生的一些基本情况进行探讨一些对考试成绩有影响的因素。分类算法可以用一下步骤实施:
4.2.1数据采集
这种方法首先要进行数据采集,需要这几方面的数据,学生基本信息(姓名、性别、学号、籍贯、所属院系、专业、班级等)、学生调查信息(比如学习前的知识掌握情况、学习兴趣、课堂学习效果、课后复习时间量等)、成绩(学生平常学习成绩,平常考试成绩,各种大型考试成绩等)、学生多次考试中出现的易错点(本次考试中出现的易错点,以往考试中出现的易错点)
4.2.2数据预处理
(1)数据集成。把数据采集过程中得到的多种信息,利用数据挖掘技术中的数据库技术生产相应的学生考试成绩分析基本数据库。(2)数据清理。在学生成绩分析数据库中,肯定会出现一些情况缺失,对于这些空缺处,就需要使用数据清理技术来进行这些数据库中数据的填补遗漏。例如,可以采用忽略元组的方法来删除那些没有参加考试的学生考试数据已经在学生填写的调查数据中村中的空缺项。(3)数据转换。数据转换主要功能是进行进行数据的离散化操作。在这个过程中可以根据实际需要进行分类,比如把考试成绩从0~59的分到较差的一类,将60到80分为中等类,81到100分为优秀等。(4)数据消减。数据消减的功能就是把所需挖掘的数据库,在消减的过程又不能影响到最终的数据挖掘结果。比如在分析学生的基本学习情况的影响因素情况中,学生信息表中中出现的字段很多,可以选择性的删除班别、籍贯等引述,形成一份新的学生基本成绩分析数据表。
4.2.3利用数据挖掘技术,得出结论
通过数据挖掘技术在在线考试中的应用,得出这些学生数据的相关分析,比如说学生考试中的易错点在什么地方,学生考试成绩的自身原因,学生考试成绩的环境原因,教师队伍的搭配情况等等,从中得出如何调整学校教学资源,教师的教学方案调整等等,从而完善学校对学生的教学。
5.结语
数据挖掘技术在社会各行各业中都有一定程度的使用,基于其在数据组织、分析能力、知识发现和信息深层次挖掘的能力,在使用中取得了显著的成效,但数据挖掘技术中还存在着一些问题,例如数据的挖掘算法、预处理、可视化问题、模式识别和解释等等。对于这些问题,学校教学管理工作者要清醒的认识,在在线考试系统中对数据挖掘信息做出合理的使用,让数字挖掘技术在在线考试系统中能够更加有效的发挥其长处,避免其在在线考试系统中的的缺陷。
参考文献:
[1]胡玉荣.基于粗糙集理论的数据挖掘技术在高校学生成绩分析中的作用[J].荆门职业技术学院学报,20xx,12(22):12.
[2][加]韩家炜,堪博(Kam ber M.) .数据挖掘:概念与技术(第2版)[M]范明,译.北京:机械工业出版社,20xx.
[3]王洁.《在线考试系统的设计与开发》[J].山西师范大学学报,20xx(2).
[4] 王长娥.数据挖掘技术在教育中的应用[J].计算机与信息技术,20xx(11)
数据挖掘论文11
摘 要:高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技
关键词:客户关系管理毕业论文
高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技术和信息技术的发展,客户关系管理如何能结合数据挖掘技术和数据仓库技术,增强企业的核心竞争力已经成为企业亟待解决的问题。因为,企业的数据挖掘技术的运用能够解决客户的矛盾,为客户设计独立的、拥有个性化的数据产品和数据服务,能够真正意义上以客户为核心,防范企业风险,创造企业财富。
关键词:客户关系管理毕业论文
一、数据挖掘技术与客户关系管理两者的联系
随着时代的发展,银行客户关系管理的发展已经越来越依赖数据挖掘技术,而数据挖掘技术是在数据仓库技术的基础上应运而生的,两者有机的结合能够收集和处理大量的客户数据,通过数据类型与数据特征,进行整合,挖掘具有特殊意义的潜在客户和消费群体,能够观察市场变化趋势,这样的技术在国外的银行业的客户关系管理广泛使用。而作为国内的银行企业,受到国外银行业市场的大幅度冲击,显得有些捉襟见肘,面对大量的数据与快速发展的互联网金融体系的冲击,银行业缺乏数据分析和存储功能,往往造成数据的流逝,特别是在数据的智能预测与客户关系管理还处于初步阶段。我国的银行业如何能更完善的建立客户关系管理体系与数据挖掘技术相互融合,这样才能使得企业获得更强的企业核心竞争力。
二、数据挖掘技术在企业客户关系管理实行中存在的问题
现今,我国的金融业发展存在着数据数量大,数据信息混乱等问题,无法结合客户关系管理的需要,建立统一而行之有效的数据归纳,并以客户为中心实行客户关系管理。
1.客户信息不健全
在如今的银行企业,虽然已经实行实名制户籍管理制度,但由于实行的年头比较短,特别是以前的数据匮乏。重点体现在,银行的客户信息采集主要是姓名和身份证号码,而对于客户的职业、学历等相关信息一概不知,极大的影响了客户关系管理体系的构建。另外,数据还不能统一和兼容,每个系统都是独立的系统,比如:信贷系统、储蓄系统全部分离。这样存在交叉、就不能掌握出到底拥有多少客户,特别是那些需要服务的目标客户,无法享受到银行给予的高质量的优质服务。
2.数据集中带来的差异化的忧虑
以客户为中心的客户关系管理体系,是建立在客户差异化服务的基础上的,而作为银行大多数以数据集中,全部有总行分配,这样不仅不利于企业的差异化服务,给顾客提供优质得到个性化业务,同时,分行也很难对挖掘潜在客户和分析客户成分提供一手的数据,损失客户的利益,做到数据集中,往往是不明智的选择。
3.经营管理存在弊端
从组织结构上,我国的银行体系设置机构庞杂,管理人员与生产服务人员脱节现象极其普遍,管理人员不懂业务,只是一味的抓市场,而没有有效的营销手段,更别说以市场为导向,以客户为核心,建立客户关系管理体系。大多数的人完全是靠关系而非真正意义上靠能力,另外,业务流程繁琐,不利于客户享受更多的星级待遇,这与数据发掘的运用背道而驰,很难体现出客户关系管理的价值。
三、数据挖掘技术在企业的应用和实施
如何能更好的`利用数据挖掘技术与客户关系管理进行合理的搭配和结合是现今我们面临的最大问题。所有我们对客户信息进行分析,利用模糊聚类分析方法对客户进行分类,通过建立个性化的信息服务体系,真正意义的提高客户的价值。
1.优化客户服务
以客户为中心提高服务质量是银行发展的根源。要利用数据挖掘技术的优势,发现信贷趋势,及时掌握客户的需求,为客户提高网上服务,网上交易,网上查询等功能,高度体现互联网的作用,动态挖掘数据,通过智能化的信贷服务,拓宽银行业务水平,保证客户的满意度。
2.利用数据挖掘技术建立多渠道客户服务系统
利用数据挖掘技术整合银行业务和营销环节为客户提供综合性的服务。采用不同的渠道实现信息共享,针对目标客户推荐银行新产品,拓宽新领域,告别传统的柜台服务体系,实行互联网与柜台体系相结合的多渠道服务媒介体系。优化客户关系管理理念,推进营销战略的执行。提高企业的美誉度。
四、数据挖掘技术是银行企业客户关系管理体系构建的基础
随着信息技术的不断发展,网络技术的快速推进,客户关系管理体系要紧跟时代潮流,紧密围绕客户为中心,利用信息优势,自动获取客户需求,打造出更多的个性化、差异化客户服务理念,使得为企业核心竞争能力得到真正意义的提高。
数据挖掘论文12
1、数据挖掘技术的概念和实用价值
1.1 数据挖掘的概念
所谓数据挖掘,其实就是从大量繁杂的数据中找出对自己发展有益的数据、模型及规律。主要依据事先确定好的商业目标,深入分析和研究各种企业数据,发掘里面隐藏的商业内容,还要在工作中不断提高其科学性。数据挖掘的综合型较强,需要使用诸多专业理论以及技术工具,主要有数据库技术、统计学、机器学习、模型识别、人工智能、神经网络等。
1.1.1 分类
其实质就是对数据进行分门别类。先从数据中挑选出分类完的训练集,然后将其作为依据来设置一个科学的分类模型,还要将杂乱的数据进行综合整理。
1.1.2 估值
估值和分类有很多相同点,其差异在于:分散是对离散型变量进行输出,但估值输出的是连续值,且分类的类别是有数目规定的,但估值却是随意的。
1.1.3 预测
一般情况下,预测要借助分类或估值才能发挥效果,具体说来,就是用分类及估值期间使用的模型来预估未知的变量。检测的目的与其大同小异,但而其结果必须经时间验证,也就是说在很长一段时间后,才可以评估其准确性。
1.1.4 相关性分组或关联规则
要记录好时间类型及发生日期,这样可以为后续的施工提供借鉴。
1.1.5 聚类
就是对各种数据进行整理并且分类,以聚集为类别。两者的主要区别是聚类不需要事先定义好类别,不用借助训练集。
1.1.6 描述和可视化
用归约、概括、图形表示等方式来表示数据。
1.2 数据挖掘在电力企业的使用价值
商业领域对于数据挖掘技术的需求较大,因此数据挖掘在多个商业领域得到了大范围的应用。下文便依据电力企业的行业特征来论述一下数据挖掘技术在电力企业中的重要作用。
1.2.1 指导设备更新
在发生了下述两种情况时就要对设备进行更新:首先,电力设施意外毁坏,这便要第一时间更换,一般电力设备监控设施可以检测出这类故障,这样也能够在第一时间进行维修。其次是更换老化的设备,这就需要以经验为依据,例如检查设备的使用年限等,但这种方式并不具有多大的科学性,因为很多设备可能由于保养得当而延长使用年限,如果贸然更换会产生巨大的浪费;还有些设备的使用时间可能不长,但是其性能却已经不满足标准,若不及时更换也会产生巨大的浪费。一般情况下,我们可以借助故障保修、电力耗费及相关电力参数等各种数据来确定电力设备的故障及老化状况,最终确定是否更换设备。
1.2.2 业绩评估
我国的电力企业一直没有一套标准的.体系来评价集团公司分公司的成绩。若只评估其所创造的经济利润,则会因各地区的发展有所误差,并且电力行业是与我们的生产生活息息相关的,安全性及其它性能的重要意义远大于利润。但数据挖掘技术却能够综合分析诸多影响因素,通过分析由利润、利润增长率、同行对比、投诉举报、生产成本等数据组成的主题仓库来研究区域或者是自公司的运营情况,并用图表等简洁明了的方式体现出来,为决策提供依据。
1.2.3 指导电力企业的建设规划
最近,我国的广东频繁发生电力供不应求的情况,其主要原因便是没能很好的掌握市场进步的趋势,在电厂的建设及电网建设方面都没能满足市场的需求,这时数据挖掘工作的重要性便得到了很好的体现。将新增用户(报装)、现有用户、用户位置、用户用电量、国家的建设计划等相关资料实行认真的研究分析便可以制定出电力企业的发展计划,有此为指导,才能促进电力行业的飞速发展。
1.2.4 指导电力的生产和购买
我国推出电力企业改革方案后,广东省电力集团便在积极的践行,到01年底已大体完成厂网分离。改革的逐步深化,而言使得我们面临了一些新的问题。例如在电力购买方面,传统的电厂和电网属一个单位,电厂会供给电网充足的电力。可在如今,电网用电时一定要提前购买,但因为电力的鲜明特征即买多少用多少,使得购买时间和购买量无法准确的确定。而借助数据挖掘技术可以很好的解决这一问题。对有关的主体车库进行深入挖掘便可确定需购买的电力总量,并对发电企业的生产计划进行指导。
1.2.5 减少电力损耗,改善电力质量,减少设备损耗
电力产品具有自身的显著特征,主要体现在它不能进行储存,只有按需供给。可是,发电和用电是有着很大差异的,要想保证电力的质量,就必须不断提高设施的安全性,并对其实施科学的调整。现今使用的主要方式是建设蓄能电厂,若电力有多余则要保存起来,等电力供应不足时则用这部分电力,将其进行安排调度并制定合理的疾患,便能实现电力储存技术的灵活调节,实现降低电力浪费,提高电力质量,避免设备的耗损。
2、使用数据挖掘的必要性和可行性
2.1 我国电力企业信息化现状使采用数据挖掘技术成为可能
观察以广电企业的现状可以知道,电网的信息化已经有了很大的进步,也就是不再仅仅借助计算机完成统计报表,管理信息也不是单机单项应用工作的时期,其正处在信息化的中级发展环节,企业有自己的局域网,广电集团也已经实现了光纤网的全省覆盖,企业完成信息化之后,能够使内部的管理工作更加高效,如MIS、OA、物资管理、财务管理以及客户服务中心等。能够获得企业的许多基本数据,并使应用平台更加的科学,而企业在进行数据挖掘工作时,便可以将这众多数据作为有效依据。
2.2 我国电力企业改革的趋势使采用数据挖掘技术成为必然
我国党政领导集团在积极的转变行业垄断的现状,促进竞争方式的合理化。我国电力企业中已经使用了“厂网分家”模式,这使得发电竞争有了科学的模式,广电集团也已经结束了这部分的工作。接下来便是向电网运转方向转变。为在将来的竞争中保持优势,电力企业一定要尽可能的降低生产经营的成本,这样有利于更好的为客户提供服务,并熟悉自己及竞争企业的实际情况。上述的所有事情,都要使用现代信息技术来解决,而数据挖掘技术又起着极其重要的作用。
3、展望
作为智能系统的心脏,信息通信系统在今后电网业的进步中有着非常积极的意义。现今,我国电网业早已设立了在国内、国际都很先进的集成系统。三地集中式数据也开始慢慢运转起来,各企业的一级业务面也越来越广,各种数据中心也都开始运转起来,我国电网的数据和种类都开始步入正轨。其“量类时”特征,也在海量、实时的电网业务内有了更大的作用,所以必须对其进行深入研究。
现今,我们通常把电网业务数据归为三种:首先,单位生产的资料,有发电量、电压稳定性等指标等;其次,单位工作中的数据,包括交易价格、用户的需求方面的数据等;最后是单位的管理资料,如ERP、一体化平台、协同办公等方面的数据。我们要熟练了解这诸多数据的特征,然后开展深入的探究,还能推出很多高附加值的服务,这也能促进电网安全性检测的顺利进行,还可以更好的掌控企业的经营、满足用户的需求,使企业的管理水平得到提高。
比如,在设立电力企业的“大营销”模式时,要以满足顾客需求为目标,建立各种服务平台以第一时间满足客户各种需求,如:95588、114等。为了完善服务模式,提高服务质量,应该详细的分析各种数据,使得服务水平和营销能力得到大幅度的提升和改善;分析型数据是进行服务和开展营销的必要前提和重要基础,应该得到足够的重视,对原有的营销组织模式进行查漏补缺,通过借鉴其他单位的成功经验来弥补自己的不不足和缺陷,对各种服务资源进行合理的配置,尽可能让大多数人满意,为了更好的利用数据并提高营销能力,要建立数据监控分析模型;营销数据之间是存在着隐藏关系的,显而易见,这些隐藏信息不容易被发现,为了增强分析数据的全面性、系统性、直观性、便捷性,建立各种系统性算法模型库不仅是极其有必要的,而且是相当重要的,当然这种系统性的算法模型库是针对营销制定的,这样做可以增强把握市场动态的及时性,我们知道,任何类型的营销必定离不开市场,市场是开展营销主要遵循的依据,脱离了市场,营销就会抓不住头脑,因而,算法模型库的建立可以为企业单位创造更多的经济效益和社会效益,增强企业的核心竞争力,扩大企业单位的市场份额,使企业更稳的立足于竞争激烈的市场之上,甚至是处于领头羊的地位,促进国民经济建设,为人民提供更好的服务。
数据有着很好的增值价值,其他的服务也可以通过数据增值价值得到衍生。所以,加大对数据的利用与研究势在必行。把数据当中重要的依据、基础甚至是纽带,沿着这个纽带进行研究与利用。将数据研究和使用的成果合理的运用起来,例如,将其转化为新型的支付方式和消费形态,使客户感受到非同一般的感觉,突破了以往的业务系统仅仅专注于自己内容的方式,电网的生产效率会得到提高,企业的管理水平也会因此得到大幅度的改善与提高。
数据挖掘论文13
摘要:随着计算机信息网络的快速发展,数据挖掘在软件工程中的地位越来越突出。软件工程数据挖掘是在冗余的数据中发现有用的数据,从而得到更好地利用。社会的发展,科技的进步使得社会进入了网络信息热时代,随之计算机软件也不断增加,人们获取的信息大部分是人手动操作软件获得的,这样的信息量具有一定的局限性。因此,为了满足当今社会的需要,必须借助于软件工程数据挖掘的手段。
关键词:软件工程;数据挖掘;研究现状
中图分类号:TP311 文献标识码:A 文章编号:1009-3044(20xx)26-0020-02
利用数据挖掘技术对大量冗余的数据进行筛选从而得到少量精确的信息。冗余的数据是指既包含有用信息有包含无用信息,利用数据挖掘技术剔除掉多余的无用信息留下有用信息,这样既可以提高手机数据的质量又可以提高工作效率。所以,数据挖掘技术在当前的软件工程中起着越来越重要的作用。数据挖掘技术提取、筛选、分析和整理数据比人工操作软件获得的数据更精确更高效。同时,使用这种技术为软件开发者提供了有利的条件,它可以给软件开发者提供一些对其开发软件有用的信息。软件开发者想要更有效率的开发出更高质量的软件,就必须获得更多的更有用的数据,而想要收集和整理出有用数据就需要借助数据挖掘技术来实现,进而提高工作效率。
1 数据挖掘的基本概述
软件工程数据主要是指开发软件过程中所涉及的各类数据,如需求分析、可行性分析、设计等文档,开发商通信、软件注释、代码、版本、测试用例和结果、使用说明、用户反馈等信息数据,一般情况下其是软件开发者获取软件数据的唯一来源;而数据挖掘是指在海量数据中集中发现有用知识或信息的过程。
软件工程数据挖掘的工作原理 主要包括数据预处理阶段、挖掘阶段以及评估阶段三个方面。在挖掘阶段主要是运用分类、统计、关联、聚类、异常检测等一系列算法的过程。在评估阶段数据挖掘的意义主要在于其结果应易被用户理解,其结果评估主要有两个环节分别是模式过滤和模式表示。
数据挖掘在计算机软件工程中的研究相当多,它是分析数据的一种新颖方式。目前,随着社会工作的复杂度,需要更加完善的软件,因此对于软件代码的数量也在急剧增加进而导致了数据量的快速增长。而传统的数据计算方式已经不能满足目前对于大量数据进行分析的要求,所以,研究者希望能够发掘出一种新的数据分析方式更高效的整理出有用的数据信息。软件开发中会积累大量的数据,比如说文本数据,测试数据,用户信息数据以及用户体验反馈数据等等,软件开发者为了开发出更好的软件就必须分析和整理这些数据。但是,目前软件工程开发的软件越来越大,其数据越累越复杂对于数据的处理已经超出了人工处理的能力的范畴,所以说继续使用传统数据处理的方式来收集,整理和分析数据已经不可能实现。因此,推动了人们对于新的数据处理方式的研究,所以才提出了软件工程数据挖掘技术。
2 软件工程数据挖掘的应用
随着计算机软件工程的发展,可以发现传统的数据挖掘技术具有很多的不足,存在一定的缺陷。传统的数据挖掘技术的定位系统不完善,定位不精确,并没有体现出数据挖掘技术的高性能,它不足以满足当代对于数据处理的要求,因此需要对传统的数据挖掘技术进行改进和完善,这是我们目前的首要任务之一。为了迎合现代化网络信息技术的快速发展,需要发掘出新的数据处理模式,就是在这样的背景条件下,诞生了软件工程数据挖掘技术。相比于存在很多缺陷与不足的传统软件工程而言,软件工程数据挖掘技术更加简单、方便、高效以及精确。软件工程数据挖掘技术并不需要特定的技术平台,体现了其普适性。当前,我国已经开始深入的研究软件工程数据挖掘技术,但是,仍然需要更深的开发其性能以便更好地满足社会的需求。
3 软件工程数据挖掘面临的挑战
软件工程数据相比于普通数据更加复杂,所以对于软件工程数据进行处理具有很大的挑战性。处理软件工程的大量数据具有:软件工程数据复杂性,软件工程的数据处理非传统以及需要严格精确的软件工程数据的分析结果等三方面的困难。
3.1 对数据复杂性的分析
软件工程数据包括结构化数据和非结构化数据。软件工程中所产生的缺陷报告以及各种版本信息构成了结构化数据信息;而软件工程处理过程中所产生的代码信息和文本文檔信息构成了非结构化数据信息。由于这两类数据包含的具体内容不同,所以需要分别处理这两种数据,需要使用不同的算法对他们进行处理。虽然说需要不同方式处理这两种数据但是并不表示这两种数据之间没有任何联系,事实上,它们之间存在着重要的对应关系。例如:代码中存在着缺陷报告,版本信息中存在着对应的文档信息,由于它们之间存在着这样的对应关系,所以使得人们不能很好地对其进行整体分析,这就促使了人们开发出一种新的算法,新的数据分析技术能够同时将结构化信息和非结构化信息这两种对应数据一起挖掘出来。
3.2 对数据处理非传统的分析
分析和评估软件工程数据挖掘出来的信息,这是数据挖掘过程的最后一步。客户是软件工程数据挖掘数据处理的最后宿体,软件开发者需要对最终挖掘出来的数据进行转变,格式转变是为了满足广大客户对于数据不同的`要求。但是,由于需要对数据进行格式转变,相当于增加了一定的工作量,那么软件工程数据挖掘的效率则会被大大降低。对于客户而言,他们需要的信息各种各样并不单一,比如说客户可能会同时需要具体的例子和编程代码等;或者说需要具体例子和缺陷报告等;或者三者皆需要。由此可见,我们仍然需要改进和完善软件工程数据挖掘技术来提高其效率。怎样才能做到让客户得到满意的数据挖掘结果呢?那么就需要高效的数据挖掘技术将各类信息进行归纳总结,改变其格式。这样的技术,不仅仅可以满足客户需求而且还可以使软件开发者从中得到更大的利益。
3.3 对数据挖掘结果好坏的评价标准
对于传统的数据挖掘技术而言,它也有一套自己的对于数据结果处理好坏的分析标准,而这个标准对于传统数据挖掘技术数据处理的分析较准确。但是,在当前的软件工程所要处理的数据量很大,传统的评价标准已经不能满足现在的数据分析要求;使用不同的数据结果评价标准来评判不同的数据挖掘结果。然而不同的评价标准之间的联系并不紧密,因此就需要开发者针对不同的数据类型做出不同的评价分析标准以便满足客户需求。想要对数据分析结果是否准确,数据挖掘的信息是否合理等等这些不同的问题进行更加深刻的了解,就要求开发者有独特的见解,对于数据结果是否精确有一定的判断能力。总之,获取准确的信息就是软件工程数据挖掘的目的。所以,最后获得的数据是否满足要求就是评判软件工程数据挖掘结果是否完美的标准。endprint
4 对软件工程数据挖掘应用进行分析
4.1 对软件数据挖掘技术进行分析
在软件开发的过程中,数据挖掘技术包括两个方面:(1)程序编写;(2)程序成果。在这个过程中,程序结构和程序功能技术的主要作用就是检索出有效的信息。提升信息的有效性需要联系到客户的实际需要,同时也需要对程序编写过程进行智能化培训。将调用、重载和多重继承等关系家合起来进行有效的记录各种相关信息,重视静态规则的同时利用递归测试的方式来分配工作,从而更有效的掌握关联度之间的可信性。
4.2 做好软件维护中的软件工程数据挖掘工作
在软件维护的过程中,软件修复和软件改善工作依赖于数据挖掘技术。数据挖掘技术在软件缺陷以及软件结构等也起到了重要的作用。软件修复即维护者通过依据缺陷分派进行有效的评估并改善缺陷程序进而确定修复级别或者维护者可以选择缺陷修复方式,无论哪种方式最终目的都是进行软件修复来保证数据挖掘的高效性。缺陷分派即将缺陷转化为文本类型,采取有效措施来进行修复。但是,这样的方式它的实际准确率并不高,因而需要利用强化检测来完善缺陷报告技术。
4.3 注重高性能数据挖掘技术开发工作
数据挖掘技术体现在软件开发工作中的创新性不可或缺,在实际的工作过程中,目前的软件工程数据挖掘更加重视两个工作:(1)规则分析方式;(2)项目检索工作。总而言之,想要高效快速地寻找病毒,并对其进行全方位分析和评估得到准确的病毒数据需要高性能数据挖掘技术。只有提升数据分析的可行性,提升软件开发安全性能,才能更好地实现软件工程的良好发展。
5 总结
综上所述,數据挖掘技术的应用非常广泛,比如说分析代码、软件故障检测以及软件项目管理等三个方面应用较多。值得关注的是,当前对于数据挖掘技术的研究还不够成熟。因此,研究者需要对软件工程数据挖掘技术进行深入的研究,从而能够促进软件更好地开发和管理。相信在不久的将来,我们一定可以在数据挖掘方面取得非常好的优化效果。
参考文献:
[1] 江义晟.软件工程数据挖掘研究进展[J].电子技术与软件工程,20xx(22).
[2] 胡金萍.探析软件工程数据挖掘研究进展[J].电脑知识与技术,20xx(34).
[3] 马保平.关于对软件工程中的数据挖掘技术的探讨[J].电子技术与软件工程,20xx(19).
[4] 徐琳,王宁.数据挖掘技术在软件工程中的应用分析[J].数字通信世界,20xx(8).
数据挖掘论文14
题目:数据挖掘技术在神经根型颈椎病方剂研究中的优势及应用进展
关键词:数据挖掘技术; 神经根型颈椎病; 方剂; 综述;
1 数据挖掘技术简介
数据挖掘技术[1] (Knowledge Discovery in Datebase, KKD) , 是一种新兴的信息处理技术, 它融汇了人工智能、模式别、模糊数学、数据库、数理统计等多种技术方法, 专门用于海量数据的处理, 从大量的、不完全的、有噪声的、模糊的、随机的数据集中, 提取隐含在其中的、人们事先不知道的、但又是潜在的有用的信息和知识, 其目的是发现规律而不是验证假设。数据挖掘技术主要适用于庞大的数据库的研究, 其特点在于:基于数据分析方法角度的分类, 其本质属于观察性研究, 数据来源于日常诊疗工作资料, 应用的技术较传统研究更先进, 分析工具、理论模型与传统研究区别较大。其操作步骤包括[2]:选择数据, 数据处理, 挖掘分析, 结果解释, 其中结果解释是数据挖掘技术研究的关键。其方法包括分类、聚类、关联、序列、决策树、贝斯网络、因子、辨别等分析[3], 其结果通常表示为概念、规则、规律、模式、约束、可视化等形式图[4]。当今数据挖掘技术的方向主要在于:特定数据挖掘, 高效挖掘算法, 提高结果的有效性、确定性和表达性, 结果的可视化, 多抽象层上的交互式数据挖掘, 多元数据挖掘及数据的安全性和保密性。因其优势和独特性被运用于多个领域中, 且结果运用后取得显着成效, 因此越来越多的中医方剂研究者将其运用于方剂中药物的研究。
2 数据挖掘术在神经根型颈椎病治方研究中的优势
中医对于神经根型颈椎病的治疗准则为辨证论治, 从古至今神经根型颈椎病的中医证型有很多, 其治方是集中医之理、法、方、药为一体的数据集合, 具有以“方-药-证”为核心的多维结构。方剂配伍本质上表现为方与方、方与药、药与药、药与剂量, 以及方药与证、病、症交叉错综的关联与对应[5], 而中医方剂讲究君臣佐使的配伍, 药物有升降沉浮, 四气五味及归经之别, 对于神经根型颈椎病的治疗, 治方中药物的种类、炮制方法、用量、用法等都是千变万化的, 而这些海量、模糊、看似随机的药物背后隐藏着对临床有用的信息和规律, 但这些大数据是无法在可承受的时间范围内可用常规软件工具进行捕捉、管理和处理的, 是需要一个新处理模式才能具有更强的决策力、洞察力和流程优化能力, 而数据挖掘技术有可能从这些海量的的数据中发现新知识, 揭示背后隐藏的关系和规则, 并且对未知的情况进行预测[6]。再者, 中医辨治充满非线性思维, “方-药-证”间的多层关联、序列组合、集群对应, 形成了整体论的思维方式和原则, 而数据挖掘技术数据挖掘在技术线路上与传统数据处理方法不同在于其能对数据库内的数据以线性和非线性方式解析, 尤善处理模糊的、非量化的数据。例如赵睿曦等[7]在研究张氏骨伤治疗腰椎间盘突出症的用药规律时, 选取了100张治方, 因该病病因病机复杂, 证候不一, 骨伤名师张玉柱先生对该病的治则治法、药物使用是不同的。因此他们利用Excel建立方证数据库, 采用SPPS Clementine12.0软件对这些数据的用药频次、药物关联规则及药物聚类进行分析, 最后总结出张氏骨伤治疗腰椎间盘突出症遵循病从肝治、病从血治、标本兼治的原则, 也归纳出治疗三种不同证型的腰突症的三类自拟方。由此看出数据挖掘技术在方剂研究中的应用对数据背后信息、规律等的挖掘及名家经验的推广具有重大意义, 因此数据挖掘技术在神经根型颈椎病的治方研究中也同样发挥着巨大的作用。
3 数据挖掘技术在神经根型颈椎治方中的应用进展
神经根型颈椎病在所有颈椎病中最常见, 约占50%~60%[8], 医家对其治方的研究也是不计其数。近年来数据挖掘技术也被运用于其治方研究中, 笔者通过万方、中国知网等总共检索出以下几篇文献, 虽数量不多但其优势明显。刘向前等[9]在挖掘古方治疗神经根型颈椎病的用药规律时, 通过检索《中华医典》并从中筛选以治疗颈项肩臂痛为主的古方219首并建立数据库, 对不同证治古方的用药类别、总味数、单味药使用频数及药对 (组) 出现频数进行统计, 总结出风寒湿痹证、痰湿阻痹证、寒湿阻滞证、正虚不足证的用药特点, 得出解表药、祛风湿药、活血化瘀药、补虚药是治疗颈项肩臂痛古方组成的主要药物。古为今用, 该研究对于现代医家在治疗该病中有很好的借鉴和参考意义。齐兵献等[10]检索CNKI (1980-20xx年) 相关文献中治疗神经根型颈椎病的方剂建立数据库, 采用SPSS11.5统计软件这些治方常用药物使用频次频率、性味频率、归经频率分析比较, 治疗神经根型颈椎病的中药共计99味, 使用频次479味次;所用药物种类依次以补益药、活血化瘀药、祛风湿药运用最多, 其中药味以辛、苦为主, 药性以温、寒为主, 归经以肝、脾、心为主, 而本病以肝肾亏虚, 气血瘀滞为主, 临床以补益药、活血化瘀药、祛风湿药等中药运用最多。这对于医家治疗该病选用药物的性味、归经等具有指导意义。陈元川等[11]检索20xx年1月至20xx年3月发表的.以单纯口服中药治疗神经根型颈椎病的有关文献, 对其中的方剂和药物进行统计、归类、分析, 最终纳入32首方剂, 涉及111味中药, 补气药、发散风寒药、活血止痛药、补血药等使用频次较高;葛根、白芍、黄芪、当归、桂枝等药物使用频次较高, 证实与古方桂枝加葛根汤主药相同, 且该方扶阳解表的治法与该研究得出的扶正祛邪的结果相吻合, 同时也证实石氏伤科强调治伤科病当“以气为主, 以血为先”等正确性。所以大数据背后的规律和关系在很多方面古今是一致的, 同时数据依据的支持也为现代神经根型颈椎病治疗提供有力的保障。谢辉等[12]收集20xx至20xx年10月3日的166张治疗神经根型颈椎病的治方建立数据库, 采用关联规则算法、复杂系统熵聚类等无监督数据挖掘方法, 利用中医传承辅助平台 (TCMISS) 软件分析处方中各种药物的使用频次、药物之间的关联规则、核心药物组合和新处方, 从中挖掘出治疗该病中医中的常用药物、药对, 阐明了治疗该病以解肌散寒药、补气活血药、祛风胜湿药和温经通络药为主, 治法主要包括解肌舒筋、益气活血和补益肝肾, 这一方面很清晰明了地展示了药物使用频率、药物之间的联系, 证实其与很多古代经典中治疗神经根型颈椎病的治则、治法及用药规律是吻合的, 是临床用药的积累和升华, 可有效地指导临床并提高疗效;另一方面也为中药新药的创制提供处方来源, 指导新药研发[13]。
4 小结
数据挖掘技术作为一种新型的研究技术, 在神经根型颈椎病的治方研究中的运用相对于其他领域是偏少的, 并且基本上是研究文献资料上出现的治方, 在对名老中医个人治疗经验及用药规律的总结是缺乏的, 因此研究范围广而缺乏针对性, 同时使用该技术的相关软件种类往往是单一的。现在研究者在研究中医方剂时往往采用传统的研究方法, 这就导致在大数据的研究中耗时、耗力甚则无能为力, 同样也难以精准地提取大数据背后的隐藏的潜在关系和规则及缺乏对未知情况的预测。产生这样的现状, 一方面是很多研究者尚未清楚该技术在方剂研究中的优势所在, 思维模式尚未更新;另一方面是很多研究者尚未清楚该技术的操作技能及软件种类及其应用范围。故以后应向更多研究者普及该技术的软件种类、其中的优势及操作技能, 让该技术在临床中使用更广, 产生更大的效益。
参考文献
[1]舒正渝.浅谈数据挖掘技术及应用[J].中国西部科技, 20xx, 9 (5) :38-39.
[2]曹毅, 季聪华.临床科研设计与分析[M].杭州:浙江科学技术出版社, 20xx:189.
[3]王静, 崔蒙.数据挖掘技术在中医方剂学研究中的应用[J].中国中医药信息杂志, 20xx, 15 (3) :103-104.
[4]陈丈伟.数据仓库与数据挖掘[M].北京:清华大学出版社, 20xx:5.
[5]杨玉珠.数据挖掘技术综述与应用[J].河南科技, 20xx, 10 (19) :21.
[6]余侃侃.数据挖掘技术在方剂配伍中的研究现状及研究方法[J].中国医药指南, 20xx, 6 (24) :310-312.
[7]赵睿曦.方证数据挖掘分析张氏骨伤对腰椎间盘突出症的辨证用药规律[J].陕西中医药大学学报, 20xx, 39 (6) :44-46.
[8]李曙明, 尹战海, 王莹.神经根型颈椎病的影像学特点和分型[J].中国矫形外科杂志, 20xx, 21 (1) :7-11.
[9]刘向前, 陈民, 黄广平等.颈项肩臂痛内治古方常用药物的统计分析[J].中华中医药学刊, 20xx, 30 (9) :42-44.
[10]齐兵献, 樊成虎, 李兆和.神经根型颈椎病中医用药规律的文献研究[J].河南中医, 20xx, 32 (4) :518-519.
[11]陈元川, 王翔, 庞坚, 等.单纯口服中药治疗神经根型颈椎病用药分析[J].上海中医药杂志, 20xx, 48 (6) :78-80.
[12]谢辉, 刘军, 潘建科, 等.基于数据挖掘方法的神经根型颈椎病用药规律研究[J].世界中西医结合杂志, 20xx, 10 (6) :849-852.
[13]唐仕欢, 杨洪军.中医组方用药规律研究进展述评[J].中国实验方剂学杂志, 20xx (5) :359-363.
数据挖掘论文15
1理论研究
1.1客户关系管理
客户关系管理的目标是依靠高效优质的服务吸引客户,同时通过对业务流程的全面优化和管理,控制企业运行成本。客户关系管理是一种管理理念,将企业客户视作企业发展最重要的企业资源,采用企业服务优化等手段来管理客户关系。客户关系管理并不是单纯的信息技术或者管理技术,而是一种企业生物战略,通过对企业客户的分段充足,强化客户满意的行为,优化企业可盈利性,将客户处理工作上升到企业级别,不同部门负责与客户进行交互,但是整个企业都需要向客户负责,在信息技术的支持下实现企业和客户连接环节的自动化管理。
1.2客户细分
客户细分由美国学者温德尔史密斯在20世纪50年代提出,认为客户细分是根据客户属性将客户分成集合。现代营销学中的客户细分是按照客户特征和共性将客户群分为不同等级或者子群体,寻找相同要素,对不同类别客户心理与需求急性研究和评估,从而指导进行企业服务资源的分配,是企业获得客户价值的一种理论与方法。因此我们注意到,客户细分其实是一个分类问题,但是却有着显著的特点。
1.2.1客户细分是动态的企业不断发展变化,用户数据不断积累,市场因素的变化,都会造成客户细分的变化。所以客户细分工作需要根据客户情况的变化进行动态调整,
减少错误分类,提高多次细分中至少有一次是正确分类的可能性。
1.2.2受众多因素影响
随着时间的推移,客户行为和心理会发生变化,所以不同时间的数据会反映出不同的规律,客户细分方法需要在变化过程中准确掌握客户行为的规律性。
1.2.3客户细分有不同的分类标准
一般分类问题强调准确性,客户关系管理则强调有用性,讲求在特定限制条件下实现特定目标。
1.3数据挖掘
数据挖掘就是从大型数据库数据中提取有价值的、隐含的、事前未知的潜在有用信息。数据挖掘技术不断发展,挖掘对象不再是单一数据库,已经逐渐发展到文件系统、数据集合以及数据仓库的挖掘分析。
2客户细分的数据挖掘
2.1逻辑模型
客户数据中有着若干离散客户属性和连续客户属性,每个客户属性为一个维度,客户作为空间点,全部客户都能够形成多为空间,作为客户的属性空间,假设A={A1,A2,…Am}是一组客户属性,属性可以是连续的,也可以离散型,这些属性就形成了客户m维属性空间。同时设g是一个描述客户属性的一个指标,f(g)是符合该指标的客户集合,即为概率外延,则任一确定时刻都是n个互不相交集合。在客户价值概念维度上,可分为“有价值客户”“潜在价值客户”“无价值客户”三种类型,定义RB如下:(1)显然RB是一个等价关系,经RB可分类属性空间为若干等价类,每个等价类都是一个概念类,建立客户细分,就是客户属性空间和概念空间映射关系的建立过程。
2.2客户细分数据挖掘实施
通过数据库已知概念类客户数据进行样本学习和数据挖掘,进行客户属性空间与概念空间映射的自动归纳。首先确定一组概念类已知客户集合。首先确定一个映射:p:C→L,使,如果,则。,求p(c)确定所属概念类。数据部分有客户数据存储和概念维数据构成,客户数据存储有企业全部内在属性、外在属性以及行为属性等数据,方法则主要有关联规则分析、深井网络分类、决策树、实例学习等数据挖掘方法,通过对客户数据存储数据学习算法来建立客户数据和概念维之间的映射关系。
2.3客户细分数据分析
建立客户动态行为描述模型,满足客户行为非确定性和非一致性要求,客户中心的管理体制下,客户细分影响企业战术和战略级别决策的生成,所以数据挖掘要能够弥补传统数据分析方法在可靠性方面的缺陷。
2.3.1客户外在属性
外在属性有客户地理分布、客户组织归属情况和客户产品拥有情况等。客户的组织归属是客户社会组织类型,客户产品拥有情况是客户是否拥有或者拥有哪些与其他企业或者其他企业相关产品。
2.3.2内在属性
内在属性有人口因素和心理因素等,人口因素是消费者市场细分的重要变量。相比其他变量,人口因素更加容易测量。心理因素则主要有客户爱好、性格、信用情况以及价值取向等因素。
2.3.3消费行为
消费行为属性则重点关注客户购买前对产品的了解情况,是客户细分中最客观和重要的因素。
2.4数据挖掘算法
2.4.1聚类算法
按照客户价值标记聚类结果,通过分类功能,建立客户特征模型,准确描述高价值客户的一些特有特征,使得企业在之后的市场活动中能够迅速发现并抓住类似的高价值客户,全面提高客户的整体价值水平。通常都采用中心算法进行客户的聚类分析,分析涉及的字段主要有客户的基本信息以及与客户相关业务信息,企业采用中心算法,按照企业自身的行业性质以及商务环境,选择不同的聚类分析策略,有主属性聚类分析和全属性聚类分析两类。主属性聚类分析是企业根据在企业标度变量中选择主要弧形作为聚类分析变量。通常区间标度变量选用的度量单位会对聚类分析结果产生很大影响,选择的度量单位越小,就会获得越大的可能值域,对聚类结果的影响也就越大。
2.4.2客户分析预测
行业竞争愈加激烈,新客户的'获得成本越来越高,在保持原有工作价值的同时,客户的流失也受到了企业的重视。为了控制客户流失,就需要对流失客户的数据进行认真分析,找寻流失客户的根本原因,防止客户的持续流失。数据挖掘聚类功能同样能够利用在客户流失数据分析工作中,建立基于流失客户数据样本库的分类函数以及分类模式,通过模型分析客户流失因素,能够获得一个最有可能流失的客户群体,同时编制一个有针对性的挽留方案。之后对数据进行分析并利用各种数据挖掘技术和方法在多个可供选择的模型中找出最佳模型。初始阶段,模型的拟合程度可能不理想,但是随着模型的不断更换和优化,最终就有可能找出合适的模型进行数据描述并挖掘出流失数据规律。通常模拟模型都通过数据分析专业和业务专家协作完成,采用决策树、贝叶斯网络、神经网络等流失分析模型,实现客户行为的预测分析。
3结语
从工业营销中的客户细分观点出发,在数据挖掘、客户关系管理等理论基础上,采用统计学、运筹学和数据挖掘技术,对客户细分的数据挖掘方法进行了研究,建立了基于决策树的客户细分模型,是一种效率很高的管理工具。
作者:区嘉良 吕淑仪 单位:中国石化广东石油分公司
【数据挖掘论文】相关文章:
数据挖掘论文07-16
数据挖掘论文07-15
旅游管理下数据挖掘运用论文11-18
数据挖掘论文锦集(15篇)07-28
旅游管理下数据挖掘运用论文6篇11-18
计算机数据库论文07-28
关于大数据时代下的隐私保护探究论文04-14
数据分析报告02-02