我要投稿 投诉建议

数据挖掘论文

时间:2023-07-28 18:41:14 毕业论文范文 我要投稿

数据挖掘论文锦集(15篇)

  在学习和工作的日常里,大家都跟论文打过交道吧,论文可以推广经验,交流认识。那么问题来了,到底应如何写一篇优秀的论文呢?下面是小编精心整理的数据挖掘论文,欢迎阅读,希望大家能够喜欢。

数据挖掘论文锦集(15篇)

数据挖掘论文1

  摘要:橡胶是一种重要的战略物资, 其种植受到土地资源、地理环境、橡胶机械化的影响, 产量波动很大。本文对农垦橡胶产业种植、生产加工引入数据挖掘技术的必要性进行了初步探究, 指出通过提取土壤图像的特征, 用支持向量机的算法可以发现橡胶种植、生产加工的规律, 进而制定精准的橡胶产业相关策略, 以提高橡胶产量、节约成本、提高利润。

  关键词:橡胶种植; 数据挖掘; 特征提取; 支持向量机.

  基金:广东农工商职业技术学院校级课题“基于数据挖掘技术的橡胶产业的数字化研究” (xykt1601)橡胶是一种重要的战略物资, 与石油、钢铁、煤炭并称为四大工业原料。我国是全球最大的天然橡胶消费国和进口国, 国内天然橡胶长期处于缺口状态, 需求的2/3依赖进口来满足[1]。天然橡胶产业属于资源约束型、劳动密集型产业, 相对其他农作物来说, 具有周期长、收益长等特点。农垦橡胶业的产生、发展与壮大实际上是中国橡胶业发展的一个缩影, 一直是学术界研究的热点。根据农垦橡胶产业种植、生产加工的历史数据进行数据挖掘, 发现其种植、生产加工的规律, 进而制定精准的橡胶产业相关策略, 以提高橡胶产量、节约成本、提高利润的数字化研究, 目前国内还比较少。

  1 引入数据挖掘技术的必要性

  天然橡胶以其独具的高弹性、高强度、高伸长率、耐磨、耐撕裂、耐冲击、耐酸碱、耐油、耐腐蚀、耐高低温和绝缘性好、粘合性、密封性强等特点, 始终处于不可替代的地位。我国天然橡胶需求量大, 近几年一直处于供不应求的状态。造成这种局面的原因主要有以下两点:一、国内轮胎工业迅猛发展;二、天然橡胶的种植条件苛刻。其种植条件苛刻主要体现在对种植地要求高, 如对土地的含碳、含氮、湿度等要求都很严格;容易受到寒害、虫害、台风的袭击。橡胶的供应不足阻碍了我国经济 (特别是轮胎行业) 的发展。基于此背景下, 本文通过数据挖掘技术对橡胶树生长地的土壤进行评价研究, 为寻找出最适合橡胶树生长的土壤和寻找橡胶树种植地提供依据, 一方面可以降低种植橡胶的成本, 另一方面可以让新的橡胶农更容易掌握种植橡胶技巧, 让更多的人加入种植橡胶的队伍中。

  2 数字化流程图

  2.1 样本采集

  研究的橡胶林可以分为4种不同林龄胶林:幼林早期 (0~2龄) 、幼林晚期 (2~7龄) 、开割数 (7~16龄) 、老龄即将更新数 (>16龄) 。取土壤样本的时间要在晴天上午, 如果遇雨天, 则等2个晴天后再进行取样。每个林龄段中随机设置n个样地:每个样地的面积a (m) ×b (m) , 分0~15cm、15~30cm、30~45cm、45~60cm4个层次拍摄土壤样品, 每个层次拍摄m张。每张土壤样品图片的命名规则为“胶林-层次.jpg”。

  2.2 特征提取

  通过拍摄得到的土壤图像, 由于图像的维度过大, 不容易分析, 需要从中提取土样图像的特征, 提取反应图像本质的一些关键指标, 以达到自动进行图像识别的目的。

  图像的特征主要包括颜色特征、纹理特征、形状特征等。本文主要运用图片的颜色特征和纹理特征建立图片自动识别模型。

  2.2.1 颜色特征

  图片的颜色特征用颜色矩表示。基于颜色矩提取图像特征的数学基础在于图像中任何的颜色分布均可以用它的矩来表示。颜色的矩包含各个颜色通道的一阶矩、二阶矩和三阶矩, 对于一幅RGB颜色空间的'图像, 具有R、G和B三个颜色通道, 共有9个分量。

  2.2.2 纹理特征

  图片的纹理特征主要灰度共生矩阵里面中提取。因为纹理是由灰度分布在空间位置上反复交替变化而形成的, 因而在图像空间中相隔某距离的两个像素间一定存在一定的灰度关系, 称为是图像中灰度的空间相关特性。

  其中L表示图像的灰度级, i, j分别表示像素的灰度。d表示两个像素间的空间位置关系。不同的d决定了两个像素间的距离和方向。元素Pd (1, 0) 代表了图像上位置关系为d的两个像素灰度分别为1和0的情况出现的次数。

  在建模中一般不直接用图片的灰度共生矩阵建模, 往往要从灰度共生矩阵中提取它的特征参数用户建模。灰度共生矩阵的特征参数有二阶距、对比度、相关、熵。

  3 模型构建

  特征提取完之后, 用支持向量机算法对图像进行图片识别。根据识别出的结果就可以有针对性的对土壤做些有利于橡胶树生长的干预工作, 如:如果识别出土壤缺少氮元素, 可以给土壤适当的施些氮肥;如果识别出土壤的水分较少, 就要给土壤浇水, 给农垦橡胶产业提供数学指导意义。

  4 结论

  本文分析了橡胶种植中引入数据挖掘技术的必要性, 对橡胶种植数字化研究做了初步阐述。可以给橡胶业提供一定的参考意义。

  参考文献

  [1]黄冠, 吴红宇.广东农垦天然橡胶种植现状及“走出去”战略实践.中国热带农业, 20xx, 3 (4) , 18-21.

  [2]李炜.广东农垦“走出去”做强做大橡胶产业.今日热作, 20xx, 19 (1) , 52-53.

  [3]Rapepun Wititsuwannakul, Piyaporn Pasitkul, et.al.Hevea latex lectin binding protein in C-serum as an anti-latex coagulating factor and its role in a proposed new model for latex coagulation, Phytochemistry 20xx, 69 (1) , 656–662.

  [4]勒碧.数据挖掘算法及其生产优化应用中的研究.浙江大学硕士学位论文, 20xx.

数据挖掘论文2

  [摘要] 本文立足于web数据挖掘技术,从个性化网站的设计、crm中的应用和推荐系统中的应用三个角度,分析了电子商务中的web数据挖掘应用。

  [关键词] 电子商务 web 数据挖掘

  电子商务改变了人们传统的商务模式,同时,也改变了商家与顾客之间的关系。客户选择余地的扩大使得他们更加关注商品的价值,而不象以前首先考虑品牌和地理因素。因此对销售商而言尽可能的了解客户的爱好、价值取向,才能在竞争中立于不败之地。数据挖掘技术可以有效地帮助销售商理解客户行为,提高站点的效率。在电子商务网站的设计、客户关系管理(crm)、网络营销等方面得到广泛的应用。

  一、数据挖掘在电子商务网站设计中的应用

  数据挖掘可以得出诸如:什么客户喜欢这个站点、客户通过什么访问路径达成交易,以及客户访问站点的频率等信息,从而优化网站的结构提高网站的访问量,吸引更多的客户。对于改进网站设计、定制个性化页面、判断站点效率有着重要帮助。

  利用web数据挖掘技术,个性化电子商务系统的实现过程包括信息采集、信息分析和个性化服务三个主要步骤:

  1.信息采集。收集客户个人信息是提供个性化服务的基础。收集个人信息主要有两种方式。第一种方式是通过客户注册来获得,这种方式可以得到客户的性别、出生日期、最高学历、家庭收入、婚姻状况、职业等;第二种是通过客户在网站上的行为来判断个人的兴趣爱好等特点,从而获得客户个人信息。如果客户经常浏览某类产品或相关广告,我们就可以知道客户对这类产品感兴趣。Www.133229.CoM

  2.信息分析。一个成功和完善的个性化电子商务网站应该能够在对客户透明的情况下,对客户的资料、行为进行分析,并尽量不影响客户的页面处理时间,对于耗时较多的分析、分类处理应放在系统相对空闲和客户退出网站等时间处理,减少客户等待时间。信息分析过程如下:(1)将网站客户群进行分类,然后按照客户群兴趣特点进行内容设计,并且将内容相应归类;(2)定义客户类别所对应的内容,即某类客户最需要看到什么内容;(3)分析客户的行为和登录资料,判别客户所属的类别;(4)客户浏览网站不同页面时,以及提交购买定单时,修改相应行为资料。

  3.个性化服务。根据客户类别显示相应的内容给客户,达到个性化服务的目的。为了使分类更具有可信性和稳定性,对注册时间较长,浏览及购买行为相对稳定的客户优先抽样。

  二、数据挖掘在crm中的应用

  1.客户的获取。在大多数的商业领域中,业务发展的主要指标包括新客户的获取能力。企业的市场部门人员可以采用传统的方法来发展新客户,如开展大规模广告活动;也可以根据所了解的目标客户群,将他们分类,然后进行直销活动。但是当数据量增大时,即使有丰富经验的市场人员想要选择出相关的人口调查属性的筛选条件也会变得很困难,随客户数量不断增长和每位客户的`细节因素增多,要得出这样的行为模式的复杂度也同样增大。而数据挖掘技术可以帮助完成潜在客户的筛选工作。首先从一份潜在的客户名单开始,列出可能对企业的产品或服务感兴趣的消费者的信息,通过调查和处理对这些信息进行数据扩展,并和一些外部信息匹配,使之更适合数据挖掘分析。然后进行市场试验活动,根据所需要预测的客户行为在一定范围内对客户进行试验,记录下客户的反馈,称之为“反应行为模式”。剔除无反应行为和反应行为类别中重复的数据后,在确定细节粒度的基础上,利用数据挖掘技术构建出n元反应行为预测模型。根据这个模型,可以将潜在的客户排序,以便找出那些对企业的产品或服务最感兴趣的客户。

  2.客户的保持。随着行业中的竞争愈来愈激烈和获得一个新客户的开支愈来愈大,保持原有客户的工作也愈来愈有价值。在crm的实施中,企业通过预测,找出可能会流失的客户,并分析出主要有哪些因素导致他们想要离开,在此基础上,有针对性地挽留那些有离开倾向的客户。

  利用数据挖掘技术,可以通过挖掘大量的客户信息来构建预测模型,较准确地找出易流失客户群,并制定相应的方案,最大程度地保持住老客户。数据挖掘技术中的决策树技术能够较好地应用在这一方面。

  3.客户的细分。细分是指将一个大的消费群体划分为一个个细分群体的动作,同属一个细分群的消费者彼此相似,而隶属于不同细分群的消费者被视为不同的。通过crm的实施,将产生细分的客户群,企业根据客户提出的要求和实际所做的不断地改善产品和服务,从而使企业不断提高使该客户群满意的能力。

  数据挖掘技术中的聚类分析技术能够被运用来从客户信息数据库中发现不同的客户群,并且用购买模式来刻画不同客户群的特征,达到细分客户群的目的。根据客户数据特点,一般可采用聚类技术中的k平均算法来进行划分。其原理为将含原始客户信息的数据库划分成k个聚簇,然后采用一定的算法使得同一簇中的对象是“相似的”,而不同簇中的是“相异的”。

  三、推荐系统中的数据挖掘技术

  1.贝叶斯网络。贝叶斯网络技术利用训练集创建相应的模型,模型用决策树表示,节点和边表示客户信息。模型的建立可以离线进行,一般需要数小时或数天,得到的模型非常小,对模型的使用非常快,这种方法适合客户的兴趣爱好变化比较慢的场合,推荐精度和最近邻技术差不多。

  2.关联规则。关联规则既可用来分析商品间的参考模式,也可以向客户推荐商品,提高交叉销售能力。关联规则的发现可以离线进行,随着商品数目的增加,规则的数量呈指数增加,但通过决策者对支持度和置信度的选择,感兴趣模式以及算法的选取,也可以高效实现。推荐精度比最近邻技术略差。

  3.聚类分析。该技术将具有相似爱好、购物兴趣的客户分配到相同的族中,聚类产生之后,根据该族中其他客户对某商品的评价就可以得到系统对该商品的评价,聚类过程可以离线进行,聚类产生之后,性能比较好,但如果某客户处于一个聚类的边缘,则对该客户的推荐精度比较低,推荐精度比最近邻技术略差。

  4.推荐系统要兼顾准确性和实时性。一个好的系统可能是多种方法和技术的结合,取长补短。譬如,可以把聚类分析作为最临近算法的预处理,即通过聚类分析来减小候选集,最临近算法就可以在一个较小的数据集合中进行,从而提高了实时性。

  参考文献:

  [1]周彦晖:电子商务与web数据挖掘.计算机应用.20xx(5)

  [2]董逸生:web挖掘研究综述.计算机科学,20xx(11)

数据挖掘论文3

  网络经济的关键在于能够为商品的供应商及其合作者之间提供一个交流的平台,但是即便是最权威的搜索引擎也只能够搜索到三分之一的web网页,并且这些Web都是没有结构的、动态的、复杂的形式出现。人们要从各种各样的文本网站中寻找自己想要的信息进而变得更加困难。网络数据挖掘技术就是用来解决这一问题的好办法,利用数据挖掘技术能够有效发现在web网页中隐藏着的对用户有力的数据信息,在对数据的分析中总结出规律。如何实现用户对于Web上的有效数据的深度挖掘,使其成为工商管理领域中的重要应用,成为了当代许多网络工作者所关注的话题。

  一、数据挖掘概述

  (一)数据挖掘

  数据挖掘(DataMining)指的是,在大量的、不规则的、随机的、复杂的、有噪声的实际应用数据中,获得一些信息和知识,能够对用户祈祷潜在作用的效果的过程。将数据挖掘用通俗的话来描述就是在数据库中发现潜在有用的知识发现(KDDKnowledgeDiscoveryinDatabase)。在这个定义中主要包含了以下几方面的含义:首先数据源的特性是大量、随机、不规则、噪声;信息是客户所感兴趣的对象;选取的知识必须是在可接受、可理解、可运用的范围内的,并不是全部符合要求的都可以,对于问题要有一定的针对性。也就是说对于所发现的知识的筛选是有一定的约束和限制条件的,同时也要符合用户的理解和学习能力,最好还能够用通俗的语言来表达最终的结果。

  (二)Web数据挖掘

  Web数据挖掘实际上是属于数据挖掘的范畴的。概括的来说,Web数据挖掘的数据库特定的就是Web服务器上的数据文件,从中发现用户感兴趣并有所应用潜能的知识。Web数据挖掘主要针对的就是页面内容、页面之间的结构、用户访问信息、电子商务等内在信息,通过数据挖掘技术来获得有价值的信息。Web数据和传统数据库存在着很大的差异,传统的数据库都是在一定的数学模型范围之内的,通过模型来描述其中的数据;但是web数据库相对来讲就要复杂许多,没有通用的模型来描述数据,每个网页都有其独特的数据描述方式,丙炔数据自身都是可变的、动态的。因而,Web数据虽然具有一定的结构性,不能用架构化的形式来表达,也可以称其为半结构化的数据。Web数据的最大特点就是半结构化,加上Web数据的信息量极大,导致整一个数据库成为一个巨大的异构数据库。

  二、网络数据挖掘的类型

  (一)网络内容挖掘

  网络内容挖掘的对象是网页的内容、数据、文档,这通常也是网页在急性搜索的时候需要考察的访问对象。由于网络信息繁多,按照信息源的不同可以划分为Gopher、FTP、Usenet等已经隐藏到WWW形式之后的资源,我们称之为WWW信息资源,存储于数据库管理信息系统中的数据,以及不能直接访问的私人数据。按照网络资源的形式又可以划分为文本、图像、音频、视频等数据。

  (二)网络结构挖掘

  网络结构挖掘的对象就是Web潜在的链接结构模式。这种类型最早出现在引文分析,在建立web自身的链接结构模型的时候借鉴了网页链接和被链接数量以及对象。在网页归类的时候往往会采用这种模式,还能够得到不同网页间相似度及关联度的相关数据。网络结构挖掘能够帮助用户在相关领域中找到最有分量的网站。

  (三)网络用法挖掘

  网络用法挖掘的目的在于掌握用户的一系列网络行为数据。网络内容挖掘、网络结构挖掘针对的都是网上的原始数据,而网络用法挖掘针对的是用户在上网过程中的人机交互的第二手数据,主要有用户的网页游览记录、代理服务器日志记录、网页维护信息、用户简介、注册信息、聊天记录、交易信息等等。

  三、网络经济环境下数据挖掘在工商管理中的运用步骤

  (一)识别网站访问者的特征信息

  企业对电子商务网站的数据进行挖掘的第一步,就是要明确访问者的特点,找出访问者使用的条款特征。访问者特征主要有入口统计、心理状态和技术手段等要素。人口统计并不是一成不变的,比如家庭地址、收入、购买力等因素都会不断改变。心理状态指的是在心理调研中展现出的个性类型,比如对商品的选择去世、价格优惠心理、技术兴趣等。随着访问者数量的增加,相关数据也会不断累积。条款的交互信息主要包括购买历史、广告历史和优选信息。网站统计信息是指每次会话的相关要素。公司信息主要包括访问者对接的服务器所包含的一系列要素信息。

  (二)制定目标

  开展网上交易的最大优势在于企业对于访问者的反应有着更好的前瞻性。当厂商的目标是明确且具象的时候,就能够通过数据挖掘技术得到较好的效果。企业通常可以设定以下的目标:网页访问者的增加量;类此网页访问的浏览时间增加;每次结账的平均利润;退换货的减少;品牌知名度效应;回头客的数量等等。

  (三)问题描述

  开展电子商务的企业最关键要面对的一个问题就是如何进行商品的传播,要实现网页的个性化又要将商品的信息完整的展现给顾客,就需要了解同一类访问者的共有特征、估计货物丢失的数据并预测未来行为。所有这一切都涉及寻找并支持各种不同的隐含模式。

  (四)关联分析

  对顾客大量的交易数据进行关联规则分析,能够发现顾客购买组合商品的趋势。关联分析指的是在一次浏览或者会话中所涉及到的商品,也叫做市场分析。若电子商务网站能够将这些商品放在同一个网页中,就能够提高顾客同时购买这些商品的概率。如果在关联的.一组商品中有某一项商品正在进行促销,就能够带动其他组合产品的销量。关联也能够用在静态的网站目录网页。在这种情况下,网站排序的主要依据是厂商选择的且是网站所要查看的第一页内容,将其以及其相关的商品信息放在网页的首页。

  (五)聚类

  聚类指的是将具有相同特征的商品归为一类,将特征平均,以形成一个“特征矢量”。聚类技术能够确定一组数据有多少类,并用其中一个聚类来表示其余大多数数据。通常在企业分析访问者类型的时候使用聚类技术。

  (六)决策树

  决策树描绘的是都想决定在做出的一系列过程中的问题或数据点。比如做出购买电视机这一决定就要经历对于电视机的需求、电视机的品牌、尺寸等等问题,最终确定好买哪一台电视机为止。决策树能够较一个决策过程进行系统的排序,以便选出最优的路径来尽可能减少决策的步骤,提高决定的质量和速度。许多企业将决策树体系添加到自己的产品选择系统中,能够帮助访问者解决特定问题。

  (七)估计和预测

  估计是对未知量的判断,预测是根据当前的趋势做出将来的判断。估计和预测使用的算法类似。估计能够对客户空白的项目做到预判。如果网站想知道某个访问者的收入,就可以通过与收入密切相关的量估计得到,最后通过与其有相同特征的访问者的收入来衡量这个访问者的收入和信用值。预测是对未来事项的判断。尤其是在某些个性化网页中显得尤为重要。企业通过数据的汇总增进对客户的了解。即使是对以往事件的分析中也可以得到有效的信息。预测能够对访问者的特征作出总结和汇总,以便企业能够找出更有针对性的组合商品来满足客户的需求。Web数据和传统数据库存在着很大的差异,最大特点就是半结构化,加上Web数据的信息量极大,导致整一个数据库成为一个巨大的异构数据库。能够帮助用户在特性是大量、随机、不规则、噪声的信息中发现感兴趣的对象。

数据挖掘论文4

  摘要:随着我国社会经济的不断发展,人力资源管理也受到越来越多人们的重视,然而在如今激烈的市场竞争下很多企业依然不重视人力资源管理,从而使得自身的整体工作效率不高。为此,笔者认为为了提高矿建人力资源管理的质量,应采取数据挖掘技术来开展工作,从而让整个企业在激烈的市场竞争中稳定、长久发展下去。

  关键词:数据挖掘技术;企业人力资源管理;应用

  1、数据挖掘技术在企业人力资源管理中应用的现状

  随着我国人力资源管理体系的不断发展,隐藏在管理工作中的问题也被逐渐显露出来,虽然很多企业的高层管理者对人力资源管理这块已经高度重视,但是企业往往是希望通过运用相关的系统来对人才进行管理,基于我国社会整体经济实力的不断发展以及互联网信息时代的到来,数据挖掘技术也受到越来越多的企业多关注,并纷纷采用该技术对自身人力资源进行管理,同时也将人力资源管理系统作为整个信息化建设过程中的核心部位,就数据调查显示,数据挖掘技术已经被国外很多软件开放式引入自身的人力资源管理工作中,并使自身内部逐步形成了一套完整的人力资源管理系统体系。除此之外,数据挖掘技术也被广泛应用在企业的基本人力资源档案管理工作中,随着信息技术时代的到来,以往传统的计算机管理模式对人力资源管理效率往往并不高,为此,数据挖掘技术对企业人力资管理工作是百利而无一害的。

  2、数据挖掘技术在企业人力资源管理中的应用

  2、1人才的招聘

  任何企业在发展过程中都是离不开新鲜血液注入的,随着目前我国市场经济竞争趋势的不断增长,企业要想稳固发展必须要引入人力资源管理,只有这样才能提高企业经济效益以及社会收益。为此,企业应对人才进行招聘,这也是获取人力资源的重要手段,通过采用数据挖掘技术来吸引社会中的各类人才,并采取有效的人才管理流程来对人才进行筛选,最终选择质量最佳的人才资源。与此同时,企业对人才招聘质量的优与良对自身内部的员工、人类资源也会造成一定的影响,换句话来讲,人才的招聘往往是企业人力资源管理工作开展的前期阶段,然而在实际人才招聘过程中很多企业总是找不到合适的人选,同时也有大量的优质人才也很难找的适合自身的工作,这也就加大了企业人才招聘的难度,也进一步加大了招聘的`成本,为此,企业采取数据挖掘技术可以有效降低人才招聘的成本支出,从而使自身获得更大的经济收益与社会利益。

  2、2对人才的管理

  随着社会对人才需求量的不断增加,企业对员工的数据记录和管理方式也逐步优化,然而在很多企业人力资源管理过程中仍然存在着诸多问题,而这些问题的存在对企业未来发展也产生阻碍作用。为了企业在未来发展道路上稳固、长久发展,应采取数据挖掘技术来对人才进行管理,以往传统的管理模式往往是对员工的基本信息以及日常考核进行管理,这种管理方式已经不适应现在时代发展的趋势,为此,矿建企业必要顺应当下时代的发展趋势来采取有效的措施来对人力资源进行管理,现代化的管理模式主要强调的是对相关数据的分析和整理能力,通过对数据的分析来形成具有实际指导作用的总结,从而为企业人力资源管理工作提供有价值的参考依据。例如,在实际人力资源管理过程中可以利用数据挖掘技术来对企业内部员工的薪资水平进行分析,并对企业的成本控制提出有效的建议,也可以利用数据挖掘技术对企业中年纪较大的员工进行分析,并对其进行科学的评判,从而对其提出更有利的参考价值和依据。

  2、3实现对企业人才的合理分配

  随着我国社会经济的不断发展,人才的发展形势也变得越来越“多元化”“个体化”。为此,笔者认为为了进一步提高矿建企业人力资源管理工作的质量,应采取数据挖掘技术来对人才进行合理分配,并结合内部员工的实际特点以及具体类型进行客观性的评判,这对企业的人才资源管理以及未来发展无疑是百利无一害的。通过采取数据挖掘技术不仅可以实现对员工的共性以及特点进行分析,使每一位员工的信息资源、岗位职责得到有效划分,同时也进一步实现对企业人才的合理分配。通过对数据信息的管理技术构建实现对人员分组,从而使数据挖掘技术在企业人力资源管理中得到有效利用,使其发挥最大的作用与价值,同时也进一步提高企业人力资源管理工作的效率和和质量,最终推动企业稳固、长久的发展。

  3、结语

  综上所述,随着社会经济的飞速发展,建设领域也得到逐步提高,然而在人力资源管理工作中依然存在着诸多问题,这些问题的存在也严重阻碍我国社会经济的稳固发展。所以,只有充分采用数据挖掘技术来开展人力资源管理工作,才能提高企业的人力资源管理水平。

  参考文献:

  [1]曾巍、数据挖掘在人力资源市场中的应用与研究[D].吉林大学,20xx

  [2]赖华强,王三银,仲崇高、人力资源管理领域的数据挖掘应用展望———以基于灰色关联模型的离职管理实证分析为例[J].江苏商论.20xx(08):42—47

  [3]马秦,张江、数据挖掘技术在企业人力资源管理中应用的研究[J].中国新通信,20xx.20(15):232

  [4]孙明标、基于大数据挖掘技术下的企业人力资源管理研究[J].现代营销(下旬刊).20xx(01):166

数据挖掘论文5

  计算机技术的不断发展,信息技术不断加强,在社会新的发展趋势下,以往的传统管理模式落后于现代化发展的管理水平。为了创新档案管理的模式,提高档案管理的质量,在现代档案信息管理系统中引入数据挖掘技术。

  1、信息挖掘技术

  1.1数据挖掘技术概述

  数据挖掘技术是一种基于统计学、人工智能等等技术基础上,能够自动分析原有数据,从而做出归纳整理,并对其潜在的模式进行挖掘的决策支持过程,简单来说就是从一系列复杂的数据中提取人们需要的潜在性信息。

  1.2数据挖掘技术的方法

  二十世纪末,计算机挖掘技术产生。其一般用到的方法有:

  (1)孤立点分析。孤立点分析法主要用于对于特殊信息的挖掘。

  (2)聚类分析。聚类分析方法是在指定的对象中,对其价值联系进行搜索。

  (3)分类分析。分类分析就是找出具有一定特点的数据,对需要解读的数据进行识别。

  (4)关联性分析。关联性分析方法是对指定数据中出现频繁的数据进行挖掘。

  (5)序列分析。与关联性分析法一样,由数据之间内在的联系得出潜在的关联。

  1.3计算机挖掘技术的形式分析

  计算机挖掘技术在使用过程中,收集到的数据不同,数据收集的方法也就不同。在对数据挖掘技术进行形式分析的时候,主要用到:分类形式、粗糙集形式、相关规则形式。

  2、计算机数据挖掘技术在档案信息管理

  系统中的应用计算机挖掘技术,能够将隐藏的信息挖掘出来并进行总结和利用,运用到档案管理中来,在充分发挥挖掘技术作用的同时,极大的提高了档案数据的利用价值。数据挖掘技术在档案管理系统中,一般用到的方法为:

  2.1收集法

  该方法在对数据库中的数据进行分析的基础上,建立对已知数据详细描述的概念模型。然后将每个测试的样本与此模型进行比较,若有一个模型在测试中被认可,就可以以此模型对管理的对象分类。例如,档案管理员就某事向客户进行问卷调查并将答案输入到数据库中。在该数据库中,对客户的回答进行具体属性描述,当有新的回答内容输入的时候,系统会自动对该客户需求分类,在减轻管理员工作压力的同时,提高了档案管理的效率。

  2.2保留法

  该方法是防止老客户档案丢失并将客户留住的过程。对于任何一个企业来说,发展一个新的客户的成本要远远高于留住一个来客户的成本。在客户保留的`过程中,对客户档案流失原因的分析至关重要,因此,采用挖掘技术对其进行分析是必要的。

  2.3分类法

  通过计算机挖掘技术对档案进行分类,按照不同的性质进行系统的划分,将所有相似或相通的档案进行整理,在人们需要的时候,能够快速的被提取出来,提高了检索的效率和分类的专业性。

  3、档案管理引入计算机挖掘技术的必要性

  计算机挖掘技术的应用,对档案管理方式的不断完善有着极其重要的意义,其重要性主要体现在:

  3.1对档案的保护更全面

  一部分具有历史意义的档案,随着保存的时间不断增加,其年代感加强,意义和价值增大。相应的,利用的频率会随着利用的价值增加,也更容易被损坏从而导致档案信息寿命折损,此外,管理不当造成泄密,使档案失去了原本的利用价值,这种存在于档案管理和利用之间的矛盾,使得档案管理面临着巨大的难题。挖掘技术的运用,缓解了这种矛盾,在档案管理工作中具有重要的意义。

  3.2提升档案管理的质量

  在档案信息管理系统中引入计算机挖掘技术,使得档案信息管理打破了传统的模式,通过挖掘技术,对管理的模式有了极大的创新,工作人员以往繁重的工作压力得到释放,时间和精力更加丰富,在对档案管理的细节方面也就更加注意,同时也加快了对档案的数据信息进行处理的速度,提升档案管理的整体质量。

  4、结语

  综上所述,计算机数据挖掘技术涉及的内容很广,对挖掘技术的运用,使得各行各业的发展水平得到了很大的提高,推动社会经济的发展,带动社会发展模式的创新。在档案管理中使用计算机挖掘技术,使得档案信息保存的方法及安全性有了很大的提高。同时,也需要档案信息管理人员在进行档案信息管理的时候,能合理利用计算机信息挖掘技术,在提高工作效率的同时,促进管理模式的不断创新,以适应时代发展的要求。

数据挖掘论文6

  摘 要:数据挖掘技术在各行业都有广泛运用,是一种新兴信息技术。而在线考试系统中存在着很多的数据信息,数据挖掘技在在线考试系统有着重要的意义,和良好的应用前景,从而在众多技术中脱颖而出。本文从对数据挖掘技术的初步了解,简述数据挖掘技术在在线考试系统中成绩分析,以及配合成绩分析,完善教学。

  关键词:数据挖掘技术;在线考试;成绩分析 ;完善教学

  随着计算机网络技术的快速发展,计算机辅助教育的不断普及,在线考试是一种利用网络技术的重要辅助教育手段,其改革有着重要的意义。数据挖掘技术作为一种新兴的信息技术,其包括了人工智能、数据库、统计学等学科的内容,是一门综合性的技术。这种技术的主要特点是对数据库中大量的数据进行抽取、转换和分析,从中提取出能够对教师有作用的关键性数据。将其运用于在线考试系统中,能够很好的处理在线考试中涉及到的数据,让在线考试的实用性和高效性得到进一步的增强,帮助教师更加快速、完整的统计考试信息,完善教学。

  1.初步了解数据挖掘技术

  数据挖掘技术是从大量数据中"挖掘"出对使用者有用的知识,即从大量的、随机的、有噪声的、模糊的、不完全的实际应用数据中,"挖掘"出隐含在其中但人们事先却不知道的,而又是对人们潜在有用的信息与知识的整个过程。

  目前主要的商业数据挖掘系统有SAS公司的Enterprise Miner,SPSS公司的Clementine,Sybas公司的Warehouse Studio,MinerSGI公司的Mineset,RuleQuest Research公司的See5,IBM公司的Intelligent,还有 CoverStory, Knowledge Discovery,Quest,EXPLORA, DBMiner,Workbench等。

  2.数据挖掘在在线考试中的主要任务

  2.1数据分类

  数据挖掘技术通过对数据库中的数据进行分析,把数据按照相似性归纳成若干类别,然后做出分类,并能够为每一个类别都做出一个准确的描述,挖掘出分类的规则或建立一个分类模型。

  2.2数据关联分析

  数据库中的数据关联是一项非常重要,并可以发现的知识。数据关联就是两组或两组以上的数据之间有着某种规律性的联系。数据关联分析的作用就是找出数据库中隐藏的联系,从中得到一些对学校教学工作管理者有用的信息。就像是在购物中,就可以通过顾客的购买物品的联系,从中得到顾客的购买习惯。

  2.3预测

  预测是根据已经得到的数据,从而对未来的情况做出一个可能性的分析。数据挖掘技术能自动在大型的数据库中做出一个较为准确的分析。就像是在市场投资中,可以通过各种商品促销的数据来做出一个未来商品的促销走势。从而在投资中得到最大的`回报。

  3.数据挖掘的方法

  数据挖掘技术融合了多个学科、多个领域的知识与技术,因此数据挖掘的方法也呈现出很多种类的形式。就目前的统计分析类的数据挖掘技术的角度来讲,光统计分析技术中所用到的数据挖掘模型就回归分析、逻辑回归分析、有线性分析、非线性分析、单变量分析、多变量分析、最近邻算法、最近序列分析、聚类分析和时间序列分析等多种方法。数据挖掘技术利用这些方法对那些异常形式的数据进行检查,然后通过各种数据模型和统计模型对这些数据来进行解释,并从这些数据中找出隐藏在其中的商业机会和市场规律。另外还有知识发现类数据挖掘技术,这种和统计分析类的数据挖掘技术完全不同,其中包括了支持向量机、人工神经元网络、遗传算法、决策树、粗糙集、关联顺序和规则发现等多种方法。

  4.数据挖掘在考试成绩分析中的几点应用

  4.1运用关联规则分析教师的年龄对学生考试成绩的影响

  数据挖掘技术中的关联分析在教学分析中,是一种使用频繁,行之有效的方法,它能挖掘出大量数据中项集之间之间有意义的关联联系,帮助知道教师的教学过程。例如在如今的一些高职院校中,就往往会把学生的英语四六级过级率,计算机等级等,以这些为依据来评价教师的教学效果。将数据挖掘技术中的关联规则运用于考试的成绩分析当中,就能够挖掘出一些对学生过级率产生影响的因素,对教师的教学过程进行重要的指导,让教师的教学效率更高,作用更强。

  还可以通过关联规则算法,先设定一个最小可信度和支持度,得到初步的关联规则,根据相关规则,分析出教师的组成结构和过级率的影响,从来进行教师队伍的结构调整,让教师队伍更加合理。

  4.2采用分类算法探讨对考试成绩有影响的因素

  数据挖掘技术中的分类算法就是对一组对象或一个事件进行归类,然后通过这些数据,可以进行分类模型的建立和未来的预测。分类算法可以进行考试中得到的数据进行分类,然后通过学生的一些基本情况进行探讨一些对考试成绩有影响的因素。分类算法可以用一下步骤实施:

  4.2.1数据采集

  这种方法首先要进行数据采集,需要这几方面的数据,学生基本信息(姓名、性别、学号、籍贯、所属院系、专业、班级等)、学生调查信息(比如学习前的知识掌握情况、学习兴趣、课堂学习效果、课后复习时间量等)、成绩(学生平常学习成绩,平常考试成绩,各种大型考试成绩等)、学生多次考试中出现的易错点(本次考试中出现的易错点,以往考试中出现的易错点)

  4.2.2数据预处理

  (1)数据集成。把数据采集过程中得到的多种信息,利用数据挖掘技术中的数据库技术生产相应的学生考试成绩分析基本数据库。(2)数据清理。在学生成绩分析数据库中,肯定会出现一些情况缺失,对于这些空缺处,就需要使用数据清理技术来进行这些数据库中数据的填补遗漏。例如,可以采用忽略元组的方法来删除那些没有参加考试的学生考试数据已经在学生填写的调查数据中村中的空缺项。(3)数据转换。数据转换主要功能是进行进行数据的离散化操作。在这个过程中可以根据实际需要进行分类,比如把考试成绩从0~59的分到较差的一类,将60到80分为中等类,81到100分为优秀等。(4)数据消减。数据消减的功能就是把所需挖掘的数据库,在消减的过程又不能影响到最终的数据挖掘结果。比如在分析学生的基本学习情况的影响因素情况中,学生信息表中中出现的字段很多,可以选择性的删除班别、籍贯等引述,形成一份新的学生基本成绩分析数据表。

  4.2.3利用数据挖掘技术,得出结论

  通过数据挖掘技术在在线考试中的应用,得出这些学生数据的相关分析,比如说学生考试中的易错点在什么地方,学生考试成绩的自身原因,学生考试成绩的环境原因,教师队伍的搭配情况等等,从中得出如何调整学校教学资源,教师的教学方案调整等等,从而完善学校对学生的教学。

  5.结语

  数据挖掘技术在社会各行各业中都有一定程度的使用,基于其在数据组织、分析能力、知识发现和信息深层次挖掘的能力,在使用中取得了显著的成效,但数据挖掘技术中还存在着一些问题,例如数据的挖掘算法、预处理、可视化问题、模式识别和解释等等。对于这些问题,学校教学管理工作者要清醒的认识,在在线考试系统中对数据挖掘信息做出合理的使用,让数字挖掘技术在在线考试系统中能够更加有效的发挥其长处,避免其在在线考试系统中的的缺陷。

  参考文献:

  [1]胡玉荣.基于粗糙集理论的数据挖掘技术在高校学生成绩分析中的作用[J].荆门职业技术学院学报,20xx,12(22):12.

  [2][加]韩家炜,堪博(Kam ber M.) .数据挖掘:概念与技术(第2版)[M]范明,译.北京:机械工业出版社,20xx.

  [3]王洁.《在线考试系统的设计与开发》[J].山西师范大学学报,20xx(2).

  [4] 王长娥.数据挖掘技术在教育中的应用[J].计算机与信息技术,20xx(11)

数据挖掘论文7

  1.软件工程数据的挖掘测试技术

  1.1代码编写

  通过对软件数据进行分类整理,在进行缺陷软件的排除工作以后,根据软件开发过程中的各种信息进行全新的代码编写。基于代码编写人员的编写经验,在一般情况,对结构功能与任务类似的模块进行重新编写,这些重新编写的模块应遵循特定的编写规则,这样才能保证代码编写的合理有效性。

  1.2错误重现

  代码编写完成以后开发者会将这些代码进行版本的确认,然后将正确有效的代码实际应用到适当版本的软件中去。而对于存在缺陷的代码,开发者需要针对代码产生缺陷的原因进行分析,通过不但调整代码内的输入数据,直到代码内的数据与程序报告中的描述接近为止。存在缺陷的代码往往会以缺陷报告的形式对开发者予以说明,由于缺陷报告的模糊性,常常会误导开发者,进而造成程序设计混乱。

  1.3理解行为

  软件开发者在设计软件的过程中需要明确自己设计软件中每一个代码的内容,同时还需要理解其他开发者编写的代码,这样才能有效地完善软件开发者的编写技术。同时,软件开发者在进行代码编写的过程中,需要对程序行为进行准确的理解,以此保证软件内文档和注释的准确性。

  1.4设计推究

  开发者在准备对软件进行完善设计的过程中,首先需要彻底了解软件的总体设计,对软件内部复杂的系统机构进行详细研究与分析,充分把握软件细节,这有这样才能真正实现软件设计的合理性与准确性。

  2.软件工程数据挖掘测试的有效措施

  2.1进行软件工程理念和方法上的创新

  应通过实施需求分析,将数据挖据逐渐演变成形式化、规范化的需求工程,在软件开发理念上,加强对数据挖掘的重视,对软件工程的架构进行演化性设计与创新,利用新技术,在软件开发的过程中添加敏捷变成与间件技术,由此,提高软件编写水平。

  2.2利用人工智能

  随着我国科学技术的不断发展与创新,机器学习已经逐渐被我国各个领域所广泛应用,在进行软件工程数据挖掘技术创新的.过程中,可以将机器学习及数据挖掘技术实际应用于软件工程中,以此为我国软件研发提供更多的便捷。人工智能作为我国先进生产力的重要表现,在实际应用于软件工程数据的挖掘工作时,应该利用机器较强的学习能力与运算能力,将数据统计及数据运算通过一些较为成熟的方法进行解决。在软件工程数据挖掘的工作中,合理化的将人工智能实际应用于数据挖掘,以此为数据挖掘提供更多的开发测试技术。

  2.3针对数据挖掘结果进行评价

  通过分析我国传统的软件工程数据挖掘测试工作,在很多情况下,传统的数据挖掘测试技术无法做到对发掘数据的全面评价与实际应用研究,这一问题致使相应的软件数据在被发掘出来以后无法得到有效地利用,进而导致我国软件开发工作受到严重的抑制影响。针对这一问题,数据开发者应该利用挖掘缺陷检验报告,针对缺陷检验的结果,制定相应的挖掘结构报告。同时,需要结合软件用户的体验评价,对挖掘出的数据进行系统化的整理与分析,建立一整套严谨、客观的服务体系,运用CodeCity软件,让用户在的体验过后可以对软件进行评价。考虑到软件的服务对象是人,因此,在软件开发的过程中要将心理学与管理学应用于数据挖掘,建立数据挖掘系统和数据挖掘评价系统。

  3.结束语

  综上所述,由于软件工程数据挖掘测试技术广阔的应用前景,我国相关部门已经加大了对软件技术的投资与开发力度,当下,国内已经实现了软件工程的数据挖掘、人工智能、模式识别等多种领域上的发展。

数据挖掘论文8

  摘要:随着计算机信息网络的快速发展,数据挖掘在软件工程中的地位越来越突出。软件工程数据挖掘是在冗余的数据中发现有用的数据,从而得到更好地利用。社会的发展,科技的进步使得社会进入了网络信息热时代,随之计算机软件也不断增加,人们获取的信息大部分是人手动操作软件获得的,这样的信息量具有一定的局限性。因此,为了满足当今社会的需要,必须借助于软件工程数据挖掘的手段。

  关键词:软件工程;数据挖掘;研究现状

  中图分类号:TP311 文献标识码:A 文章编号:1009-3044(20xx)26-0020-02

  利用数据挖掘技术对大量冗余的数据进行筛选从而得到少量精确的信息。冗余的数据是指既包含有用信息有包含无用信息,利用数据挖掘技术剔除掉多余的无用信息留下有用信息,这样既可以提高手机数据的质量又可以提高工作效率。所以,数据挖掘技术在当前的软件工程中起着越来越重要的作用。数据挖掘技术提取、筛选、分析和整理数据比人工操作软件获得的数据更精确更高效。同时,使用这种技术为软件开发者提供了有利的条件,它可以给软件开发者提供一些对其开发软件有用的信息。软件开发者想要更有效率的开发出更高质量的软件,就必须获得更多的更有用的数据,而想要收集和整理出有用数据就需要借助数据挖掘技术来实现,进而提高工作效率。

  1 数据挖掘的基本概述

  软件工程数据主要是指开发软件过程中所涉及的各类数据,如需求分析、可行性分析、设计等文档,开发商通信、软件注释、代码、版本、测试用例和结果、使用说明、用户反馈等信息数据,一般情况下其是软件开发者获取软件数据的唯一来源;而数据挖掘是指在海量数据中集中发现有用知识或信息的过程。

  软件工程数据挖掘的工作原理 主要包括数据预处理阶段、挖掘阶段以及评估阶段三个方面。在挖掘阶段主要是运用分类、统计、关联、聚类、异常检测等一系列算法的过程。在评估阶段数据挖掘的意义主要在于其结果应易被用户理解,其结果评估主要有两个环节分别是模式过滤和模式表示。

  数据挖掘在计算机软件工程中的研究相当多,它是分析数据的一种新颖方式。目前,随着社会工作的复杂度,需要更加完善的软件,因此对于软件代码的数量也在急剧增加进而导致了数据量的快速增长。而传统的数据计算方式已经不能满足目前对于大量数据进行分析的要求,所以,研究者希望能够发掘出一种新的数据分析方式更高效的整理出有用的数据信息。软件开发中会积累大量的数据,比如说文本数据,测试数据,用户信息数据以及用户体验反馈数据等等,软件开发者为了开发出更好的软件就必须分析和整理这些数据。但是,目前软件工程开发的软件越来越大,其数据越累越复杂对于数据的处理已经超出了人工处理的能力的范畴,所以说继续使用传统数据处理的方式来收集,整理和分析数据已经不可能实现。因此,推动了人们对于新的数据处理方式的研究,所以才提出了软件工程数据挖掘技术。

  2 软件工程数据挖掘的应用

  随着计算机软件工程的发展,可以发现传统的数据挖掘技术具有很多的不足,存在一定的缺陷。传统的数据挖掘技术的定位系统不完善,定位不精确,并没有体现出数据挖掘技术的高性能,它不足以满足当代对于数据处理的要求,因此需要对传统的数据挖掘技术进行改进和完善,这是我们目前的首要任务之一。为了迎合现代化网络信息技术的快速发展,需要发掘出新的数据处理模式,就是在这样的背景条件下,诞生了软件工程数据挖掘技术。相比于存在很多缺陷与不足的传统软件工程而言,软件工程数据挖掘技术更加简单、方便、高效以及精确。软件工程数据挖掘技术并不需要特定的技术平台,体现了其普适性。当前,我国已经开始深入的研究软件工程数据挖掘技术,但是,仍然需要更深的开发其性能以便更好地满足社会的需求。

  3 软件工程数据挖掘面临的挑战

  软件工程数据相比于普通数据更加复杂,所以对于软件工程数据进行处理具有很大的挑战性。处理软件工程的大量数据具有:软件工程数据复杂性,软件工程的数据处理非传统以及需要严格精确的软件工程数据的分析结果等三方面的困难。

  3.1 对数据复杂性的分析

  软件工程数据包括结构化数据和非结构化数据。软件工程中所产生的缺陷报告以及各种版本信息构成了结构化数据信息;而软件工程处理过程中所产生的代码信息和文本文檔信息构成了非结构化数据信息。由于这两类数据包含的具体内容不同,所以需要分别处理这两种数据,需要使用不同的算法对他们进行处理。虽然说需要不同方式处理这两种数据但是并不表示这两种数据之间没有任何联系,事实上,它们之间存在着重要的对应关系。例如:代码中存在着缺陷报告,版本信息中存在着对应的文档信息,由于它们之间存在着这样的对应关系,所以使得人们不能很好地对其进行整体分析,这就促使了人们开发出一种新的算法,新的数据分析技术能够同时将结构化信息和非结构化信息这两种对应数据一起挖掘出来。

  3.2 对数据处理非传统的分析

  分析和评估软件工程数据挖掘出来的信息,这是数据挖掘过程的最后一步。客户是软件工程数据挖掘数据处理的最后宿体,软件开发者需要对最终挖掘出来的数据进行转变,格式转变是为了满足广大客户对于数据不同的要求。但是,由于需要对数据进行格式转变,相当于增加了一定的工作量,那么软件工程数据挖掘的效率则会被大大降低。对于客户而言,他们需要的信息各种各样并不单一,比如说客户可能会同时需要具体的例子和编程代码等;或者说需要具体例子和缺陷报告等;或者三者皆需要。由此可见,我们仍然需要改进和完善软件工程数据挖掘技术来提高其效率。怎样才能做到让客户得到满意的数据挖掘结果呢?那么就需要高效的数据挖掘技术将各类信息进行归纳总结,改变其格式。这样的技术,不仅仅可以满足客户需求而且还可以使软件开发者从中得到更大的利益。

  3.3 对数据挖掘结果好坏的评价标准

  对于传统的数据挖掘技术而言,它也有一套自己的对于数据结果处理好坏的分析标准,而这个标准对于传统数据挖掘技术数据处理的分析较准确。但是,在当前的软件工程所要处理的数据量很大,传统的评价标准已经不能满足现在的数据分析要求;使用不同的数据结果评价标准来评判不同的数据挖掘结果。然而不同的评价标准之间的联系并不紧密,因此就需要开发者针对不同的数据类型做出不同的评价分析标准以便满足客户需求。想要对数据分析结果是否准确,数据挖掘的信息是否合理等等这些不同的问题进行更加深刻的.了解,就要求开发者有独特的见解,对于数据结果是否精确有一定的判断能力。总之,获取准确的信息就是软件工程数据挖掘的目的。所以,最后获得的数据是否满足要求就是评判软件工程数据挖掘结果是否完美的标准。endprint

  4 对软件工程数据挖掘应用进行分析

  4.1 对软件数据挖掘技术进行分析

  在软件开发的过程中,数据挖掘技术包括两个方面:(1)程序编写;(2)程序成果。在这个过程中,程序结构和程序功能技术的主要作用就是检索出有效的信息。提升信息的有效性需要联系到客户的实际需要,同时也需要对程序编写过程进行智能化培训。将调用、重载和多重继承等关系家合起来进行有效的记录各种相关信息,重视静态规则的同时利用递归测试的方式来分配工作,从而更有效的掌握关联度之间的可信性。

  4.2 做好软件维护中的软件工程数据挖掘工作

  在软件维护的过程中,软件修复和软件改善工作依赖于数据挖掘技术。数据挖掘技术在软件缺陷以及软件结构等也起到了重要的作用。软件修复即维护者通过依据缺陷分派进行有效的评估并改善缺陷程序进而确定修复级别或者维护者可以选择缺陷修复方式,无论哪种方式最终目的都是进行软件修复来保证数据挖掘的高效性。缺陷分派即将缺陷转化为文本类型,采取有效措施来进行修复。但是,这样的方式它的实际准确率并不高,因而需要利用强化检测来完善缺陷报告技术。

  4.3 注重高性能数据挖掘技术开发工作

  数据挖掘技术体现在软件开发工作中的创新性不可或缺,在实际的工作过程中,目前的软件工程数据挖掘更加重视两个工作:(1)规则分析方式;(2)项目检索工作。总而言之,想要高效快速地寻找病毒,并对其进行全方位分析和评估得到准确的病毒数据需要高性能数据挖掘技术。只有提升数据分析的可行性,提升软件开发安全性能,才能更好地实现软件工程的良好发展。

  5 总结

  综上所述,數据挖掘技术的应用非常广泛,比如说分析代码、软件故障检测以及软件项目管理等三个方面应用较多。值得关注的是,当前对于数据挖掘技术的研究还不够成熟。因此,研究者需要对软件工程数据挖掘技术进行深入的研究,从而能够促进软件更好地开发和管理。相信在不久的将来,我们一定可以在数据挖掘方面取得非常好的优化效果。

  参考文献:

  [1] 江义晟.软件工程数据挖掘研究进展[J].电子技术与软件工程,20xx(22).

  [2] 胡金萍.探析软件工程数据挖掘研究进展[J].电脑知识与技术,20xx(34).

  [3] 马保平.关于对软件工程中的数据挖掘技术的探讨[J].电子技术与软件工程,20xx(19).

  [4] 徐琳,王宁.数据挖掘技术在软件工程中的应用分析[J].数字通信世界,20xx(8).

数据挖掘论文9

  摘要:中医临床理论多是由著名医家的经验升华形成的,反映了临床上不同学术派系以及不同学科的优势特征,但这其中不免掺杂了个人主观经验,因此本文就中医临床理论研究中医病案为基础,对应用病案数据挖掘结果来总结和重建中医临床理论的方式进行了探讨,认为该方法可为完善中医临床理论提供客观的数据支持,使中医临床理论的来源更具有科学性。

  关键词:病案;数据挖掘;中医临床理论;转化医学;临床

  科研一体化中医临床理论决定着中医临床学科的发展水平,是中医临床发展的动力。从古至今,中医名医名家辈出,他们的临床经验和学术思想不断提炼升华,逐步形成了传统的中医临床理论。新中国成立以来,中医不断汲取最新的科技成果,进行了大量临床实践,而中医临床理论发展缓慢,己经成为制约当代中医学术发展的瓶颈,对如何开拓中医临床理论的研究,可谓见仁见智,但各种新的临床理论常常裹挟着“各家学说”。在当今大数据和信息技术发达的背景下,运用数据挖掘技术对中医病案进行大数据分析,客观揭示当前中医临床理论的本来面目,尽可能减少个人见解的偏倚,对于推动中医临床理论发展具有重要的现实意义,本文就基于病案数据挖掘的中医临床理论重建进行探讨如下。

  1传统中医临床理论的构建框架

  1.1中医古典文献是传统中医临床理论的基础

  众所周知,中医之所以能够屹立千年不倒,很大一部分原因是因为其有独特的理论体系,而在这其中,中医古典文献做出的贡献应该是第一位的。因为这些古典文献的记载和流传,为后世的医家提供了参考和借鉴,使得我们从前人的思维上不断创新,与临床进行有机结合,不断研究出新的适合于当前时代的临床理论。例如,中医学无论在理论研究还是在临床治疗方面的丰富,许多根本性的理论都是源自于《内经》。该书创立了藏象、经络、诊法等各方面的理论[1],勾画了中医理论的雏形,构建了中医理论体系的基本框架。到后期东汉时期张仲景的《伤寒论》则是创造了以六经辨证和脏腑辨证为主的局面,其所倡导的“观其脉证,知犯何逆,随证治之”使得辨证论治登上新的高度。到了金元时期,就是百家争鸣的时代,这期间以金元四大家为主的学派开始萌生,留下了许多可供后世医家参考的古典文献并创建了不同的临床理论,而明清时期以叶天士和吴鞠通为首确立的卫气营血和三焦辨证,使温病学的辨证理论逐步趋于完善,至今仍是指导临床治疗温热病的理论依据。总之,传统中医临床理论的构建和完善,离不开前人的摸索与贡献,也得益于著名医学家创建的传统中医理论,使得我们现在的中医体系不断的饱满和充实。

  1.2当代著名中医的临床经验不断提升为中医临床理论

  传统中医的临床理论,在很大程度上展示着著名医家的临床经验。在中医理论与实践发展的相互促进过程中,当代医家通过读书、临证、心悟将实践经验不断总结并升华为理论,又在实践中不断完善既有的理论,成为中医理论发展的重要途径和模式,而当代中医理论的发展则需要将传统理论与现代实践相互融合起来。例如上世纪60年代时,面对中医基础理论中新的思想相对匮乏的这一局面,邓铁涛结合其治疗的临床经验,首次提出了“五脏相关学说”。尽管当时的理论准备并不完善,但是这一理论的提出,在很大程度上完善并且取代了“五行学说”中某些模糊性和不确定性,并且随着时代的发展,逐渐验证了邓老的这一经验的正确性,也成为指导中医临床理论的一大重要体系[2]。又如,脑出血这一现代疾病在古代名为中风,多数是“从风而治”,认为肝脏与中风的关系最为密切。随着时代的推进,自20世纪80年代以来,许多学者根据微观辨证和中医理论“离经之血便是瘀”,提出急性出血中风属中医血证,瘀血阻滞是急性期脑出血的最基本病机,是治疗的关键所在[3]。故现代中医临床治疗上多以活血化瘀法治疗脑出血、脑梗塞这一系列疾病。若是仔细研读传统中医临床理论后,我们不难得出其构成和完善离不开当代著名医家的临床经验,它是在历经岁月的洗礼下不断塑造成型的。

  1.3传统中医临床理论不断将现代医学相关内容中医化

  传统中医临床理论不断吸收现代医学的理论,将其相关内容不断中医化,将病人的各种证型通过五脏辨证、阴阳五行辨证以及八纲辨证划分得越来越细化,以提供病人在中医临床上治疗的理论依据。中医吸取了现代医学理论后正在不断壮大其内容,现代医学相关内容中医化在许多难治疾病的辨证治疗中都起到了良好的指导作用[4]。如艾滋病是古代传统中医辨证论治的空白,通过对艾滋病中医病因病机、证候规律、治法方药的系统研究,提出了“艾毒伤元”“脾为枢机”“气虚为本”的病因病机学说,确立了艾滋病“培元解毒”“益气健脾”的治疗原则,为中医药防治艾滋病奠定了理论基础,为进一步提高艾滋病的中医药临床诊疗效果提供理论依据[5]。

  2当前中医临床理论发展存在的不足

  2.1中医主流理论不突出且与时俱进力度不够

  不可否认的是,当代的中医临床理论发展也是存在诸多不足的,中医理论的完善和发展是中华五千年来集体智慧的结晶,个别医家提出的临床理论可能各有千秋,其所立的角度和思维也不尽相同。例如,同是治疗输卵管阻塞这一疾病时,朱南孙教授认为多是由于湿蕴冲任所致,其用自拟的清热利湿方来进行治疗;而李广文教授则认为这一疾病多是由于瘀血阻络为主,治疗上以活血祛瘀为法,拟通任种子汤进行治疗[6]。又如对于“和解法”这一治疗方法的理解,当代名医蒲辅周老先生认为“寒热并用,补泻合剂,表里双解,苦辛分消,调和气血,皆谓和解”。而方和谦教授则认为“在治法上扶正祛邪,表里兼顾,此法就为和解法”。不同的医家在面对不同的疾病,甚至是不同的理法方药时,所持的看法常常是“各家学说”,这就导致了当前中医临床理论发展比较混乱,不能全面地体现中国五千年来发展过程中的中医主流理论。目前中医基础理论还存在一个缺陷就是它的与时俱进力度还不够,很多古代经典方药的主治病症,在当今时代已经不再多见了。比如蛔虫导致的蛔厥这一致病因素在现代已经不再常见,对应的乌梅丸的主要适应病症也不再是蛔厥;在针对没有明显临床表现的疾病如乙肝时,按传统中医往往体现出“无证可治”的状态;传统的诊断与现代检查相结合的力度也不够,中医临床基础理论在某些程度上忽略了其与生化、B超、X光、CT等现代检查结果的结合,并没有用中医理论对其做一合理的陈述;且现在临床上很多中药的药理作用、性味归经的研究作用还不够深入、细致,其作用不能在微观上得以解释。这些都导致了临床上很多情况没有从中医理论来认识中医,不是“以中解中”,而是“以西解中”,形成了临床抛弃中医理论的状态[7]。由于中医学是一门实践性很强的学科,它是在哲学辨证的思想指导下,与临床经验不断结合,这与西医知识体系相比较,难免存在一定的滞后性,这都会使得中医临床理论发展相对的落后。

  2.2部分中医理论带有权威专家的“个人学说”偏见

  传统中医强调个人经验和学说,以中医内科学为例,第八版中的脑系疾病在第九版中已经删除,其涉及到的各种脑系疾病大多数归属于心系疾病与肝系疾病。根据其版本的不同,我们可以明显看出其凸显的中心内容及其思想不同,其多是体现编著者的理论思想,在一定程度上并没有客观地揭示疾病的本质,治疗理论也不够完善,一部分内容与最新研究得出的论文理论不符,这使得当代中医临床理论在某些程度上,带有权威专家的“个人学说”色彩。由于现代西方先进的科技文化流入,使得中医在一定程度上备受质疑,而正是因为人们对于中医理论的一些偏见,才使得中医长期让人诟病。

  3新的时代背景下中医临床理论发展方向

  3.1临床理论应具有真实性与系统性

  中医临床理论的发展方形应当是建立在客观并且真实的临床实践基础上,从一次次临床实践中得出。由于历史时代的原因以及假设推理、模式建设的广泛使用,当代中医临床理论中理论与假说并存的现象较为普遍,如中医的五运六气学说对现代疫病预测和人体各经络脏腑在时间上对于人体治病效果的`不同等,就需要我们在扎实的文献与临床实践基础上,对医案进行认真总结,利用科学的方法深入挖掘,开展中医理论的去伪存真研究,以促进中医理论的科学与健康发展。另外,传统的中医临床治疗上所用的理法方药,多是根据个人经验所进行的。随着科技的不断发展与时代的不断进步,当代的中医临床理论应该在成功的中医医案上进行系统的总结,不断挖掘和研究其微观的结构,并随着年月的更迭不断更新,不断完善,使其具有科学性和理论依据。同时,对近年来兴起的传染性非典型肺炎、艾滋病、禽流感等古人所没有经历过的疾病的诊治,中医就其病因病机的认识以及探究相应的诊疗方法,无疑也是一种理论上的创新[8]。通过对其进行深一层次的研究和发现,归纳出合适的治则治法,找到针对这一疾病的理法方药,使其更具有系统性,使得临床上中医治病可以循序渐进,注重整体,也是当代临床理论的一大发展方向。

  3.2临床理论具有信息化的特点并可持续拓展

  随着时代的进步,当代的中医临床理论可以通过网络等方式进行共享,在大数据的这一时代背景下,随着病案的不断报道与积累,可以将各类成功的中医医案进行统计和挖掘,其结果也会不断进行更新和发展。不同的医家对于某一疾病的认识角度可能不同,其表现在病位、病性、病势和证候的判断标准也不一样,因此方药规律也不一样。而通过统计某一中医或西医疾病的较大样本病例,并对其进行数据挖掘,可以得出整个中医群体对于这一疾病诊治的证候分布、治则治法、处方用药等的规律,甚至可以根据统计的结果探索出新的方药,分析他们的共同点和所在差异。将中医临床理论具有信息化的这一特点不断地拓展下去,通过计算机等客观科学的手段进行分析,与主观的名老中医传承模式相比,更具客观性,更容易被临床医生接受,对各种疾病的中医临床用药也更具有指导价值。

  4基于病案数据挖掘的中医临床理论重建

  4.1病案研究是中医理论发展的重要基础

  在当今大数据的时代背景下,中医固有的传统整体论科学特征有了越来越多的可供改变的空间。这种变化既为其按照自身特有的规律发展特点带来了机遇,也给未来中医理论的发展提出了挑战。同时,学习医案研究也是中医学相关大学生们应该学习的一项内容。阅读医案是必要的训练,也是中医入门的方法之一。医案的故事性引人入胜,在自然而然中接受中医思维方法和传统文化知识,同时医案中所呈现的名医风范,医德对学生起到潜移默化的影响,并培养对专业的热爱[9]。病案客观、真实地直接记录疾病诊断和治疗过程,医案研究作为中医理论发展过程中至关重要的一环,是中医理论发展的重要基础,以研究病案为基础,对于中医理论的形成和临床上中医积累经验,都起到了一定的辅助提升作用。

  4.2数据挖掘方法是中医理论发展的现代技术手段

  利用多种数据挖掘技术对中医病案中的有关信息行进行归纳、整理,是近年来传承中医临床经验的重要方法之一[10]。通过对同一种疾病的病案进行数据挖掘以分析医者的思路和探索其用药的方法,对中医临床病案进行规范化的整理,能够深入总结其临床经验,挖掘隐藏在大量病案背后的诊治规律,甚至探索出新的方药配伍,为中医理论的发展提供一定的科学依据的同时,使得中医理论的发展越来越现代化,不仅仅只是停留在以前的靠读书和个人经验的结合,也为广大的中医在日后的临床治疗上提供了新的思路和方向。

  4.3临床实践推动理论发展,赋予转化医学新的内涵

  目前,我们通过并按数据挖掘来总结一些中医对于治疗同一种疾病所采取的诊断和用药,可以获得新的思路,并且为完善我们现有的中医理论基础可以提供可靠的理论支持。采用数据挖掘技术对中医学术思想和临证经验进行研究,可以全面解析其中的规律,分析中医个体化诊疗信息特征,提炼出临证经验中蕴藏的新理论、新力法,可以实现经验的有效总结与传承[11]。与此同时,要求我们用发展的眼光将现代的科技手段整合加入到传统的中医学理论中去,推陈出新,通过临床实践与基础理论的不断结合,不断完善,推动祖国医学现代化,谱写有关于中医学在转化医学上新的篇章。

  参考文献

  [1]刘向哲.中医理论创新与发展的基础和机遇[J].中医学报,2010,25(5):884-885.

  [2]邱仕君,吴玉生.在基础理论与临床医学之间———对邓铁涛教授五脏相关学说的理论思考[J].湖北民族学院学报(医学版),2005,22(2):36-39.

  [3]顾宁,周仲英.通下法治疗急性脑出血研究进展[J].中国中医急诊,2000,9(5):227.

  [4]靳士英.邓铁涛教授学术成就管[J].现代医院,2004(9):1-6.

  [5]许前磊,徐立然,郭会军,等.艾滋病发病与防治中医理论的初步构建[J].中医杂志,2015,56(11):909-911.

  [6]张少聪,周伟生.名老中医验方治疗输卵管阻塞性不孕症概况[J].中华中医药学刊,2010(3):489-491.

  [7]孟静岩,应森林.试论中医基础理论指导临床研究的思考与途径[J].上海中医药大学学报,2009(3):3-5.

  [8]邢玉瑞.新形势下中医理论发展的思考[J].中医杂志,2016,57(18):1540-1542.

  [9]卢峰,聂达荣,彭美玉,等.中医内科学应用名老中医病案教学法的探索[J].中国中医药现代远程教育,2014(18):80-82.

  [10]郭军.基于数据挖掘分析前名老中医病案整理的思路与方法[J].中医药信息,2011,28(2):49-50.

  [11]吴嘉瑞,唐仕欢,郭位先,等.基于数据挖掘的名老中医经验传承研究述评[J].中国中药杂志,2014,39(4):614-617.

数据挖掘论文10

  [1]刘莹.基于数据挖掘的商品销售预测分析[J].科技通报.20xx(07)

  [2]姜晓娟,郭一娜.基于改进聚类的电信客户流失预测分析[J].太原理工大学学报.20xx(04)

  [3]李欣海.随机森林模型在分类与回归分析中的应用[J].应用昆虫学报.20xx(04)

  [4]朱志勇,徐长梅,刘志兵,胡晨刚.基于贝叶斯网络的客户流失分析研究[J].计算机工程与科学.20xx(03)

  [5]翟健宏,李伟,葛瑞海,杨茹.基于聚类与贝叶斯分类器的网络节点分组算法及评价模型[J].电信科学.20xx(02)

  [6]王曼,施念,花琳琳,杨永利.成组删除法和多重填补法对随机缺失的二分类变量资料处理效果的比较[J].郑州大学学报(医学版).20xx(05)

  [7]黄杰晟,曹永锋.挖掘类改进决策树[J].现代计算机(专业版).20xx(01)

  [8]李净,张范,张智江.数据挖掘技术与电信客户分析[J].信息通信技术.20xx(05)

  [9]武晓岩,李康.基因表达数据判别分析的随机森林方法[J].中国卫生统计.20xx(06)

  [10]张璐.论信息与企业竞争力[J].现代情报.20xx(01)

  [11]杨毅超.基于Web数据挖掘的作物商务平台分析与研究[D].湖南农业大学20xx

  [12]徐进华.基于灰色系统理论的数据挖掘及其模型研究[D].北京交通大学20xx

  [13]俞驰.基于网络数据挖掘的.客户获取系统研究[D].西安电子科技大学20xx

  [14]冯军.数据挖掘在自动外呼系统中的应用[D].北京邮电大学20xx

  [15]于宝华.基于数据挖掘的高考数据分析[D].天津大学20xx

  [16]王仁彦.数据挖掘与网站运营管理[D].华东师范大学20xx

  [17]彭智军.数据挖掘的若干新方法及其在我国证券市场中应用[D].重庆大学20xx

  [18]涂继亮.基于数据挖掘的智能客户关系管理系统研究[D].哈尔滨理工大学20xx

  [19]贾治国.数据挖掘在高考填报志愿上的应用[D].内蒙古大学20xx

  [20]马飞.基于数据挖掘的航运市场预测系统设计及研究[D].大连海事大学20xx

  [21]周霞.基于云计算的太阳风大数据挖掘分类算法的研究[D].成都理工大学20xx

  [22]阮伟玲.面向生鲜农产品溯源的基层数据库建设[D].成都理工大学20xx

  [23]明慧.复合材料加工工艺数据库构建及数据集成[D].大连理工大学20xx

  [24]陈鹏程.齿轮数控加工工艺数据库开发与数据挖掘研究[D].合肥工业大学20xx

  [25]岳雪.基于海量数据挖掘关联测度工具的设计[D].西安财经学院20xx

  [26]丁翔飞.基于组合变量与重叠区域的SVM-RFE方法研究[D].大连理工大学20xx

  [27]刘士佳.基于MapReduce框架的频繁项集挖掘算法研究[D].哈尔滨理工大学20xx

  [28]张晓东.全序模块模式下范式分解问题研究[D].哈尔滨理工大学20xx

  [29]尚丹丹.基于虚拟机的Hadoop分布式聚类挖掘方法研究与应用[D].哈尔滨理工大学20xx

  [30]王化楠.一种新的混合遗传的基因聚类方法[D].大连理工大学20xx

  [31]杨毅超.基于Web数据挖掘的作物商务平台分析与研究[D].湖南农业大学20xx

  [32]徐进华.基于灰色系统理论的数据挖掘及其模型研究[D].北京交通大学20xx

  [33]俞驰.基于网络数据挖掘的客户获取系统研究[D].西安电子科技大学20xx

  [34]冯军.数据挖掘在自动外呼系统中的应用[D].北京邮电大学20xx

  [35]于宝华.基于数据挖掘的高考数据分析[D].天津大学20xx

  [36]王仁彦.数据挖掘与网站运营管理[D].华东师范大学20xx

  [37]彭智军.数据挖掘的若干新方法及其在我国证券市场中应用[D].重庆大学20xx

  [38]涂继亮.基于数据挖掘的智能客户关系管理系统研究[D].哈尔滨理工大学20xx

  [39]贾治国.数据挖掘在高考填报志愿上的应用[D].内蒙古大学20xx

  [ 40]马飞.基于数据挖掘的航运市场预测系统设计及研究[D].大连海事大学20xx

数据挖掘论文11

  数据挖掘技术在金融业、医疗保健业、市场业、零售业和制造业等很多领域都得到了很好的应用。针对交通安全领域中交通事故数据利用率低的现状,可以通过数据挖掘对相关交通事故数据进行统计分析,从而发现其中的关联,这对提升交通安全水平具有非常重要的意义。

  1数据挖掘技术概述

  数据挖掘(DataMining)即对大量数据进行有效的分类统计,从而整理出有规律的、有价值的、潜在的未知信息。一般来讲,这些数据存在极大的随机性和不完全性,其包括各行各业各个方面的数据。数据挖掘是一个结合了数据库、人工智能、机器学习的学科,涉及统计数据和技术理论等领域。

  2数据挖掘关联分析研究

  关联分析作为数据挖掘中的重要组成部分,其主要作用就是通过数据之间的相互关联从而发现数据集中某种未知的联系。关联分析最初是在20世纪90年代初被提出来的,一直备受关注。已被广泛应用于各行各业,包括医疗体检、电子商务、商业金融等各个领域。关联规则的挖掘一般可分成两个步骤[1]:

  (1)找出频繁项集,不小于最小支持度的项集;

  (2)生成强关联规则,不小于最小置信度的关联规则。相对于生成强关联规则,找出频繁项集这一步比较麻烦。由R.Agrawal等人在1994年提出的Apriori算法是生成频繁项集的经典算法[2]。Apriori算法使用了Level-wise搜索的迭代方法,即用k-项集探索(k+1)-项集。Apriori算法在整体上可分为两个部分。

  (1)发现频集。这个部分是最重要的,开销相继产生了各种各样的频集算法,专门用于发现频集,以降低其复杂度、提高发现频集的效率。

  (2)利用所获得的频繁项集各种算法主要致力产生强关联规则。当然频集构成的联规则未必是强关联规则,还要检验构成的关联规则的支持度和支持度是否超过它们的阈值。Apriori算法找出频繁项集分为两步:连接和剪枝。

  (1)连接。集合Lk-1为频繁k-1项集的集合,它通过与自身连接就可以生成候选k项集的集合,记作Ck。

  (2)剪枝。频繁k项集的集合Lk是Ck的子集。剪枝首先利用Apriori算法的性质(频繁项集的所有非空子集都是频繁的,如果不满足这个条件,就从候选集合Ck中删除)对Ck进行压缩;然后,通过扫描所有的事务,确定压缩后Ck中的每个候选的支持度;最后与设定的最小支持度进行比较,如果支持度不小于最小支持度,则认为该候选项是频繁的。目前,在互联网技术及科学技术的快速发展下,人工智能、机器识别等技术兴起,关联分析也被越来越多应用其中,并在不断发展中提出了大量的改进算法。

  3数据挖掘关联分析在道路交通事故原因分析当中的应用

  近年来,我国越来越多的学者将数据挖掘关联分析应用于道路交通事故的研究中,主要是分析道路、车辆、行人以及环境等因素与交通事故之间的某种联系。Pande和Abdel-Aty[3]通过关联分析研究了美国佛罗里达州20xx年非交叉口发生的道路交通事故,重点分析了各个不同的影响因素与交通事故之间的内在联系,通过研究得出如下结论,道路照明条件不足是引发道路交通事故的主要因素,除此之外,还发现天气恶劣的环境下道路弯道的直线段也极易发生交通事故。Graves[4]利用数据挖掘技术中的关联规则对欧洲道路交通事故进行了分析,主要研究了交通事故与道路设施状况之间的关联,通过研究发现了易导致交通事故发生的各个道路设施状况因素,此研究为欧洲路面建设及投资提供了强大的决策支持。我国学者董立岩在研究道路交通事故数据的文献中,将粗糙集与关联分析进行了融合,提出了基于偏好信息的决策规则简约算法并将其应用其中,通过分析发现了道路交通事故的未知规律。王艳玲通过关联分析中的因子关联树模型重点分析了影响道路交通事故最重要的因子,发现在道路交通事故常见的诱因人、车、路及环境中对事故影响最大的因子是环境。许卉莹等利用关联分析、聚类分析以及决策树分析三种数据挖掘技术对道路交通事故数据进行分析,最终得出了科学的道路交通事故预防和交通安全管理决策依据。尚威等在研究中,对大量的道路交通数据进行了有效整合,并在此基础上按照交通事故相关因素的不同特点整理出与事故发生有关的字段数据,形成新的事故数据记录表,然后再根据多维关联规则对记录的相关数据进行分析,从而发现了事故诱导因素记录字段值和事故结果字段值组成的道路交通事故频繁字段的组合。张听等在充分掌握聚类数据挖掘理论与方法的基础上,提出了多目标聚类分析框架和一个启发式的聚类算法k-WANMI,并将其用在道路交通事故的聚类研究中对不同权重的属性进行了多目标分析。同样,许宏科也利用该方法对公路隧道交通流数据进行了聚类分析,其在研究中不仅明确了隧道交通流的'峰值规律,而且还根据这种规律制订了隧道监控设备的不同控制方案,对提高隧道交通安全的水平做了极大的贡献。徐磊和方源敏在研究中,提出了由简化信息熵构造的改进C4.5决策树算法,并将其应用在交通事故数据的研究中,对交通数据进行了正确分类,发现了一些隐藏的规则和知识,为交通管理提供了依据。刘军、艾力斯木吐拉、马晓松运用多维关联规则分析交通事故记录,从而找到导致交通事故发生次数多的主要原因,并且指导相关部门作出相应的决策。杨希刚运用关联规则为现实中的交通事故的预防提供依据。吉林大学的吴昊等人,基于关联规则的理论基础,定义了公路交通事故属性模型,并结合改进后的Apriori算法,分析了交通事故历史数据信息,为有关单位和用户寻找道路黑点(即事故多发点)提供了技术支援和决策帮助。

  4结语

  通过数据挖掘中的关联分析方法虽然能够对道路交通事故的相关因素进行清晰的分析,但是目前在这一方面的研究仍有不足之处。因为关联分析在道路交通事故的研究中往往只能片面发现某一种或几种因素影响交通事故的规律,很难将所有影响因素结合起来进行全面系统的分析。然而道路交通事故的发生通常都是由相应因素导致,而后事故当事人意识到危险源的存在并采取措施,直到事故发生的连续过程,整体来看体现了时序性。也就是说,道路交通事故是受到一系列按照时间先后顺序排列的影响因素组合共同作用而发生的,从整体的角度出发研究事故发生机理更加科学。

  参考文献

  [1]杨秀萍.大数据下关联规则算法的改进及应用[J].计算机与现代化,20xx(12):23-26.

  [2]王云,苏勇.关联规则挖掘在道路交通事故分析中的应用[J].科学技术与工程,20xx(7):1824-1827.

  [3]徐磊,方源敏.基于决策树C4.5改进算法的交通数据挖掘[J].微处理机,20xx,31(6):57-59.

  [4]杨希刚.数据挖掘在交通事故中的应用[[J].软件导刊,20xx,7(26):18-20.

数据挖掘论文12

  摘要:本文简述如何将数据挖掘技术应用于图书馆各部门管理中,帮助图书馆管理者依据数据挖掘技术更好地为读者提供科学化和人性化的服务,促进图书馆事业的创新与发展。

  关键词:高校图书馆;数据挖掘;创新;发展。

  随着网络技术、计算机技术的快速发展,高校图书馆事业也顺应时变,不断向高科技、高水平领域进展,尤其是当今处于数字信息发展的时代。如果利用图书馆现有以及收集的数据资源,通过数据挖掘技术来分析、筛选对图书馆有用的数据信息,依据提炼的数据资源来指导、推进图书馆事业的创新与发展,是当今信息时代图书馆亟待研究、探讨的一个问题。本文将简述如何将数据挖掘技术应用于图书馆各部门管理之中,帮助图书馆管理者依据数据挖掘技术更好地为读者提供科学化和人性化的服务,促进图书馆的事业创新与发展。

  一、数据挖掘技术综述。

  数据挖掘定义。数据挖掘(Data Mining,DM)是一种新的信息处理技术,其主要特点是对单位、企业数据库中的大量业务数据进行抽取、转换分析和其他模型化处理,以从中提取辅助管理决策的关键性数据。数据挖掘就是从大量的、不完全的、有噪声的、模糊的和随机的数据中,提取隐含在其中的、人们事先不知道的但又是潜在有用的信息和知识的过程。换句话说,数据挖掘技术就是从收集的大量、繁杂的数据中挖掘出其隐含的、未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法、工具和过程。

  数据挖掘的意义。在当今的竞争时代社会中,随着计算机的飞速发展,计算机强大的数据处理能力、内存储存容量和网络宽带等价格的持续快速下降,因此大型的数据分析、提取技术不再是一个障碍。面对图书馆每天接收的庞大数据源,管理者必须学会从所拥有的大量数据信息源中提取并利用隐含在这些数据中的有用价值以及有用新信息,从而获取对图书馆事业研究领域的本质认知和未来认知,帮助图书馆管理者从传统的经验管理、主观管理提升为理性管理和科学管理。

  数据挖掘的应用分类。目前较常用的一般有分类与回归、关联规则、聚类分析、时序模式等。

  二、数据挖掘技术对图书馆事业创新与发展的影响。

  面对大量数据,如何去存储和收集数据,如何利用数据挖掘技术将图书馆海量信息数据中提取供管理者决策的有价值的数据,提取并利用隐藏在这些数据中的有用知识的能力变得越来越重要。运用数据挖掘技术从数据中获得有用的知识,这在图书馆管理方面显得尤为重要,本文将简述如何将数据挖掘技术应用于图书馆各部门工作,为今后各部门的'创新与发展提供策略分析。

  流通部门。流通部门作为图书馆的一线服务岗位,对图书馆功能的发挥起着举足轻重的作用。作为窗口形象岗位,直接体现了图书馆的整体工作状态。

  要实现从以往的经验管理、主观管理提升为科学管理和理性管理,数据挖掘技术将利用现代技术展现其独天得厚的优势。图书馆每天都会产生大量的图书流通数据,这些数据包含进、出馆读者人数,借、还书数量,检索查询次数以及网上咨询等大量繁杂的数据。在流通部门最为常用的数据就是借书、还书量,通过借书、还书数据的统计,可获取读者信息行为、借阅书兴趣导向,充分利用数据挖掘技术如关联规则、分类、聚类、时间序列分析等,对图书馆蕴含的大量丰富的用户行为进行建模,从而挖掘出有用的或有兴趣的信息和知识。如可利用这些有价值的信息,借鉴“啤酒与尿布”的经典商业案例,尝试在流通部开辟一块试验田地――搭档书架,即通过借、还书数据挖掘,将读者感兴趣、组合搭档频率高的书籍挑选出来,开辟一块搭档书架,方便读者在借用专业书籍的同时顺便也借阅自己感兴趣的图书,既学习了自己的专业知识,同时也顺便阅读了自己感兴趣的书籍,充分实现了图书馆“第二课堂”的育人价值。

  采编部门。传统的采编部门在采集书籍时大多数情况是依据采集经验或是依据各院系、读者反馈的需求书籍进行征订。大部分购买的图书还是比较适合读者所用的,但也会存在一些盲目性,有时会造成采集的偏差,这是采编部门一直比较困惑的问题。如何既将购书经费合理利用好,同时又能满足读者借阅所需,是采编部门长期探索、研究的问题。如果将数据挖掘技术运用到采编部门,通过一线的文献借阅数据,分析、挖掘、提炼读者借、还书的信息量,且一直追踪这些信息数源的变化,即可获得可被部门利用的有价值数据,并汇总出读者借、还书的规律。依据这些一线信息数源的价值,加之网上荐购及读者书面荐购等信息,汇总出哪些是读者专业常用书籍,哪些是读者感兴趣的书籍,哪些又是常年被冷落的书籍,从中提炼出书籍采集的方向;合理化的采集方案继续延用,不合理的采集要进行科学化的数据分析,及时理清思路,尽可能做到书籍采集的合理化、科学化。

  技术部门。在信息飞速发展的时代,作为图书馆负责信息网络技术的部门,其肩上的重量显得格外沉重。技术部门不但肩负着网络技术的责任,当今也要肩负起图书馆所有数据的收集、存储、挖掘及分析技术。数据挖掘及分析技术在技术部十分重要,技术部应将图书馆各部门所产生的相关数据进行长期性、系统性的收集和科学分析,并将研究数据的挖掘及分析作为当前和今后技术部研究及发展的方向,承担起“数据监护员”的角色,通过实践为图书馆提供数据监护操作技能及策略。注意将可获得的数据及时进行收集,并通过收集数据使用案例,分析并总结用户需求及使用规律,为数据监护提供基础资料。

  学科部门。学科部门作为一个新兴的部门,目前已在全国各高校图书馆广泛推广运用。学科馆员的主要任务是派专人与对口院系或学科专业搭建合作、交流平台,并利用图书馆信息检索的技术优势,为研究者开展长期追踪、收集、传递文献信息的科技服务。当前大部分学科馆员关注的是如何为院系教学提供良好的信息传递帮助,而忽略了在当前信息飞速发展的时代,科研与教学走向数字化的趋势。学者所做的所有工作,包括教案、论文、实验、毕业设计等等工作,基本上都是以电子信息的方式进行编辑、存储的。虽然极大地方便了学者们的工作,但同时也面临这些电子数据的丢失风险,一旦电子数据丢失,其损失的学术价值是不可估量的。为尽量避免这些事件的发生,学科部门可依托技术部门的支撑,利用数据挖掘技术,开展学者数据监护服务,保存这些非纸质信息。这样学科部门不仅为学者提供了科研信息的前沿追踪,同时也提供了科学数据保存平台;既为学者科研开辟道路,也为学者预防丢失科研数据提供保障,可谓双保险。数据挖掘技术还可以帮助学科部通过数据挖掘、分析出读者关注以及咨询较多的问题,从中归纳出重点并分门别类,作为图书馆工作的重要依据。

  三、结语。

  数据挖掘技术在当今大数据时代,已成为一个相对成熟的学科,融入到社会的各行各业。利用数据挖掘技术对图书馆数据库进行数据挖掘已经成为图书馆需要开展的一项重要工作。图书馆事业已全部进入电子信息化,由此产生的大量业务数据和信息资源是图书馆行业的一笔宝贵财富,它较真实地反映了读者对图书馆事业运作以及提供的服务是否到位。因此,通过数据挖掘分析,能够帮助图书馆管理者分析并发现现有管理的不足之处,通过已知的现象预测未来的发展趋势。数据挖掘技术已成为今后图书馆事业保持竞争力的必备法宝。

  参考文献:

  【1】顾倩.数据挖掘应用于高校图书馆个性化服务的探讨[J].图书馆杂志,20xx,8:63-65.。

  【2】王伟.基于数据挖掘的图书馆用户行为分析与偏好研究情报科学,20xx,30(3):391-394.。

  【3】杨海燕.大数据时代的图书馆服务浅析[J].图书与情报。

  【4】程莲娟.美国高校图书馆数据监护的实践及其启示[J].图书馆杂志,20xx,1(31):76-78.。

数据挖掘论文13

  1数据挖掘技术和过程

  1.1数据挖掘技术概述

  发现的是用户感兴趣的知识;发现的知识应当能够被接受、理解和运用。也就是发现全部相对的知识,是具有特定前提与条件,面向既定领域的,同时还容易被用户接受。数据挖掘属于一种新型的商业信息处理技术,其特点为抽取、转化、分析商业数据库中的大规模业务数据,从中获得有价值的商业数据。简单来说,其实数据挖掘是一种对数据进行深入分析的方法。因此,可以描述数据挖掘为:根据企业设定的工作目标,探索与分析企业大量数据,充分揭示隐藏的、未知的规律性,并且将其转变为科学的方法。数据挖掘发现的最常见知识包括:

  1.1.1广义知识体现相同事物共同性质的知识,是指类别特点的概括描述知识。按照数据的微观特点对其表征的、具有普遍性的、极高概念层次的知识积极发现,是对数据的高度精炼与抽象。发现广义知识的方法与技术有很多,例如数据立方体和归约等。

  1.1.2关联知识体现一个事件与其他事件之间形成的关联知识。假如两项或者更多项之间形成关联,则其中一项的属性数值就能够借助其他属性数值实行预测。

  1.1.3分类知识体现相同事物共同特点的属性知识与不同事物之间差异特点知识。

  1.2数据挖掘过程

  1.2.1明确业务对象对业务问题清楚定义,了解数据挖掘的第一步是数据挖掘目的。挖掘结果是无法预测的,但是研究的问题是可预见的',仅为了数据挖掘而数据挖掘一般会体现出盲目性,通常也不会获得成功。基于用户特征的电子商务数据挖掘研究刘芬(惠州商贸旅游高级职业技术学校,广东惠州516025)摘要:随着互联网的出现,全球范围内电子商务正在迅速普及与发展,在这样的环境下,电子商务数据挖掘技术应运而生。电子商务数据挖掘技术是近几年来数据挖掘领域中的研究热点,基于用户特征的电子商务数据挖掘技术研究将会解决大量现实问题,为企业确定目标市场、完善决策、获得最大竞争优势,其应用前景广阔,促使电子商务企业更具有竞争力。主要分析了电子商务内容、数据挖掘技术和过程、用户细分理论,以及基于用户特征的电子商务数据挖掘。

  1.2.2数据准备第一选择数据:是按照用户的挖掘目标,对全部业务内外部数据信息积极搜索,从数据源中获取和挖掘有关数据。第二预处理数据:加工选取的数据,具体对数据的完整性和一致性积极检查,并且处理数据中的噪音,找出计算机丢失的数据,清除重复记录,转化数据类型等。假如数据仓库是数据挖掘的对象,则在产生数据库过程中已经形成了数据预处理。

  1.2.3变换数据转换数据为一个分析模型。这一分析模型是相对于挖掘算法构建的。构建一个与挖掘算法适合的分析模型是数据挖掘获得成功的重点。可以利用投影数据库的相关操作对数据维度有效降低,进一步减少数据挖掘过程中数据量,提升挖掘算法效率。

  1.2.4挖掘数据挖掘获得的经济转化的数据。除了对选择科学挖掘算法积极完善之外,其余全部工作都自行完成。整体挖掘过程都是相互的,也就是用户对某些挖掘参数能够积极控制。

  1.2.5评价挖掘结果这个过程划分为两个步骤:表达结果和评价结果。第一表达结果:用户能够理解数据挖掘得到的模式,可以通过可视化数据促使用户对挖掘结果积极理解。第二评价结果:用户与机器对数据挖掘获得的模式有效评价,对冗余或者无关的模式及时删除。假如用户不满意挖掘模式,可以重新挑选数据和挖掘算法对挖掘过程科学执行,直到获得用户满意为止。

  2用户细分理论

  用户细分是指按照不同用户的属性划分用户集合。目前学术界和企业界一般接受的是基于用户价值的细分理论,其不仅包含了用户为企业贡献历史利润,还包含未来利润,也就是在未来用户为企业可能带来的利润总和。基于用户价值的细分理论选择客户当前价值与客户潜在价值两个因素评价用户。用户当前价值是指截止到目前用户对企业贡献的总体价值;用户潜在价值是指未来用户可能为企业创造的价值总和。每个因素还能够划分为两个高低档次,进一步产生一个二维的矩阵,把用户划分为4组,价值用户、次价值用户、潜在价值用户、低价值用户。企业在推广过程中根据不同用户应当形成对应的方法,投入不同的资源。很明显对于企业来说价值用户最重要,被认为是企业的玉质用户;其次是次价值用户,被认为是金质用户,虽然数量有限,却为企业创造了绝大部分的利润;其他则是低价值用户,对企业来说价值最小,成为铅质用户,另外一类则是潜在价值用户。虽然这两类用户拥有较多的数量,但是为企业创造的价值有限,甚至很小。需要我们注意的是潜在价值用户利用再造用户关系,将来极有可能变成价值用户。从长期分析,潜在价值用户可以是企业的隐形财富,是企业获得利润的基础。将采用数据挖掘方法对这4类用户特点有效挖掘。

  3电子商务数据挖掘分析

  3.1设计问卷

  研究的关键是电子商务用户特征的数据挖掘,具体包含了价值用户特征、次价值用户特征、潜在价值用户特征,对电子商务用户的认知度、用户的需求度分析。问卷内容包括3部分:其一是为被调查者介绍电子商务的概念与背景;其二是具体调查被调查对象的个人信息,包含了性别、年龄、学历、感情情况、职业、工作、生活地点、收入、上网购物经历;其三是问卷主要部分,是对用户对电子商务的了解、需求、使用情况的指标设计。

  3.2调查方式

  本次调查的问卷主体是电脑上网的人群,采用随机抽象的方式进行网上访问。一方面采用大众聊天工具,利用电子邮件和留言的方式发放问卷,另一方面在大众论坛上邀请其填写问卷。

  3.3数据挖掘和结果

  (1)选择数据挖掘的算法利用Clementine数据挖掘软件,采用C5.O算法挖掘预处理之后数据。

  (2)用户数据分析

  1)电子商务用户认知度分析按照调查问卷的问题“您知道电子商务吗?”得到对电子商务用户认知情况的统计,十分了解20.4%,了解30.1%,听过但不了解具体使用方法40.3%,从未听过8.9%。很多人仅听过电子商务,但是并不清楚具体的功能与应用方法,甚至有一小部分人没有听过电子商务。对调查问卷问题“您听过电子商务的渠道是什么?”,大部分用户是利用网了解电子商务的,占40.2%;仅有76人是利用纸质报刊杂志上知道电子商务的并且对其进行应用;这也表明相较于网络宣传纸质媒体推广电子商务的方法缺乏有效性。

  2)电子商务用户需求用户希求具体是指使用产品服务人员对应用产品或服务形成的需求或者期望。按照问题“假如你曾经使用电子商务,你觉得其用途怎样,假如没有使用过,你觉得其对自己有用吗?”得到了认为需要和十分需要的数据,觉得电子商务有用的用户为40.7%,不清楚是否对自己有用的用户为56.7%,认为不需要的仅有2.4%。

  3)电子商务用户应用意愿应用意愿是指消费者对某一产品服务进行应用或者购买的一种心理欲望。按照问题“假如可以满足你所关心的因素,未来你会继续应用电子商务吗?”获得的数据可知,在满足各种因素时,将来一年之内会应用电子商务的用户为78.2%,一定不会应用电子商务的用户为1.4%。表明用户形成了较为强烈的应用电子商务欲望,电子商务发展前景很好。基于用户特征的电子商务数据研究,电子商务企业通过这一结果能够更好地实行营销和推广,对潜在用户积极定位,提高用户体验,积极挖掘用户价值。分析为企业准确营销和推广企业提供了一个有效的借鉴。

  4结语

  互联网中数据是最宝贵的资源之一,大量数据中包含了很大的潜在价值,对这些数据深入挖掘对互联网商务、企业推广、传播信息发挥了巨大的作用。近些年来,数据挖掘技术获得了信息产业的极大重视,具体原因是出现了大量的数据,能够广泛应用,并且需要转化数据成为有价值的信息知识。通过基于用户特征的电子商务数据挖掘研究,促使电子商务获得巨大发展机会,发现潜在用户,促使电子商务企业精准营销。

数据挖掘论文14

  [摘 要]目前,随着现代科技的发展,互联网已成为当代主流,互联网技术的应用已经是任何一个国家所不能脱离的,经济全球化已成为一个必然的趋势,在这样的一个大数据时代,人民对信息的获取需求呈直线上升的状态。21世纪作为一个信息时代,网络信息的安全防范也显得尤为重要,而Web数据的数据技术,对于网络信息安全防范来说,是一个新的技术运用。本文从Web数据挖掘技术的基本概述入手,分析我国企业在网络信息安全方面存在的问题,最后提出将网络信息安全防范与Web数据挖掘技术进行整合运用。

  [关键词]Web数据挖掘技术;网络信息;安全防范

  doi:10.3969/j.issn.1673 - 0194.20xx.22.091

  [中图分类号]TP393 [文献标识码]A [文章编号]1673-0194(20xx)22-0-02

  引 言

  世界是发展的,事物是不断变化的,21世纪是一个大数据时代,互联网技术显得越来越重要。在科技发展的同时,互联网也在家家户户普及,然而网络安全问题却随之而来,人们在运用科技时也在担心网络技术的安全性。鉴于此,本文探讨利用Web数据挖掘技术来控制网络安全,以提高网络信息安全度。

  1 Web数据挖掘技术概述

  Web使用记录挖掘方式是挖掘网络上的浏览记录,然后进行分析,同时还可以获取其他企业的信息。通过使用Web数据挖掘技术,企业可以进行复杂的操作,然后从网页浏览记录分析出自身企业的受关注度,并了解同行竞争企业的详细信息,寻找自身的不足。

  1.1 Web数据挖掘技术的含义

  Web数据挖掘技术,指的是通过自身的技术,在获取网上资源的同时,寻找到企业感兴趣的信息资料。图1为Web数据发掘技术工作流程。

  Web数据发掘技术可以涉及多个领域,通过多种数据挖掘方式,为企业找到有用的信息资源。整体来说,Web挖掘技术有两种类型,一是建立在人工智能模型的基础上来实现,类似于决策树、分类等;二是建立在统计模型基础上来实现,类似于神经网络、自然计算法等。

  1.2 Web数据挖掘技术的两种方式

  Web数据挖掘技术整体上来说有两种方式,分别为内容挖掘和使用记录挖掘。Web内容挖掘指的是企业可以通过Web挖掘技术,自己从网上寻找对企业有用的信息资源,同时对后台设置进行监控,减少某些重要交易内容的丢失、泄露。企业还可以通过Web挖掘技术,查询某些用户的操作记录,对企业的网络信息安全进行检查审核,从而降低企业信息被不法分子窃取的风险。由于其他企业也有同样的Web数据挖掘技术,因此,企业也不能深入地去探索同行企业的内部信息,但其通过该技术,可以分析其他企业的基本信息资源,然后整合出对自身有用的资源,从而制定企业市场战略。

  2 我国企业在网络信息安全方面存在的问题

  目前,科技的发展,使全球的政治、经济一体化趋势越来越明显,互联网的进步也使国家企业面临着更多的挑战。我国企业在网络信息安全方面存在的问题也逐步显现,而网络信息安全技术人才紧缺是较为明显的一个问题。

  2.1 人才紧缺问题

  21世纪是一个互联网的世纪,我国目前正在积极地吸收、引进人才,同时也在不断地走出去,各行各业面临的压力也在逐渐变大,要想在快速发展的世界潮流中占据一席之地,我国必须积极发展自己的科技产业。目前,我国的计算机信息技术水平,在总体上还落后于其他很多国家,而在该方面的人才紧缺问题,是目前一个很明显的现象。我国在该领域常常要引进国外技术,受制于人,这也就间接地将自己的弊端暴露于人前,因此,我国要积极培养具有计算机网络技术的高端人员,从而促进该领域不断实现创新。

  2.2 自身安全技术漏洞问题

  除了人才紧缺,我国的'网络产品自身还存在许多的安全技术漏洞。从近几年的市场经济发展现状来看,我国很多的电子产品被国外垄断,如苹果、微软等高端电子产品,在我国占有很大的市场份额。我国要想重新将自己的电子产品推向市场,就目前的形势来看,还需要很大的努力,国民崇尚国外产品,不是为了标榜自己的地位,更多的是国外产品的性能确实比我国的要好。因此,通过我国网络产品自身存在的安全技术漏洞可以看出,我国在网络安全技术方面存在许多的不足。

  3 网络信息安全防范与Web数据挖掘技术的整合

  近几年,网络信息安全问题一直是国民较为关注的一个话题,我国也在该方面加大了防范力度。国家在发展创新互联网技术的同时,也不能忽略其安全问题。网络信息安全,关乎我国企业的发展,是企业重要资料不外漏的重要保护屏障,本文将网络信息安全防范与Web数据挖掘技术进行整合(见图2),旨在提高网络信息环境的安全度,提高我国网络信息安全防范能力。

  本文初探Web数据挖掘技术与网络信息安全防范的整合,将分别从4个方面来提高我国的网络信息安全性能。

  首先,将存在于网络数据间的关联寻找出来,然后整合交给企业进行分析,企业通过这些关联数据,分析提炼出对自己企业有用的信息,继而制定企业战略,防范风险。

  其次,使用Web數据挖掘技术对网络信息进行分类分析。企业应将所有的信息进行综合,然后按照一定的指标分出类别,并对这些不同类别的信息进行整理,方便后续的检索。该项功能主要依靠人工智能来完成,以保证资料能够得到完整的利用。

  再次,使用Web数据挖掘技术对网络信息进行聚类分析。企业应将这些具有共同点的信息进行分类,将这些数据分成各个小组,但每一个小组都要有一个共同的类似点,以便于从整体对局部进行分析。

  最后,利用Web数据挖掘技术,根据收集到的资源信息的不同点进行分类,分类后根据这些不同点的特征,分析出对自身企业有用的信息。从整体上说,Web数据挖掘技术通过运用其强大的分析能力,可对网络信息进行筛选、整合,企业可再根据这些整合出来的资源信息,为自身制定战略,为企业发展提供一个良好的网络信息环境。

  4 结 语

  网络技术在给用户带来便利的同时,也给用户的信息安全造成了极大的威胁,科技进步,技术也在不断进步,为了使信息得到最大的保护,网络信息的安全技术要随着科技的进步不断发展,为互联网的运用提供一个完善安全的网络系统。本文通过Web数据挖掘技术,将网络信息安全防范与该技术进行有效整合,提高了我国企业的网络信息安全度,以为我国企业的发展提供一个良好的环境。

  主要参考文献

  [1]刘波.浅谈数据挖掘技术在临床医学领域中的应用[J].电子世界,20xx(12).

  [2]赵炬红,陈坤彦.基于数据挖掘技术的茶叶营销策略分析[J].福建茶叶,20xx(5).

  [3]崔道江,陈琳,李勇.智能检索引擎中的网络数据挖掘技术优化研究[J].计算机测量与控制,20xx(6).

  [4]王珣.基于Spark平台的大数据挖掘技术研究[J].微型电脑应用,20xx(6)

数据挖掘论文15

  摘要:文章首先对数据挖掘技术及其具体功能进行简要分析,在此基础上对科研管理中数据挖掘技术的应用进行论述。期望通过本文的研究能够对科研管理水平的进一步提升有所帮助。

  关键词:科研管理;数据挖掘;技术应用

  1数据挖掘技术及其具体功能分析

  所谓的数据挖掘具体是指通过相关的算法在大量的数据当中对隐藏的、有利用价值的信息进行搜索的过程。数据挖掘是一门综合性较强的科学技术,其中涉及诸多领域的知识,如人工智能、机器学习、数据库、数理统计等等。数据挖掘技术具有如下几个方面的功能:1.1关联规则分析。这是数据挖掘技术较为重要的功能之一,可从给定的数据集当中,找到出现比较频繁的项集,该项集具体是指行形如X->Y,在数据库当中,X和Y所代表的均为属性取值。在关联规则下,只要数据满足X条件,就一定满足Y条件,数据挖掘技术的这个功能在商业金融等领域中的应用较为广泛。1.2回归模式分析回归模式主要是通过对连续数值的预测,来达到挖掘数据的目的。例如,已知企业某个人的教育背景、工作年限等条件,可对其年薪的范围进行判定,整个分析过程是利用回归模型予以实现的。在该功能中,已知的条件越多,可进行挖掘的信息就越多。1.3聚类分析聚类具体是指将相似程度较高的数据归为同一个类别,通过聚类分析能够从数据集中找出类似的数据,并组成不同的组。在聚类分析的过程中,需要使用聚类算法,借助该算法对数据进行检测后,可以判断其隐藏的属性,并将数据库分为若干个相似的组。

  2科研管理中数据挖掘技术的应用

  科研是科学研究的简称,具体是指为认识客观事物在内在本质及其运动规律,而借助某些技术手段和设备,开展调查研究、实验等活动,并为发明和创造新产品提供理论依据。科研管理是对科研项目全过程的`管理,如课题管理、经费管理、成果管理等等。由于科学研究中涉及的内容较多,从而给科研管理工作增添了一定的难度。为进一步提升科研管理水平,可在不同的管理环节中,对数据挖掘技术进行应用。下面就此展开详细论述。

  2.1在立项及可行性评估中的应用

  科研管理工作的开展需要以相关的科研课题作为依托,当课题选定之后,需要对其可行性及合理性进行全面系统地评估,由此使得科研课题的立项及评估成为科研管理的主要工作内容。现阶段,国内的科研课题立项采用的是申请审批制,具体的流程是:由科研机构的相关人员负责提出申请,然后再由科技主管部门从申请中进行筛选,经过业内专家的评审论证之后,择优选取科研项目的承接单位。在进行科研课题立项的过程中,涉及诸多方面的内容,具体包括申请单位、课题的研究领域、经费安排、主管单位以及评审专家等。通过调查发现,由于国家宏观调控政策的缺失,导致科研立项中存在低水平、重复性研究的情况,从而造成大量的研究经费浪费,所取得的研究成果也不显著。科研管理部门虽然建立了相对完善的数据库系统,并且系统也涵盖与项目申请、审评等方面有关的基本操作流程,如上传项目申报文件、将文件发给相关的评审专家、对评审结果进行自动统计等。从本质的角度上讲,数据库管理系统所完成的这些工作流程,就是将传统管理工作转变为信息化。故此,应当对已有的数据进行深入挖掘,从而找出其中更具利用价值的信息,据此对科研立项进行指导,这样不但能够使有限的科技资源得到最大限度地利用,而且还能使科研经费的使用效益获得全面提升。在科研立项阶段,可对数据挖掘技术进行合理运用,借此来对课题申请中涉及的各种因素进行挖掘,找出其中潜在的规则,为指标体系的构建和遴选方法的选择提供可靠依据,最大限度地降低不合理因素对课题立项带来的影响,对确需资助的科研项目进行准确选择,并给予相应的资助。在科研立项环节中,对数据挖掘技术进行应用时,可以借助改进后的Apriori算法进行数据挖掘,从中找出关联规则,在对该规则进行分析的基础上,对立项的合理性进行评价。

  2.2在项目管理中的应用

  项目管理是科研管理的关键环节,为提高项目管理的效率和水平,可对数据挖掘技术进行合理运用。在信息时代到来的今天,计算机技术、网络技术的普及程度越来越高,国内很多科研机构都纷纷构建起了相关的管理信息系统,其中涵盖了诸多的信息,如课题、科研人员、研究条件等等,而在这些信息当中,隐藏着诸多具有特定意义的规则,为找出这些规则,需要借助数据挖掘技术,对信息进行深入分析,进而获取对科研项目有帮助的信息。由于大部分科研管理部门建立的科研管理信息系统时间较早,从而使得系统本身的功能比较单一,如信息删减、修改、查询、统计等等,虽然这些功能可以满足对科研课题进展、经费使用等方面的管理,但其面向的均为数据库管理人员,处理的也都是常规事务。而从科研课题的管理者与决策者的角度上看,管理信息系统这些功能显然是有所不足的,因为他们需要对历史进行分析和提炼,从中获取相应的数据,为决策和管理工作的开展提供支撑。对此,可应用数据挖掘技术的OLAP,即数据库联机分析处理,由此能够帮助管理者从不同的方面对数据进行观察,进而深入了解数据并获取所需的信息。利用OLAP可以发现多种于科研课题有关信息之间的内在联系,这样管理者便能及时发现其中存在的相关问题,并针对问题采取有效的方法和措施加以应对。运用数据挖掘技术能够对科研项目的相关数据进行分析,找出其中存在的矛盾,从而使管理工作的开展更具针对性。

  3结论

  综上所述,科研管理是一项较为复杂且系统的工作,其中涵盖的信息相对较多。为此,可将数据挖掘技术在科研管理中进行合理应用,对相关信息进行深入分析,从中挖掘出有利用价值的信息,为科研管理工作的开展提供可靠的依据,由此除了能够确保科研项目顺利进行之外,还能提高科研管理水平。

  参考文献:

  [1]刘占波,王立伟,王晓丽.大数据环境下基于数据挖掘技术的高校科研管理系统的设计[J].电子测试,20xx(1):21-22.

  [2]史子静.高校科研管理系统中计算机数据挖掘技术的运用研究[J].科技资讯,20xx(6):65-66.

  [3]丁磊.数据挖掘技术在高校教师科研管理中的应用研究[D].大连海事大学,20xx.

【数据挖掘论文】相关文章:

数据挖掘论文07-16

数据挖掘论文07-15

旅游管理下数据挖掘运用论文11-18

旅游管理下数据挖掘运用论文6篇11-18

计算机数据库论文07-28

关于大数据时代下的隐私保护探究论文04-14

基于大数据的江苏省农村电商建设不足与完善论文03-09

数据分析报告02-02

数据员的个人总结03-23

关于挖掘合同04-08