我要投稿 投诉建议

数学建模论文

时间:2022-07-25 14:19:53 毕业论文范文 我要投稿

数学建模论文模板

  在平时的学习、工作中,大家肯定对论文都不陌生吧,论文是我们对某个问题进行深入研究的文章。写论文的注意事项有许多,你确定会写吗?以下是小编收集整理的数学建模论文模板,欢迎大家借鉴与参考,希望对大家有所帮助。

数学建模论文模板

数学建模论文模板1

  1数学建模竞赛培训过程中存在的问题

  1.1学生数学、计算机基础薄弱,参赛学生人数少

  以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.

  1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后

  数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.

  1.3学校重视程度不够,相关配套措施还有待完善

  任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.

  2针对存在问题所采取的相应措施

  2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班

  最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.

  2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法

  近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.

  2.3学校逐渐重视,加大了相关投入,完善了激励措施

  最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.

  3结束语

  对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.

数学建模论文模板2

  一、小学数学建模

  "数学建模"已经越来越被广大教师所接受和采用,所谓的"数学建模"思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为"数学建模",其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。

  二、小学数学建模的定位

  1.定位于儿童的生活经验

  儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。"数学建模"要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。

  2.定位于儿童的思维方式

  小学生的特点是年龄小,思维简单。因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。

  实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使"数量关系"与数学原型"一乘两除"结合起来,并且使学生利用抽象与类比的思维方法完成了"数量关系"的"意义建模",从而创建了完善的认知体系。

  三、小学"数学建模"的教学策略

  1.培育建模意识

  当前的小学数学教材中,大部分内容编排的思路都是以建模为基础,其内容的开展模式主要是"生活情景到抽象模型,然后到模型验证,最后到模型的运用和解释".培养建模思维的关键是对教材的解读是否从建模出发,使教材中的建模思想得到充分的开发。然后对教材中比较现实的问题进行充分的挖掘,将数学化后的实际问题创建模型,最后解决问题。教师要提高学生对建模的意识与兴趣就要充分挖掘教材,指导学生去亲身体会、思考沟通、动手操作、解决问题。其次,通过引入贴近现实生活、生产的探索性例题,使学生了解数学是怎样应用于解决这些实际问题的。同时,让学生在利用数学建模解决实际问题的过程中理解数学的应用价值和社会功能,不断增强数学建模的意识。

  2.体验建模过程

  在数学的建模过程中,要将生活中含有数学知识与规律的实际问题抽象化,从而建成数学模型。然后利用数学规律对问题进行推理,解答出数学的结果后再进行证明和解释,从而使实际问题得到合理的解决。我们以解决问题的方法为例,使学生能够解决题目不是教学的唯一目的,使学生通过对数学问题的研究和体验来提升自己"创建"新模型的能力。使学生在不断的提出与解决问题的过程中培养成自主寻找数学模型和数学观念的习惯。如此一来,当学生遇到陌生的问题情境,甚至是与数学无关的实际问题时,都能够具备"模型"思想,处理问题的过程能具备数学家的"模型化"特点,从而使"模型思想"影响其生活的各个方面。

  3.在数学建模中促进自主性建构

  要使"知识"与"应用"得到良好的结合就必须提高学生积极构建数学模型的能力。我们要将数学教学的重点放在对学生观察、整合、提炼"现实问题"的能力培养上来。教学过程中,通过对日常问题的适当修改,使学生的实际生活与数学相结合,从而提升学生发现和提出问题,并通过创建模型解决问题的能力,为学生提供能够自主创建模型的条件。

  我们以《比较》这课程内容为例,我们通过"建模"这一教学方法,培养学生对">""<"和"="的掌握与使用,进而使学生明确了解"比较"的真正含义。首先,利用公园或者学校等地方的跷跷板为素材,让学生了解自己的哪个伙伴被压上去,哪个伙伴被压下来;然后让班级的高矮不同的同学进行身高比较。最后将上面这些情景在课堂上通过多媒体手段展现出来,由于这些情景都是学生曾亲身体验过的,此时再叫他们去做"重量"或者"高度"的比较,他们就可以轻松的掌握">""<"和"="等符号。这种将学生的实际生活与课堂教学相结合的方法,使学生能够轻松的创建其数学模型,提升他们自主建模的信心。

  四、总结

  数学建模是将实际生活与数学相结合的有效途径和方法。学生在创建数学模型的过程中,其思维方式也得到了锻炼。小学阶段的教学,其数学模型的构建应当以儿童文化观为基础,其目的主要是培养儿童的建模思想,这也是提升小学生学习数学积极性,提升课堂文化气息的有效方法和途径。

数学建模论文模板3

  一、高等数学课程的重要性

  学好高等数学课程,不仅可以学到像数学概念、公式、定理结论这样的理论知识,并在定理、公式的推导过程中更能培养人的逻辑思维能力,提高数学素养,同时是学好后续专业课程例如西方经济学等学科有力保障。高等数学课程更重要的作用是培养学生的理性思维和思辨能力;能启迪智慧,开发创新、创造能力。因而高等数学课程授课效果的好坏直接影响到金融类院校人才的培养质量的高低。在这种形势下,全国金融类院校都开设了高等数学课程。

  二、高等数学课程授课现状

  每一个讲授高等数学课程的教师在第一次上课时,几乎都会对学生阐述这门课程的重要性。一方面会强调这门课程的理论基础知识的重要性,另一方面强调它在解决实际问题中的应用性等等。大多数学生更感兴趣的这门课程在实际中的应用,但是在实际教学过程中,教师却很难将理论知识应用到实际去解决一些实际问题,理论和实际严重脱节,长期以来,现在高校普遍的高等数学教学教学,为了完成教学任务而“满堂灌”的现象仍旧是普遍存在的,不讲究教学方法,不能做到因材施教,教师授课没有热情,平铺直叙,照本宣科,授课过程枯燥无味,课堂气氛死气沉沉,几乎没有互动。采用的教学手段依然是粉笔加黑板、课本加教案的传统授课模式,现代化的多媒体教学手段应用几乎为零。多种原因都有可能导致学生对高等数学产生抵触情绪、畏难情绪,失去学习这门课程的兴趣。因此要改变目前高等数学课程的学习现状,高等数学的教学改革已经势在必行,刻不容缓。实践证明,如果教师能在讲授重点、难点知识时,引入适当的数学建模案例,不但易于学生对理论知识的理解,更能增强学生运用学到的理论解决实际问题的能力。从而可以纠正一些学生认为的“高数数学无用论“的思想,激发学生学习数学的热情、兴趣,培养学生的创新力、创造力,提高学生的数学素养与综合素质。

  三、数学建模在高等数学教学中的重要性

  课程的着重点为挖掘和展现数学理论知识中的数学思维方法及将理论应用到实践。在授课过程中,要求教师对重要概念、定义,要能讲清背景来源,以及它们所体现出的数学思想方法。对教材上的重点例题、典型习题的分析要体现数学思维过程,分析出难点、关键点,新知识如何在题目中应用的,这样才能有助于学生对新知识的理解和运用。课堂上,采用启发式教学,使学生能对教师所授新知识能进行分析、总结、整理,进而能培养学生提出问题、分析问题、解决问题的能力。从而一方面为后继专业课程的学习奠定必要的理论基础,另一方面使学生初步拥有运用数学理论知识解决实际问题的能力。进而培养学生严谨、缜密的科学态度,逐步提高提出问题、分析问题和解决问题的能力。

  1.有利于学生对概念的理解与掌握

  高等数学中的概念与初等数学相比则更抽象,如极限的精确定义、导数、定积分等,学生在学习这些概念时总想知道这些概念的来源和应用,希望在实际问题中找到概念的原型。事实上,数学中的概念本身就是从客观事物的数量关系中抽象出来的数学模型,它必然与某些实际原型相对应着。因此引入数学概念时,融入数学建模是完全可行的,每当引入新概念时,都可以选择相关的实例来说明这部分内容的实用性。在概念引入时,尽可能选取生活中的常见小问题来还原现实情境后的数学,使学生能够了解概念、定义的来龙去脉,让学生感受到这些定义不是硬性规定的,而是与实际生活紧密相连的。从而便于学生对概念的理解与掌握。例如,在给出“定积分”这个概念时,强调定积分的思想是“分割取近似,求和取极限”。从求曲边梯形面积、变速直线运动的路程、变力做工等生活中常见的实际问题入手。尽管要求的这些问题的实际意义不同,但求解它们的方法及步骤却都是一样的,即都可以通过无限细分、取近似、求和、取极限的思想方法来实现求解过程。最终都可以抽象成为一个和式的极限,从而得到定积分的概念。

  2.有利于激发学生学习高等数学课程的兴趣与热情

  高等数学教学中长期以来都是重视理论基础、轻实践应用。教师在授课过程中注重基础理论知识的整体性、统一性,根据教学大纲的要求,按部就班的按照传统授课方法,以完成教学工作任务为目标。而对教材中关于理论基础知识应用的部分或是删除、或是略讲。同时高等数学课堂上基本上是以教师讲授为主,学生参与较少、活着几乎没有,定义定理的讲解、证明过程枯燥无味,再加上套用现成公式来解题的做题方法,导致学生没有学习的兴趣,学生即使能做题,也是知其然不知其所以然,缺乏应用数学解决实际问题的能力。长此以往,在学生眼中,数学就成了晦涩难懂、高不可攀的一门高深学问。在高等数学课程教学环节中数学建模案例模型,例如引入“生猪最佳出售时机模型”,使学生了解到可以用简单的数学知识解决重要的实际问题,从而发现数学理论知识不是超越现实的、抽象的,并在完善案例模型的过程中提高数学理论知识的学习。高等数学教学的目的不是为了培养从事专门进行数学研究的人才,而是要学生懂得数学是工具,教会学生这个工具来解决实际问题才是根本。当通过具体数学模型案例,使学生真正体会到了数学在解决实际问题中的巨大作用,可以增强学生的学习数学的主动性,并对高等数学课程产生浓厚的学习兴趣,利于高等数学课程学习的顺利完成。

  3.有利于学生对数学理论知识的应用,提高学生专业素质

  从月蚀中地球的阴影计算出月球、地球之间的距离是古代数学建模的经典案例,而牛顿的万有引力定律则是现代数学建模的成功运用的案例之一。诸如最优捕鱼策略、生猪的最佳出售时机、投资的收入和风险等现代数学模型表明,数学建模的应用已经不仅仅局限在天文学、物理学、化学领域,而已经快速地向生物、经济、金融等领域延伸,几乎在人类社会生活的每个角落都能看到它所发挥的无穷威力。近年来,随着计算机的飞速发展,数学的应用性更是得到充分发挥。利用数学方法解决实际问题时,首先要进行的工作是分析问题建立数学模型,然后利用计算机软件对模型进行求解。高等教育中本科阶段,大部分高校的人才培养目标是培养应用型人才,而培养这类人才的关键是培养学生应用数学理论知识的能力。数学建模是将理论知识与实际问题联系起来的桥梁和纽带。因此在高等数学授课过程中引入数学建模,在便于学生理论知识学习的同时,加强学生对数学理论知识的应用性。教师应注重学生专业背景,引入与学生所学专业相关的数学模型,这样才能有助于激发学生的学习积极性,即用所学高等数学知识解决了实际问题,又提高了学生专业素养。

  总之,数学建模在高等数学教学中起着重要作用,在加深学生对教材的概念的理解掌握的同时,能激发学生学习数学的兴趣与热情,发挥学生学习的主观能动性,提高学生运用理论知识解决实际问题的能力,为提高高等数学课程教学质量奠定坚实基础。

数学建模论文模板4

  摘 要:本文从“如何培养学生实践应用能力提高就业素质”出发,通过对大专院校进行广泛的调研,分析了目前高职院校开展数学建模的现状,并总结了黑龙江交通职业技术院校开展数学建模教学与竞赛活动的经验和做法,对指导高职院校的数学建模实践教学工作具有重要意义。

  关键词:数学建模竞赛;教学改革;实践教学

  中国大学生数学建模竞赛是目前全国高校中规模最大、影响最广的大学生课外科技活动,它在培养大学生知识的应用能力、创新能力以及团队的合作精神、顽强的意志品质等方面都显示了独特的作用和优势。然而,大学生数学建模竞赛在高职学院的开展却起步迟缓且步履维艰,如何改变现状,促进大学生数学建模竞赛在高职学院持续健康发展,已经成为教育工作者研究的重要课题。

  一、高职学院开展数学建模竞赛活动的现状

  总体来说起步较缓慢,以黑龙江赛区为例,参加全国大学生数学建模竞赛的院校和参赛队虽然逐年增加,20xx年达到了34所参赛院校共444支参赛队,但是高职学院参赛的少,仅占全省高职学院的1/3,有的高职学院长期徘徊在竞赛之外,有的断断续续,今年参赛明年休息。分析其原因主要有两个:一是部分高职学院对大学生数学建模竞赛十分陌生,对竞赛的意义缺乏认识,没有配套的实施办法和有效的激励机制;二是竞赛的指导教师匮乏,能力有限,目前高职数学教师队伍严重萎缩,有的学院数学教研室只剩一两个人。

  参加数学建模竞赛需要扎实的数学功底和良好的应用意识。而高职的课程体系突出专业技能的培养,通常只在一年级开设一个学期的“高等数学”课程,总学时一般仅有30学时,有的甚至不开数学课。教学内容以一元微积分的基本概念和简单算法为主。大多数参赛的高职院校,仅仅是为竞赛而竞赛,极少关注数学建模思想和方法在深化数学教学改革、促进课程建设等方面的作用。

  高职学生总体水平较差,但对从未接触过的数学建模充满好奇。然而数学建模竞赛对学生的知识和能力要求都比较高,同时因高职学生二年级末就要面临顶岗实习和就业问题,参赛学生通常只能在一年级中选拔,他们的基础和能力显然都没有本科生扎实,因此赛前培训的工作量非常大。

  二、高职学院开展数学建模竞赛活动的意义

  通过数学建模竞赛可以提高学生的综合素质,是培养学生综合能力的有效途径。数学建模竞赛可以培养团队精神与合理表达自己思想和综合运用知识的能力等,所有这些对提高学生的素质都是很有帮助的,且非常符合当今提倡素质教育精神。

  数学建模竞赛不同于其它各种具有单个学科如:数学竞赛,物理竞赛,计算机程序设计竞赛等的竞赛,因为这些竞赛只涉及到一门学科,甚至一门课程的知识,而数学建模竞赛涉及到数学学科,计算机学科等其他许多学科的知识,仅数学学科就涉及到高等数学,线性代数,概率统计,计算方法,运筹学,图论,数学软件等方面的知识。学生要想在数学建模竞赛中取得好成绩,除了具有以上数学知识外,还要有较好的计算机编程能力,网上查阅资料的能力及论文写作能力等,此外,他们还应有接触各种新知识的环境和喜好。因为数学建模的竞赛题远非只是一个数学题目,而更多是一个初看起来与数学没有联系的实际问题,它涉及到很多知识,有些还是当前尚未解决的问题,如:飞行管理问题,DNA排序问题等就是较有代表性的数学建模考试题目。通常数学建模题目只给出问题的描述和要达到的目的,参赛学生要做的事情是将问题用数学语言转化成数学问题,然后在数学的背景下使用计算机或数学软件来求解,最后再根据所得的解来解释和检验所给的实际问题。与数学竞赛不同的是,数学建模赛题没有标准的正确答案,试卷的评分标准是看学生解决问题和创新的能力.因此要做好一个数学建模问题并不是一件容易的事情,需要学生很多的知识以及对所学各种知识的综合运用,对学生是一个挑战。

  数学建模竞赛的题目由工程技术、经济管理、社会生活等领域中的实际问题简化加工而成,没有事先设定的标准答案,但留有充分余地供参赛者发挥其聪明才智和创造精神。竞赛以通讯形式进行,三名大学生组成一队,在三天时间内可以自由地收集资料、调查研究,使用计算机、软件和互联网,但不得与队外任何人(包括指导教师在内)以任何方式讨论赛题。竞赛要求每个队完成一篇用数学建模方法解决实际问题的科技论文。竞赛评奖以假设的合理性、建模的创造性、结果的正确性以及文字表述的清晰程度为主要标准。可以看出,这项竞赛从内容到形式与传统的数学竞赛不同,是大学阶段除毕业设计外难得的一次 “真刀真枪”的训练,相当程度上模拟了学生毕业后工作时的情况,既丰富、活跃了广大同学的课外生活,也为优秀学生脱颖而出创造了条件。

  竞赛让学生面对一个从未接触过的实际问题,运用数学方法和计算机技术加以分析、解决,他们必须开动脑筋、拓宽思路,充分发挥创造力和想象力,从而培养了学生的创新意识及主动学习、独立研究的能力。

  三、通过数学建模推动数学课程教学改革

  通过数学建模竞赛可以推动高校的教育教学改革。十几年来在竞赛的推动下许多高校相继开设了数学建模课程以及与此密切相关的数学实验课程,出版了两百多本相关的教材,一些教师正在进行将数学建模的思想和方法融入数学主干课程的研究和试验。

  数学教育本质上是一种素质教育,要体现素质教育的要求,数学的教学不能完全和外部世界隔离开来,关起门来在数学的概念、方法和理论中打圈子,处于自我封闭状态,以致学生在学了许多据说是非常重要、十分有用的数学知识以后,却不怎么会应用或无法应用。开设数学建模和数学实验课程,举办数学建模竞赛,为数学与外部世界的联系打开了一个通道,提高了学生学习数学的积极性和主动性,是对数学教学体系和内容改革的一个成功的尝试。

  数学建模教学和竞赛活动中经常用到计算机和数学软件,普遍采取案例教学和课堂讨论,丰富了数学教学的形式和方法。经过几年来参加数学建模竞赛和教学方法和手段的改革,一方面教师的知识面拓宽了,知识结构改善了,利用数学工具和计算机找出解决实际问题的意识和能力提高了,另一方面,由于理论与实际的结合多,学生的动手能力增强了,学习的主动性和积极性有了很大的提高,同时也培养了学生的创新意识和解决实际问题的能力。

  四、我校数学建模竞赛活动开展情况

  近年来,我校一直有序地组织学生参加数学建模竞赛,学校领导和教务处等有关部门非常重视和支持学生参加数学建模竞赛,逐步探索完善了一套合理的激励机制,激发指导教师的工作积极性和学生的参赛荣誉感及学习积极性。

  我校开展的数学建模竞赛活动是采用第二课堂课余活动的形式进行的。由数学教研室负责每学期对学生进行集体强化培训,以提高建模水平,培养学生之间的团队协作精神。通常我们在每年四月份组织校级竞赛,然后评选出五个代表队的优秀论文参加东三省数学建模联赛的评奖。通过校级的比赛在全校范围内选拔出队员,再进行深入的培训,最后参加全国比赛。

  我校历年来在大学生数学建模竞赛活动中保持优秀成绩,涌现了一批优秀的指导教师和学生。20xx年黑龙江交通职业职业技术学院第一次组队参加东北三省大学生数学建模竞赛,由于领导重视,工作扎实,平时训练重过程、重细节,竞赛中队员们表现出了良好的意志品质和团队精神,最终取得了不俗的成绩:5个参赛队中,1个队荣获省一等奖,另有1个队获省二等奖。20xx年参加东北三省数学建模联赛,四个队获得二等奖;20xx年参加全国大学生数学建模竞赛,一个队获得省级二等奖,一个队获得省级三等奖;20xx年参加东北三省数学建模联赛,一个队获得一等奖,三个队获得二等奖。事实证明:通过自身的努力,高职学院可以在全国大学生数学建模竞赛中取得较好成绩,而高职学生也必定会在艰苦的培训和竞赛过程中得到锻炼和提高。

  五、结语

  尽管目前高职学院开展大学生数学建模竞赛活动仍有不少困难,但是我们有理由相信,在社会各界的关心和支持下,这一项能使高职学生、教师和学院全面受益的竞赛不仅值得我们为之努力,而且一定能越办越好。

数学建模论文模板5

  一、数学建模论文帮写的相关要求

  1、问题重述

  根据你对文章的理解度来达到解决问题的目的,这个时候就是考验你文字功底的时候了。

  2、问题分析

  对论文中涉及的每个问题进行详细的理解分析,并给出解决方案以及所用到的模型。

  3、模型假设

  通过合理化的假设使复杂的问题简单化,比如针对想解决的问题作出虚假的设想,但是一定要注意要验证假设的合理性。

  4、符号说明

  对建模及编程所用到的符号要具体说明。如点状符号、线状符号、面妆符号等,他们各自代表的意义是什么,大家一定要解释清楚。

  5、模型建立及求解

  建立模型的时候要明确,思路要做到清晰准确,让人看了后容易理解你表达的意思,求解过程还是要写出来,便于读者对整个模型的设计有深入的认识。

  6、模型检验

  模型得出来的结果回到实际问题中去验证其是否合理性。主要包含灵敏度分析和误差分析等。

  7、模型评价与推广

  模型建立好后要针对模型的优缺点、改进方法以及实际的用途做详细的阐述。

  8、参考文献

  主要看下参考文献的格式是否符合建模论文的要求,具体体现在图片上。

  9、附录

  最后的附录中应包含程序以及相关的图表、数据等等,有了这些更具有科学性与权威性。

  二、数学建模论文帮写价格

  数学建模论文的价格一般在8000-10000元左右。数学建模论文包含:问题分析、假设、建立、求解、结果分析和检验等,价格会偏高一点对写手的写作水平要求也高,需要查阅收集众多资料,没有合适的资料还要做建模实验,通过实验才能提取准确的数据,能够帮写的写手不多,因此价格偏高也是可以理解的。

  以上价格只是市场一般的帮写行情,具体准确的价格还是要和客服沟通,事先要说清楚你论文的具体要求,他们才好根据实际要求写作,写作的论文才是最符合你的需求的

  三、数学建模论文帮写的流程

  1、将自己的论文要求与客服人员交流,一定要交代清楚你想帮写的具体要求,如字数、建模特殊要求、专业方向、论文题材等,只有告知清楚你的实际要求,他们才好定价,才好确定能否帮写,不符合条件的或者不在他们帮写范围的不会接单,也是对客户负责任的体现。

  2、沟通后价格你能接受的前提下,可以先支付一半的定金作为保证金,他们收到钱后立马拟定题目,提醒大家不要全款支付,帮写都是网上进行的交易,一定要小心行事。

  3、写作完成一半后会给你审核,你觉得无异议的情况下可以再支付部分费用,他们继续写作,全文完成后且导师审核合格的前提下你可以结清尾款,交易结束。

  4、在检查的过程中发现有需要修改的地方,一定要及时告知他们,他们会做出相应的修改,直至你论文通过为止。

数学建模论文模板6

  1引言

  数学模型的难点在于建模的方法和思路,目前学术界已经有各种各样的建模方法,例如概率论方法、图论方法、微积分方法等,本文主要研究的是如何利用方程思想建立数学模型从而解决实际问题。实际生活中的很多问题都不是连续型的,例如人口数、商品价格等都是呈现离散型变化的趋势,碰到这种问题可以考虑采用差分方程或差分方程组的方式进行表示。有时候人们除了想要了解问题的起因和结果外还希望对中间的速度以及随时间变化的趋势进行探索,这个时候就要用到微分方程或微分方程组来进行表示。以上只是简单的举两个例子,其实方程的应用极为广泛,只要有关变化的问题都可以考虑利用方程的思想建立数学模型,例如常见的投资、军事等领域。利用方程思想建立的数学模型可以更为方便地观察到整个问题的动态变化过程,并且根据这一变化过程对未来的状况进行分析和预测,为决策的制定和方案的选择提供参考依据。利用方程建立数学模型时就想前文所说的那样,如果是离散型变化问题可以考虑采用差分思想建模,如果是连续型变化问题可以考虑采用常微分方程建立模型。对于它们建模的方式方法可以根据几个具体的实例说明。

  2方程在数学建模中的应用举例

  2.1常微分方程建模的应用举例

  正如前文所述,常微分方程的思想重点是对那些过程描述的变量问题进行数学建模,从而解决实际的变化问题,这里举一个例子来说明。例1人口数量变化的逻辑斯蒂数学方程模型在18世纪的时候,很多学者都对人口的增长进行了研究,英国的学者马尔萨斯经过多年的研究统计发现,人口的净相对增长率是不变的,也就是说人口的净增长率和总人口数的比值是个常数,根据这一前提条件建立人口数量的变化模型,并且对这一模型进行分析研究,找出其存在的问题,并提出改进措施。解:假设开始的时间为t,时间的间隔为Δt,这样可以得出在Δt的时间内人口增长量为N(t+Δt)-N(t)=rN(t)Δt,由此可以得出以下式子。dN(t)dt=rN(t)N(t0)=N{0(1)对于这种一阶常微分方程可以采用分离变量法进行求解,最终解得N(t)=N0er(t-t0)而后将过去数据中的r、N0带入上述式子中就可以得出最后的结果。这个式子表明人口数量在自然增长的情况下是呈指数规律增长的,而且把这个公式对过去和未来的人口数量进行对比分析发现还是相当准确的,但是把这个模型用到几百年以后,就可以发现一些问题了,例如到2670年的时候,如果仍然根据这一模型,那么那个时候世界人口就会有3.6万亿,这已经大大的超过了地球可以承受的最大限度,所以这个模型是需要有前提的,前提就是地球上的资源对人口数量的限制。荷兰的生物学家韦尔侯斯特根据逻辑斯蒂数学方法和实际的调查统计引入了一个新的常数Nm,这个常数就是用来控制地球上所能承受的最大人口数,将这一常数融入逻辑斯蒂方程可以得出以下的式子。dN(t)dt=rN(t)(1-N(t)Nm)N(t0)=N{0(2)该方程解为N(t)=Nm1+NmN0e-r(t-t0)一个新的数学模型建立后,首先要做的就是验证它的正确性,经过研究发现在1930年之前的验证中还是比较吻合的,但是到了1930年之后,用这个模型求出的人口数量就与实际情况存在很大的误差,而且这一误差呈现越来越大的变化趋势。这就说明当初设定的人口极限发生了变化,这是由于随着科学技术的不断进步,人们可以利用的资源越来越多,导致人口极限也呈现变大的趋势。

  2.2差分方程建模的应用举例

  如前文所言,对于离散型问题可以采用差分方程的方法建立数学模型。例如以25岁为人类的生育年龄,就可以得出以下的数学模型。yk+1-yk=ryk(1-ykN),k=0,1,2,…即为yk+1=(r+1)yk[1-r(r+1)Nyk]其中r为固有增长率,N为最大容量,yk表示第k代的人口数量,若yk=N,则yk+1,yk+2,…=N,y*=N是平衡点。令xk=r(r+1)Nyk,记b=r+1。xk+1=bxk(1-xk)这个方程模型是一个非线性差分方程,在解决的过程中我们只需知道x0,就可以计算出xk。如果单纯的考虑平衡点,就会有下面的式子。x=f(x)=bx(1-x),则x*=rr+1=1-1bx因为f'(x*)=b(1-2x*)=2-b,当|f'(x*)|<1时稳定,当|f'(x*)|>1时不稳定。所以,当1<b<2或2<b<3时,xkk→仯仯仭∞x*.当b>3时,xk不稳定。2.3偏微分方程建模的应用举例在实际生活中如果有多个状态变量同时随时间不断的变化,那么这个时候就可以考虑采用偏微分方程的方法建立数学模型,还是以人口数量增长模型为例,根据前文分析已经知道建立的模型都是存在一定的局限性的,对于人类来说必须要将个体之间的区别考虑进去,尤其是年龄的限制,这时的人口数量增长模型就可以用以下的式子来表示。祊(t,r)祎+祊(t,r)祌=-μ(t,r)p(t,r)+φ(t,r)p(0,r)=p0(r);p(t,r0)=∫r2r1β(r,t)p(t,r)d{r其中,p(t,r)主要表示在t时候处于r岁的人口密度分布情况,μ(t,r)表示的r岁人口死亡率,φ(t,r)表示r岁人口的迁移率,β(r,t)表示r岁的人的生育率。除此之外,式子中的积分下限r1表示能够生育的最小岁数,r2表示能够生育的最大岁数。根据人口数量增长的篇微分方程可以看出实际生活中的人口数量与年龄分布、死亡率和出生率都有着密不可分的关系,这与客观事实正好相吻合,所以这一个人口增长模型能够更为准确地反应人口的增长趋势。当然如果把微分方程中的年龄当做一个固定的值,那么就由偏微分方程转化成了常微分方程。另外如果令μ(t,r)=-r,p(t,r)=N(t),N(0)=N0,φ=rN2(t)/Nm,那么上述偏微分方程就变成了Verhulst模型。偏微分方程在实际生活中的应用也相当广泛,物理学、生态学等多个领域的问题都可以通过建立偏微分方程来求解。

  3结束语

  上世纪六七十年代,数学建模进入一些西方大学,紧随其后,八十年代它进入中国的部分高校课堂。把方程式引入到数学建模中是数学建模更具体和更实际的应用,方程式的空间性和抽象性决定了它需要借助数学建模来更直观和更立体地展示自己。20多年的本土适应和自身完善使绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程、讲座和竞赛。方程在数学建模中的思想和应用对于数学课堂效果本身和培养学生的动手和操作能力均有重要意义:一方面,它利于激励学生学习方程的积极性,培养学生建立数学模型的创造性和行动性;另一方面,它有效推动数学教学体系、教学内容和方法的改革,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。

数学建模论文模板7

  摘要:不知不觉中,数学建模已经成为在学生中一个非常热门的名词随着各类数学建模大赛的如火如荼,数学建模的概念已经逐步走入到我们中学生的视线中。很多同学对于数学、对于数学建模的理解还存在着很多偏颇之处,认为数学这门学科太过深奥,比较难以学习领悟透彻,本文通过自身的理解,简要介绍了数学建模的概念与过程,体现了数学思想在问题解决过程中的指导作用,同时揭开数学建模的神秘面纱,让数学以更加平易近人的方式成为我们数学的工具。

  关键词:数学建模;过程;应用

  数学是一门高度的抽象并且严密的科学这没错,但是同样的数学中的许多结论与方法,我们可以很好的应用在生活中的方方面面。数学应该是理工科学生最重要的一门基础学科,然而我们大部分的同学,甚至我自己常常都会有“不知道学了数学有什么用,学会了微分与导数日常生活也用不到”的困惑,除了备战考试,“学而无趣”、“学而无用”的现象还是非常明显的。但是伴随着现代社会的高速发展,我们所掌握的科学技术水平也在稳步提高,数学本身的发展也是日新月异。时至今日,数学在其他各个学科之中的应用已经显得尤其重要。如何通过灵活的应用所掌握的数学知识去解决各类生产生活中遇到的实际问题时,建立合理地数学模型就成为至关重要的一点。

  一、数学建模的概述

  人们在对一个现实对象进行观察、分析和研究的过程中经常使用模型,如科技馆里的各类机械模型、水坝模型、火箭模型等,实际上,我们常常接触到的照片、玩具、地图、电路图实验器材等都是模型。通过使用一定的模型,可以能够概括、集中以及更直观的反映现实对象的一些特征,进而可以帮助人们迅速、有效地了解并掌握所研究的对象。而随着现代计算机技术与理论的日渐成熟,以及我们研究对象逐步复杂化、抽象画,可以通过计算机模拟的数学模型应运而生。其实数学模型不过是更抽象些的模型,而数学建模就是建立这一模型的过程,并且能够将建模后计算得到的结果来解释实际问题,同时接受实际的检验。当我们需要对一个实际问题从定量的角度分析和研究时,就需要通过深入调查研究、了解对象信息,并作出作出简化假设、分析内在规律,然后用数学的符号和语言,把这一问题表述为数学式子即为数学模型。这一数学模型再经过反复的检验和修正最终得到的模型结果来解释实际问题,并且可以接受实际的检验。当今时代,数学的应用已经不仅局限在工程技术、自然科学等领域,并以空前的广度和深度向环境、人口、金融、医学、地质、交通等崭新的领域渗透,形成了所谓的数学技术,并成为现代高新技术的重要组成。这其中,建立研究对象的数学模型并计算求解成为首要的和关键的步骤。数学建模和计算机技术在知识经济时代为科学研究提供了重要的帮助。

  二、数学建模的过程

  数学建模的过程可粗略以上方框图表示,其具体步骤可以概述为:1)通过分析问题的实际情况,可以充分了解所面临问题的背景,去大胆分析并且暴漏出问题的本质,针对研究对象提出问题。2)忽略非主要因素,直接列出研究的对象的关键问题。将复杂问题简化,抓住关键点,大大提高问题解决的效率。3)通过应用数学公式与理论,寻找客观规律。必要时可以借助计算机软件,形成合适的数学模型。4)通过运作已建立的数学模型,产生结果,进而通过结果的对比判断所建立的数学模型是否真正符合实际的客观规律。这是一个动态的检验、修改的过程,通常需要多次的模拟和完善才能够建立起合理有效的数学模型。5)将建成的数学模型规律转化为解决实际生活中的各种问题的方法,进而可以直接或间接地提高生产、生活效率。数学建模其实就是连接数学理论知识和数学实际应用两者之间的一条纽带。总有一些同学将数学建模看得多么的高深莫测,其实我们在以前的日常的学习中早就已经接触过了数学建模。现在经常被我们当成搞笑段子来讲的一些小学学习数学的阶段做过的很多应用题,实际就是一种简单的数学建模。数学建模的确切的含义目前尚无定论,但比较莫忠一是的看法为:通过将实际问题的抽象化,归纳并简化问题,进而确定变量跟参数,运用数学的理论和方法,逐步确立比较合理的数学模型;然后再应用数学与其他相关学科中的理论和方法借助计算机等相关技术手段,建立起数学模型;接着我们会对此模型进行反复地验证,分析讨论,不断地对其进行修正,逐渐地改进使它更加的规范化。简单来说,数学建模就是以现实作为背景,用数学科学理论作依托,解决实际生产生活中问题的过程。因而,可以说我们所熟知的任何一个数学上的概念、定理、命题或者结构,都可以看作是数学模型。

  三、数学建模的应用与总结

  进入计算机技术引领的20世纪,随着电子计算机的出现与飞速发展,数学以前所未有的广度和深度向各个领域渗透,而数学建模正是这其中的纽带。在统工程技术领域诸如机械、电机、土木、水利等方面,数学建模已展现了其重要作用。建立在数学模型和计算机模拟基础上的新型技术,已经凭借其快速、经济、方便的优势,大量地替代了传统工程设计中的现场实验和物理模拟等手段。高科技时代下的技术本质上已经成为一种数学技术,源于支撑现代科技的计算机软件是数学建模、数值计算和计算机图形学相结合的产物在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台。马克思说过,一门科学只有成功地运用数学时,才算达到了完善的地步。展望21世纪,数学必将大踏步地进入所有学科,数学建模将迎来蓬勃发展的新时期。

数学建模论文模板8

  随着社会进步、科技创新和经济产业结构的不断调整,我国对高素质高技能应用型人才的需求正在不断扩大,高等职业教育的高规格人才培养显得尤其重要。社会上各行各业的工作人员,需要善于运用数学知识和数学思维方法来解决实际问题,方能为公司赢得经济效益和社会效益。面临新教育态势的压力,面对数学基础薄弱的学生,如何在有限教学期限内快速提升高职数学课的教学品质,成为高职高等数学教学改革的焦点。

  一、高等职业教育数学课教学现状与分析

  经过查阅大量文献资料、学生学情调研和教师座谈研讨,可以将目前高等职业教育数学课教学现状归因为课程特点、教师和学生三个方面。

  1.数学课的特点。数学是一门与现实世界紧密联系的科学语言和基础的自然学科,其形式极为抽象。学生学到数学概念、方法和结论,并未掌握数学学科精髓,未使数学成为解决实际问题的利器。

  2.教师方面。课堂上,教师卖力的教授“有用”的理论和方法,但学生学得吃力且效果不佳。现在,部分教师将实际生活中的鲜活例子融入数学课的教授,打破了数学教学体系和内容自我封闭的僵局,但有些教师将“数学教育是一种素质教育”阻碍为抽象、深奥的课程,严重挫伤了学生学习的积极性。

  3.学生方面。就高职生学情而言,生源大多来自高考第五批等录取批次,普遍不晓得数学理性思维对人思维能力培养的重要性,高职生学习目标不明确,学习习惯尚未养成,学习动力不足。此外,面对大量抽象符号和逻辑推理,形象思维强的高职生极易产生抵触心理。上述分析表明,要想实现“数学教育本质上是一种素质教育,数学的教学不能完全和外部世界隔离开来”,就需要改变数学教育按部就班的静态教学现状,创新教学模式,激发学生的主体参与意识,方能形成生动、活泼、有趣的数学课堂。

  二、数学建模在高等职业教育人才培养过程中的意义和作用

  从公元前3世纪的欧几里得几何,开普勒的行星运动三大规律到近代的流体力学等重要方程,数学建模的悠久历史可见一斑。

  1.数学建模的桥梁作用。随着大数据时代的到来,大量数据爆炸性的涌入银行、超市、宾馆、机场的计算机系统,都需要进行归纳整理、去伪存真、分析和汇总。因此,需要在实际问题和数学方法两者之间架设一个桥梁,这个桥梁就是数学模型。

  2.数学建模思想融入高职数学课堂的意义。鉴于高等职业教育数学课教学现状与分析,结合数学建模进入高等院校数学课堂时机的日渐成熟,以及高等职业教育旨在培养高职生如何“用数学”而非“算数学”的目标,将数学建模思想融入高职数学课堂有着积极肯定的意义。

  (1)时机成熟。随着大型快速计算机技术及数学软件的快速发展,早期大型水坝的应力计算、航空发动机的涡轮叶片设计等数学模型中的数学问题迎刃而解,数学建模与科学计算的完美结合成为数学科学技术转化的主要途径。计量经济学、人口控制论等新兴的交叉学科为数学建模提供了广阔的应用新天地。

  (2)目标明确。数学建模的切入搭建了数学和外部世界的桥梁,解开了数学课堂教学的困境,让高职生以数学为工具去分析、解决现实生活中实际问题的目标切实可行。面对工程技术、经济管理和社会生活等领域中的实际问题,拥有敏锐洞察力的高职生面对现实问题的挑战,主动好奇的参与到资料收集、调查研究过程中来,能够摆脱惯性思维模式,敢于向传统知识挑战,尝试多样解题方式,不仅激发了学习动机,提升了数学知识水平,更有助于学生创新精神和能力的培养,让其在体会数学建模魅力和实用性的同时,渗透数学应用能力。

  三、数学建模在高等数学教学中的应用实践

  学生走上工作岗位后,无形中会利用数学建模思想来解决实际问题。那么,如何有效的将数学建模“植入”高数课程教学,则需要一系列科学合理有序的教学改革方可取得成效。

  (1)融入数学建模思想的高职特色教材。作为教学载体,高职数学教材应从应用性职业岗位需求出发,以专业为服务对象,以实践操作为重点,以能力培养为本位,以素质培养为目的撰写情境式案例驱动的高职特色教材。

  (2)构建服务专业的高职数学教学模式。以学校专业需求为服务出发点,制定专业特色鲜明的数学课程教学新体系,搭建课程的“公有”模块和“选学”模块,加强专业针对性。与服务专业类似,对于不同年级、不同数学基础学生的需求,提供个性化、分层化、系列化的教学内容,显得尤为关键。

  (3)培养数学应用意识的案例教学方法。历届全国大学生数学建模竞赛参赛数量和规模的扩张使我们懂得:以热点案例出发,能够激发学生的求知欲,在求解过程中自然引出系列数学知识点,通过数学建模,让学生体会数学是刻画现实世界的数学模型,品味数学乐趣,趣化学习过程,强化数学知识应用意识,树立学生主体意识并培养学生创新意识和能力。

  (4)营造数学应用意识的数学实验氛围。利用数学软件,通过寥寥数行代码解决曾经无从下手的复杂问题,必会吸引学生从耗费时间的复杂计算转移到数学建模思想、数学方法的理解和应用,培养以数学和计算机分析和解决实际问题的能力,提高数学应用意识。

  (5)指导学生参加全国大学生数学建模竞赛。历届数学建模竞赛从内容到形式,都是一场与真实工作环境接近的真刀真枪的历练,要求学生团队综合运用数学及其他学科知识、使用计算机技术通过数学建模来分析、解决现实问题。从“乘公交,看奥运”、“世博会影响力的定量评估”到“SARS的传播”、“饮酒驾车”,这些开放、挑战性问题,必然会提高学生的洞察力、想象力、创造力和协作精神。

  四、数学建模在高等数学教学中的实践效果

  自20xx伊始,将数学建模和数学实验引入高职数学课程教学中以来,学生主动学习意愿增强,学习效果显著提升。效果主要表现实际问题求解的多样性和开放性使得学生思维得以激活和解放,解题的自由使得互联网应用达到最优化。学院连续多年组织学生参加北京市高职高专大学生数学竞赛多次获得一、二、三等奖,在全国大学生数学建模竞赛中获得多项北京市一等奖,近两年获得国家二等奖2项、国家一等奖1项的佳绩。经过共同努力,应用数学基础获批为国家精品资源共享课。需要强调三点:首先,案例教学中要科学合理的训练学生的“双向翻译”能力,要培养学生应用数学语言把实际问题翻译为明确的数学问题,再把数学问题的解翻译成常人能理解的语言。其次,所有教学活动要以学生为中心,并且离不开教师煞费苦心精心设计的教学活动,因为数学建模、指导数学实验和辅导学生参加竞赛需要教师掌握算法、优化、统计、数学软件、计算机编程等综合能力,因而教师尤为关键。再者,学院领导对数学建模、数学实验在人才培养过程中的重要性要有清晰充分的认识,才会有力度的支持数学教学改革。

  五、结语

  将数学建模思想和方法融入高职数学课程教学是一种先进的教育教学改革理念,是提升高职数学教学品质的关键,需要广大教师踏踏实实的钻研和工作,真正讲好每一个案例,为培养具备数学应用意识的高规格人才而努力。

数学建模论文模板9

  走美杯”是"走进美妙的数学花园"的简称。

  "走进美妙的数学花园"中国青少年数学论坛是中国少年科学院创新素质教育的品牌活动。20xx年,由国际数学家大会组委会、中国数学会、中国教育学会、中国少年科学院成功举办了首届"走进美妙的数学花园"中国少年数学论坛,至今已连续举办七届,全国三十多个城市近三十万人参与了此项活动,在全国青少年中产生了巨大的影响。 "走进美妙的数学花园"中国青少年数学论坛活动是一项面对小学三年级至初中二年级学生的综合性数学活动。通过"趣味数学解题技能展示"、"数学建模小论文答辩"、"数学益智游戏"、"团体对抗赛"等一系列内容丰富的活动提高广大中小学生的数学建模意识和数学应用能力,培养他们一种正确的思想方法。 著名数学家陈省身先生两次为同学们亲笔题词"数学好玩"和"走进美妙的数学花园",大大鼓舞了广大青少年攀登数学高峰的热情和信心,使同学们自觉地成为学习的主人,实现从"学数学"到"用数学"过程的转变,从而进一步推动我国数学文化的传播与普及。

  "走美"活动已连续举办七届,近30万青少年踊跃参与,已取得良好社会效果,并被写入全国少工委《少先队辅导员工作纲要(试行)》,向全国少年儿童推广。

  “走美”作为数学竞赛中的后起之秀,凭借其新颖的考试形式以及较高的竞赛难度取得了非常迅速的发展,近年来在重点中学选拔中引起了广泛的关注。客观地说“走美”一、二等奖对小升初作用非常大,三等奖作用不大。

  1、活动对象

  全国各地小学三年级至初中二年级学生

  2、总成绩计算

  总成绩=笔试成绩x70%+数学小论文x30%

  笔试获奖率:

  一等奖5%,二等奖10%,三等奖15%。

  3、笔试时间

  每年3月上、中旬。

  报名截止时间:每年12月底。

  走美杯比赛流程

  1、全国组委会下发通知,各地组委会开始组织工作

  2、学生到当地组委会报名,填写《报名表》

  3、各地组委会将报名学生名单全部汇总至全国组委会

  4、全国"走进美妙的数学花园"趣味数学解题技能展示初赛(全国统一笔试)

  5、学生撰写数学建模小论文

  6、全国组委会公布初赛获奖名单并颁发获奖证书

  7、获得初赛一、二、三等奖选手有资格报名参加暑期赴英国剑桥大学数学交流活动。

  8、各地按照组委会要求提交数学建模小论文

  9、前各地组委会上报参加全国总论坛学生名单

  10、全国总论坛和表彰活动

数学建模论文模板10

  探究式教学与数学建模

  探究式教学法,不同于传统将知识直接由老师进行传授的教学方法,而将其重心放在学生的“探与究”上。“探”是重头,学生在新接触某个概念和原理时,教师只提供事例和问题,学生通过查阅、观察、记录、实验等途径独立探索。“究”是核心,学生在独立探索的基础上,通过思考、讨论自行发现掌握相应的原理和结论。

  最后老师结合学生的探究过程对他们的结论进行评价和矫正。在探究过程中,始终强调以学生为主体,学生的自主学习能力都得到加强,相比被动接受教师传授的知识和结论,通过这种方式获取的知识,学生理解更透彻,掌握更牢固。数学建模课程教学中大量源于实际生活的实例,也使得这门课程在教学手段和教学形式上的得以有大量创新,探究式的教学模式尤其适合在本课程的教学中使用,笔者长期承担数学建模课程的教学工作和指导学生开展数学建模竞赛及有关活动,结合多年的实践谈一谈。

  探究过程的具体实施

  问题驱动

  探究过程的驱动是问题,学生的学习活动围绕教师设计的问题展开。教师在这里要做的是,课前根据教学目的和内容,精心挑选有趣,又难度适宜的问题。例如,在一堂数学建模课中,我们以身边的一个具体实例来提出问题:通常1公斤的面,1公斤的馅,包100个汤圆;今天1公斤面不变,馅比1公斤多了,问应多包几个,每个包小一点,还是应少包几个,每个包大一点?

  实践探索

  这是探究过程的关键环节,在教师的组织下,学生自己动手实践如何制订研究计划,如何收集必要的资料和有关的研究方法。基于培养学生团队合作精神的目的,这个过程可将学生分组来完成。例如:包汤圆的问题中,引导学生把问题梳理和抽象出来,一张面积为S的皮,可以包体积为V的馅,如今把这张面积为S的皮,分成n张面积为s的皮,每张面积为s的皮可以包体积为v的馅,那么问题就转化为了讨论,究竟是V大还是nv大的问题了。这个过程中,一定要让学生思考,是不是需要某些合理的假设,如:不论面皮大小,其厚度都应该一致;不论汤圆大小,其形状都一致(这两个假设很关键)。

  思考讨论

  学生把通过实践探索得到的资料进行思考、梳理、总结,形成自己的结论。各团队就同一问题将自己的结论清楚地表达出来,针对各种不同的观点,共同讨论。评价矫正 在集体讨论、辩论过程中,教师适时给予评价和矫正,分析独特,立意清晰的给予肯定,观点模糊的给予指正,通过融洽的`学术交流使大家发现自己的问题所在,不准确、不深入的地方继续完善。

  探究式教学中应注意的问题

  精心设计

  第一,选择适合探究的教学内容。课堂中的探究其根本目的是引导学生主动获取知识,教师要注意不要仅仅为了体现探究的形式而忽略了探究的目的。第二,教师精心组织、编排探究的问题。大学数学课程探究式教学关键是通过问题的驱动,让学生在探究过程中自主的把握问题解决的方向,所有同学都在考虑同一个问题,在讨论探究中产生思维的火花。要达到预期效果,没有教师课前精心组织、设计是很难做到的。第三,控制好各个环节。根据实际情况,设计好探究过程中各环节的时间。将学生探究讨论的时间和教师点评的时间都事先做一个安排,形成一定的惯例,学生课前充分准备,通过细致的安排,确保探究过程高效完成。

  注重引导

  学生由于认知水平参差不齐导致探究过程有显著差异,教师要充分发挥引领作用,及时给予引导和矫正。

  及时总结和评价

  教师在学生讨论完成后,及时对探究过程进行总结,讲解正确的分析和理解,让同学对自己的思考形成判断和比较,通过鼓励,调动学生积极性,唤起学习热情。

数学建模论文模板11

  一、将数学建模融入医科高等教学的意义

  (一)提高课堂教学的质量

  在数学学科自身特质的局限下,数学课堂很难引起学生们的兴趣,因为教师针对相关公式的讲解和定理的介绍,只能让学生处于被动的接受状态中,无法产生较强的互动性和交流,更不便于通过快速理解而记忆.由于数学建模存在着实际应用价值,且在教学环节可以营造出生动的课堂氛围,所以将其引入数学课堂,可以起到提升学生学习兴趣,提高课堂教学质量的作用.当数学知识从单纯的数字和符号,变成具有实际意义的信息,则学生的接受度显然更高,也更便于理解和记忆.多人参与的数学建模环节,交流与互动性也得到了增强.此外,归纳法和演绎法等数学方法在数学建模中的应用,可以潜移默化的增强学生数学基础知识.

  (二)培养学生分析、解决实际问题的能力

  数学建模针对现实问题的价值和作用,需要建立在合理数学模型的基础之上.模型的准备、假设、构成与求解、应用一系列步骤,需要学生善于思考,积极的将数学知识融入其中,把握问题的矛盾,透过假设来达成最终的实践目的.在此背景下,无疑可以强化学生分析和解决实际问题的综合能力.

  (三)培养学生的创新能力和协作精神

  数学建模没有唯一的答案,是一个开放性的问题,在使用者所采用数学知识相异思维模式不同的情况下,最终形成的方法和路径也会存在差异.所以,想象力和创造力在建模过程中存在着重要的价值.包括简化理解问题、选择数学工具问题、设置合理结构问题、强化应用性问题等等,一系列的问题都需要使用者能够大胆创新,勇于探索,以打破常规的思路,构建更加合理的数学建模模型.一般情况下,一个人无法完成数学建模的整个流程,需要几个人共同参与到建模的各个环节,了解背景、构建模型和模拟辅助求解等等.在多人共同完成建模的过程中,思想上、语言上会有大量的交流,智慧的交融有助于开拓学生的思路,强化团队协作精神.

  二、将数学建模融入医科高等教学的方法

  (一)讲解定理公式时联系实际

  从客观事物的空间关系或数量中抽象出的数学概念,其定理和概念与实际需求有着密切的关联.但是在医科高等数学教学环节,由于课时紧张的问题,往往会引起前因后果的教学疏忽情况,直接让学生去理解记忆定理和计算证明,显然无法起到良好的教学成果.因此,在教学的环节,如果能够融入更多的数学思想、思想背景,则可以起到事半功倍的效果.举例说明,在积分计算教学环节中,采用多媒体设施,以动画的形式来演示曲边梯形的近似、取极限、分割和求和过程,重点突出积分计算中的以直代曲、化整为零的数学方法和思想,打破单纯的说教模式,让学生在生动的演示中加深记忆,最后学以致用.

  (二)结合案例教学

  作为数学建模中的常规手段,案例教学可以透过启发、讨论和讲解等多个方式,强化学生的思考积极性,提升教学效果.之后再次透过实际案例,比如非典型肺炎的爆发,来测试数学模型的可行性,以此验证准确认识疾病传播规律的重要价值.此外,还可以采取课堂结合数学建模的方法,结合药物动力学课程和药物房室模型,让学生学习药物在人体内的循环、作用情况,真正的认识模型建立对于药物设计、评价和改进的重要应用意义.在此背景下,学生的眼界得到了开拓,同时学习的新鲜感和兴趣也会与日俱增.

  (三)使用工具软件,灵活安排课后练习

  随着现代计算机、网络信息技术的快速发展,数学建模也可以借助计算机的科技能力,完善和普及软件的应用,解决数学建模中的一些特殊难题.在计算机的帮助下,数学建模的使用范围和效率都得到了一定程度的提升.为了强化教学质量,医科高等数学老师可以在课堂教学后,布置一定的课后练习作业,让学生自由组队,在之后的课堂上汇报研究成果和问题解决报告.这种方式不仅可以强化学生之间的思想交流,还能够让学生参与到教学环节,提升学习热情和兴趣.

  综上所述,医科高等数学教学得到数学建模渗透后,有助于提升学生的创新能力、团队协作精神以及实际应用能力.在新时期发展背景下,教育改革需要各个学科作出及时的调整,为培养符合时代发展需求的人才做好充足的准备.在此基础上,所有的教师们,都应该积极探索灵活的教学模式.

数学建模论文模板12

  1、高职数学教学存在的问题

  高职院校目前在高等数学课程教学过程中只注重理论学习,学生处于被动接受状态,参与度低。忽略了用数学解决实际问题的能力的培养,缺失了应用性。教师在高等数学教学过程中往往采用满堂灌,填鸭式的教学方式,学生只有大量重复的机械训练,才能掌握一些基础知识,套用现成公式做一些计算。教师的这种教学方式大大的影响了学生的学习兴趣,对数学学习长生厌恶情绪,学生学习的主观能动性也受到影响。另外,高等数学课程教学过程教学模式落后,缺少多样化,不能适应不同专业学生的要求。学生在解决实际问题时思维僵化,无从下手。为了解决这一问题,在高职数学教学中融入数学建模思想显得尤为重要。

  2、数学建模教学要以学生为主体,注重综合素质培养

  随着科学技术的发展,传统的教学手段也发生了变化。现代的要改变传统的教学模式,须以学生为主体,突出学生的主体地位,使他们成为课堂教学活动的主角,并积极对他们进行引导,让他们发现问题、提出问题,对教堂中的问题积极进行探索,主动思考,增强学习的能动性。由于我国教育模式一直为应试教育,学生在学习过程中只是被动的接受知识,独立思考能力和动手能力较差,并且应用意识薄弱。所以,在教学过程若想实现学生的主体地位,教师必须要培养他们学习的主观能动性。此外,不论在课堂上或者是课外教师要充分尊重学生的个人意见,并适当的给予鼓励,不要轻易否定他们思考问题的方式。在学生发表自己的意见之后,教师对他们进行表扬,鼓励他们善于思考、勇于提问和辩论,让他们始终处于主动学习的状态,使他们成为教学实践活动的主体的。在数学建模教学过程中,要对学生进行全方面的培养,既培养他们应用所学的数学知识的解决实际问题的能力,又要培养他们的综合素质,使他们具有强烈的求知欲、坚强的意志、宽广的兴趣、坚定不移的信念及积极主动进取的品质。

  在实际的教学过程中,还可以引入竞争机制,对他们进行分组然后进行讨论或者是竞赛,通过这样的方式既可以增加他们之间的同学友情,又可以让他们共同进步。每组学生还可以布置一些比较难的题目,他们合作解决问题,最终完成题目的解答。在解决问题过程中,让他们意识到创新的价值和合作的重要性,从而培养他们的创新精神和团结协作精神。另外,当今学生的薄弱方面主要是语言能力及表达能力,所以对他们进行特定的培养,提高他们这两方面的能力。在教学过程中,教师要尽量给予学生更多的机会进行语言表达,包括表述自己对问题的认识和解题思路等,从而完成数学建模论文。在训练他们语言表达能力的过程中,教师要有耐心,在语言的准确性、逻辑性、简洁性等方面及时进行指导和纠正错误,从而提高他们的语言表达能力。

  3、教师采用多媒体教学手段,提高教学效果

  教师在数学建模教学过程中,教学方法要由传统的黑板加粉笔转化为利用多媒体教学,以此来培养学生的应用能力,也提高教学效果。多媒体教学可以包含大量信息,可以直观形象的呈现教学内容,学生的学习兴趣和热情也得到很大程度的提高。采用多媒体教学手段,增加了师生之间的互动性,课程教学过程变得顺利,授课速度变快,教学效果也变得更好。在数学建模教学过程中为了实现更好的教学目标和教学效果,采用大量贴近生活的案例进行数学建模教学的。

  4、开展数学建模竞赛,培养应用型人才

  近几年来,全国高职院校开展数学建模竞赛成为大学生最重要的课外科技活动。大学生通过竞赛,可以提高查阅收集资料的自学能力,可以运用所学的数学知识来解决实际问题,提高了自身运用计算机解决数学模型问题的能力,使学生的竞争意识和探索研究精神增强的,为成为全面性的高技能应用型人才打下基础。在竞赛活动中,教师对学生进行培训指导的同时也有助于自我提高各方面能力。高职数学教师指导数学建模竞赛可以改变其缺乏研究主动性的现状,可以摒弃老旧的知识学习。有利于开展理论联系实际的数学教学模式,对高职数学教学改革创新有很大的推动作用。

  5、总结

  在高职数学教学中融入数学建模思想,教师要将学生实际生活中的问题引导到日常数学教学中,让学生自己主动思考,并自己根据所学的知识进行数学模型的构造,以此来解决实际问题,在这个过程中学生真正掌握所学知识。高职院校数学建模竞赛目前还不完善,要大力推广,不断完善。高职数学教学中融入数学建模思想,对培养高技能应用型人才和高职数学教学改革都将产生深远影响。

数学建模论文模板13

  一、数学建模教学现状分析

  在数学建模教学中,“讲授法”还是主流教学法,虽也有启发,借助多媒体辅助教学,但由于互动不足,学生自主参与较少,主动性和积极性没能有效调动起来,导致教学效果不够理想,学生没懂多少,没有理解掌握数学建模的思想和方法。

  二、数学建模教学的改革举措

  1.加强宣传。为了让更多的学生了解数学建模,可通过纸质媒体、电子媒体进行宣传,还可通过组建学生数学建模协会开展活动广而告之,还可通过在高等数学的教学中融入数学建模的案例,让学生初步了解数学建模及其特点,产生学习数学建模的兴趣。2.分类开课。为了让更多学生受益,虽有竞赛任务,数学建模选修课还是不应限定选课学生范围,比如只限定一年级学生或者有意参赛的学生,而应面向全体学生开设,又考虑到选课的学生不全是以参加竞赛为目的,不全是对数学建模感兴趣,甚至有些是因为没得选而又必须完成选修课学分的要求,可将选修课班级分“普及班”和“竞赛班”两类供学生选择,既满足学生选课的需求又兼顾竞赛的需要,对不同班级提出不同的教学要求。3.优化教学内容。在选择教学内容时,应注意如下几点:一是模型类型不宜太多,不要搞得太复杂,比如只讲初等模型、简单的优化模型;二是模型数量不宜太多,以4-6个为宜;三是难度不宜太大,还应循序渐进,内容最好为学生了解、喜闻乐见,所选模型应有利于培养学生求异思维、创新思维;四是加入数学软件的教学,让学生“玩起来”,初步学会数学软件的使用,体会数学建模与普通数学的不同之处,体验到数学的用武之地。4.改进教学方法。传统的讲授式教学法,学生一般处于被动状态,不利于发挥学生的主观能动性,而要学好数学建模需要学生主动积极参与,更多参与到教学过程当中来,因此应该采用任务驱动教学法、互动式教学法、研讨式教学法等。

  三、收获与体会

  从20xx年开始,我们在数学建模选修课教学中进行了实践,取得了良好效果,有如下收获和体会:

  数学建模课堂教学面貌换然一新。任务驱动、互动式、研讨式等教学法的综合运用,改变了以往“教师讲,学生听”,学生被动的教学模式,转变为学生主动参与、自主协作、积极探索的新型学习模式,践行了“教师为主导、学生为主体”教育精神;通过教师引导学生进行研究学习,让学生亲历知识产生与形成的过程,学会独立运用其所学的数学知识解决实际问题,从而实现知识发现与重构,激发学生的学习潜能和学习兴趣,培养了学生的学习能力和应用能力,使课堂充满活力。2.树立了学生学好数学建模的自信心。由于教法得当,优化了教学内容,加入了数学软件的学习,使学生成为了学习的主人,不再是知识的被动接受者,而是通过亲身实践、主动探索去学习发现知识,从中体验到了成功的喜悦,克服困难的乐趣;降低了学习的难度,渐进的内容安排,使学生不再觉得数学建模难以学习;而且内容贴近生活实际,使学生不再认为数学无用武之地,变要我学为我要学。

  3.教师要善于组织、指导、监控。教师组织安排教学内容时,必须要对教学内容要有透彻的理解,教学设计要有较强针对性,切实可行,要使学生通过完成任务,实现教学目标、达到教学目的;在学生自主协作学习过程中,教师要注意监控学生的学习进程,了解学生学习过程中碰到有哪些困难,给予学生适当的指导或组织学生攻坚克难。

数学建模论文模板14

  论文关键词:数学建模数学应用意识数学建模教学

  论文摘要:为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中学生数学建模能力的调查分析,发现学生数学应用及数学建模方面存在的问题,并针对问题提出了关于高中进行数学建模教学的几点意见。

  数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自进入21世纪的知识经济时代以来,数学科学的地位发生了巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理论与方法的不断扩充使得数学已成为当代高科技的一个重要组成部分,数学已成为一种能够普遍实施的技术。培养学生应用数学的意识和能力也成为数学教学的一个重要方面。

  目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。“我国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。”我国普通高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因此我们的数学教学不仅要使学生知道许多重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。而数学建模通过"从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必要时修改模型使之更切合实际"这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一,是改善学生学习方式的突破口。因此有计划地开展数学建模活动,将有效地培养学生的能力,提高学生的综合素质。

  数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性";"数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。由此,在高中数学教学中渗透数学建模知识是很有必要的。

  那么当前我国高中学生的数学建模意识和建模能力如何呢?下面是节自有关人士对某次竞赛中的一道建模题目学生的作答情况所作的抽样调查。题目内容如下:

  某市教育局组织了一项竞赛,聘请了来自不同学校的数名教师做评委组成评判组。本次竞赛制定四条评分规则,内容如下:

  (1)评委对本校选手不打分。

  (2)每位评委对每位参赛选手(除本校选手外)都必须打分,且所打分数不相同。

  (3)评委打分方法为:倒数第一名记1分,倒数第二名记2分,依次类推。

  (4)比赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。

  本次比赛中,选手甲所在学校有一名评委,这位评委将不参加对选手甲的评分,其他选手所在学校无人担任评委。

  (Ⅰ)公布评分规则后,其他选手觉得这种评分规则对甲更有利,请问这种看法是否有道理?(请说明理由)

  (Ⅱ)能否给这次比赛制定更公平的评分规则?若能,请你给出一个更公平的评分规则,并说明理由。

  本题是一道开放性很强的好题,给学生留有很大的发挥空间,不少学生都有精彩的表现,例如关于评分规则的修正,就有下列几种方案:

  方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数第二名记2+,…依次类推;(评分标准)

  方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;

  方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;

  然而也有不少学生为空白,究其原因可能除了时间因素,学生对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。同时,一些学生由于不能正确理解规则(3),得出选手甲的平均得分为,其他选手的平均得分为

  ,从而得出错误结论.不少学生出现“甲所在学校的评委会故意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。有些学生在正确理解题意的基础上,提出了“规则对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。以上各种想法都有道理,遗憾的是大部分学生仅仅停留在这些感性认识和文字说明上,没能进一步引进数学模型和数学符号去进行理性的分析。如何衡量规则的公平性是本题的关键,也是建模的原则。很少有学生能够明确提出这个原则,有些学生在第2问评分规则的修正中,提出“将甲所在学校的评委从评判组中剔除掉”,这种办法违背实际的要求。有些学生被生活中一些现象误导,提出“去掉最高分和最低分”的评分规则修正方法,而不去从数学的角度分析和研究。

  通过对这道高中数学知识应用竞赛题解答情况的分析,我们了解到学生数学建模意识和建模能力的现状不容乐观。学生在数学应用能力上存在的一些问题:(1)数学阅读能力差,误解题意。(2)数学建模方法需要提高。(3)数学应用意识不尽人意数学建模意识很有待加强。新课程标准给数学建模提出了更高的要求,也为中学数学建模的发展提供了很好的契机,相信随着新课程的实施,我们高中生的数学建模意识和建模能力会有大的提高!

  那么高中的数学建模教学应如何进行呢?数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。不同于传统的教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。

  (一)在教学中传授学生初步的数学建模知识。

  中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。

  例如在学习了二次函数的最值问题后,通过下面的应用题让学生懂得如何用数学建模的方法来解决实际问题。例:客房的定价问题。一个星级旅馆有150个客房,经过一段时间的经营实践,旅馆经理得到了一些数据:每间客房定价为160元时,住房率为55%,每间客房定价为140元时,住房率为65%,

  每间客房定价为120元时,住房率为75%,每间客房定价为100元时,住房率为85%。欲使旅馆每天收入最高,每间客房应如何定价?

  [简化假设]

  (1)每间客房最高定价为160元;

  (2)设随着房价的下降,住房率呈线性增长;

  (3)设旅馆每间客房定价相等。

  [建立模型]

  设y表示旅馆一天的总收入,与160元相比每间客房降低的房价为x元。由假设(2)可得,每降价1元,住房率就增加。因此由可知于是问题转化为:当时,y的最大值是多少?

  [求解模型]

  利用二次函数求最值可得到当x=25即住房定价为135元时,y取最大值13668.75(元),

  [讨论与验证]

  (1)容易验证此收入在各种已知定价对应的收入中是最大的。如果为了便于管理,定价为140元也是可以的,因为此时它与最高收入只差18.75元。

  (2)如果定价为180元,住房率应为45%,相应的收入只有12150元,因此假设(1)是合理的。

  (二)培养学生的数学应用意识,增强数学建模意识。

  首先,学生的应用意识体现在以下两个方面:一是面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,学习者在学习的过程中能够认识到数学是有用的。二是认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用:生活中处处有数学,数学就在他的身边。其次,关于如何培养学生的应用意识:在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“世界通用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。通过教师的潜移默化,经常渗透数学建模意识,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。

  (三)在教学中注意联系相关学科加以运用

  在数学建模教学中应该重视选用数学与物理、化学、生物、美学等知识相结合的跨学科问题和大量与日常生活相联系(如投资买卖、银行储蓄、测量、乘车、运动等方面)的数学问题,从其它学科中选择应用题,通过构建模型,培养学生应用数学工具解决该学科难题的能力。例如,高中生物学科以描述性的语言为主,有的学生往往以为学好生物学是与数学没有关系的。他们尚未树立理科意识,缺乏理科思维。比如:他们不会用数学上的排列与组合来分析减数分裂过程配子的基因组成;也不会用数学上的概率的相加、相乘原理来解决一些遗传病机率的计算等等。这些需要教师在平时相应的课堂内容教学中引导学生进行数学建模。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。又例如教了正弦函数后,可引导学生用模型函数写出物理中振动图象或交流图象的数学表达式。

  最后,为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。中学教师只有通过对数学建模的系统学习和研究,才能准确地的把握数学建模问题的深度和难度,更好地推动中学数学建模教学的发展。

数学建模论文模板15

  到2017年,武汉市共7条轨道线建成,总里程超过250公里。路网布局的合理性关系到路网建成后的社会效益和经济效益。本文以武汉市轨道交通发展为例,重点介绍了交通流量预测模型、地铁站选址模型、路线确定模型。

  自2011年起,武汉将每年开通一条轨道线,到2017年,共7条轨道线建成,总里程超过250公里。目前武汉7条地铁规划获得国家发改委批复,意味着这些线路正式拿到“准生证”,可全面开建。地下铁道路网布局合理与否,将导致能否有效地吸引运输客流。而且,经验证明轨道交通的建设只有在形成一定的网时才可以吸引更大的客户流。路网规划的好坏直接影响着后期的社会效益和经济效益。因此,作好地铁路网的规划工作有着长远的意义。

  1、武汉市地铁现状和发展趋势

  我们把武汉市政府已经建设成功的两条地铁线路设为已知,然后通过该课题研究向武汉市政府对接下来的5条地铁线路提出自己的建议和看法。武汉市政府规划建设地铁7条线路。

  地铁是目前世界上主要四种城市快速轨道交通形式之一,也是应用最为广泛的一种。运输规划学者Waber Smith建议,人口超过150万人的城市就应该有捷运系统。地铁被称为“绿色交通”,其具有运量大、速度快、污染小、能耗低以及准时等优点,是解决城市交通需求迅速增长,交通堵塞严重等问题的绝佳方法。

  2、交通流量预测模型

  地铁规划的合理性研究问题实为在节约建设成本、让居民出行的便利最大化、覆盖市区面积最广的基础上,选择出理想的地铁站点和地铁线路。其核心在将地铁规划这一大问题逐步转化为在考虑交通客流量,对城区现有的发展和将来的规划不会造成影响的因素下,选择理想的地铁站点和地铁线路。

  为了使复杂问题简单化,我们可以从“点-线-面”这个概念出发层层深入考虑地铁的合理规划。

  首先,在衡量地铁规划合理与否时,我们主要考虑交通客流量这一关键因素,因为建设地铁的最终目标就是为了舒缓客流量,方便居民的出行。我们可以通过调查问卷的形式,采集武汉地铁线路附近的交通现状数据、调查了人们对地铁的看法。并在这些数据的基础上根据四阶段法思想对交通客流量进行预测,聚类分析法预测该交通小区的生成及吸引的交通量,用重力模型法预测了该交通小区交通量的分布。从而使建立的模型具有高适用性,以给以后的问题提供较准确的数据支持。

  3、地铁站选址模型(点)

  考虑各种因素对一个地铁站点的选择的影响,其中包括站点建设成本、带动区域的经济效益、站址周边环境、施工风险、区域产业布局、舒缓客流度、名胜景点、商业圈以及站点换乘等相对次要关键因素。

  我们着重来讨论站点换乘、名胜景点和商业圈这三个对建立模型影响相对较大的因素。

  (1)站点换乘。地铁站点合理的衔接换乘, 可以缩短乘客出行时间, 增加地铁的吸引力, 吸引更多的客流通过地铁进行换乘。研究地铁站点客流的换乘特征对于地铁站点的交通衔接研究具有重要的意义, 它是了解研究对象现状和问题所在的重要手段, 也是客流预测和站点规划设计的重要依据。地铁站点客流换乘特征包括换乘方式比例、出行目的、换乘时间、客流产生区域、换乘设施等方面,获得这些特征的方法是进行站点客流的问询调查。在收集到有关数据后,我们可以将各位乘客的换乘方式以及出行目的作描述性统计分析和进一步数据处理。根据所得的数据,我们可以知道大多数乘客所需要的换乘方式以及出行目的,在结合拟定目标站点周围的公交站点情况,我们可以得到我们所需要的结论,即此处乘客换乘方式是否对在该处设置地铁站点有影响。

  (2)名胜景点和商业圈。众所周知,武汉, 中部地区最大都市及唯一的副省级城市;内陆地区最繁华都市及国家区域中心城市;中国长江中下游特大城市。世界第三大河长江及其最长支流汉江横贯市区,将武汉分为武昌、汉口、汉阳三镇鼎立的格局,唐朝诗人李白在此写下“黄鹤楼中吹玉笛,江城五月落梅花”,因此武汉又称江城。如今正以复兴大武汉为目标,重新迈向国际化大都市为目标的大武汉必然少不了历史悠久的名胜景点和繁华热闹的商业圈。比如武汉有著名的东湖景点,黄鹤楼以及江滩等等名胜景点和繁华的武广中南商业圈。但由于我们在考虑地铁站点的时候已经将交通人流量纳入了我们的考虑范围,而交通人流量大的区域很显然在大多数时候是应该包括名胜景点和商业圈的,所以,为了模型的简便,我们不在特地加入这两个变量。最后,根据这些因素,建立方案评价指标体系。通过层次分析法和熵权法的结合,得到综合权重,最后得到对该站点的总的评价,从而建立起地铁站点选址的模型。

  (3)路线确定模型(线)。我们从“线”的角度出发,求出地起始站点与目的地站点间的最佳路径。地铁作为一项市政工程,首要职能将是缓解交通压力,增加市民方便程度——将这一职能量化的一个很好的标准,便是使市民出行到达目的地的时间最快,即地铁线路程最短。将地铁站点抽象为节点,将地铁线路抽象为连接线路各站点的有向边,构造一地铁网络有向图,用边上的权值反应影响地铁线路选择的关键因素,从而将求解最佳路径问题转化为求解图中起始节点与目的地节点间的最优路径的问题,建立基于点搜索的多目标优化模型,运用Dijkstra的算法筛点求解。

  (4)总体规划模型(面)。从各方面分析主城区交通需求,然后经过“面”、“点”、“线”的层次分析,通过宏观层次的定性论证,如考虑宏观预算与城市发展地理趋势因素,用面点线多模块网络层次分析法(AHP)规划地铁轨道交通线网预选方案,画出各预选方案的规划图。最后,利用模糊数学给各总体规划图评分,筛选出最佳规划。

  4、总结

  武汉市地铁线路的规划一般是在对城市结构与土地利用、城市客流需求的空间分布特点,线路工程实施可行性以及一些可能遇到的实际社会问题(机场换乘等)进行定性与定量分析的基础上,形成多个备选方案。并在此基础上,对备选方案进行必要的规划。推荐的路网确定以后,可重新进行推荐方案的客流预测,进一步对地铁路网进行综合评价。在规划范围上,必须保持与城市的总体规划相协调,以城市的总体规划为依据。由于规划是随着人们的认识和经济水平等因素在变化的,因此在路网规划编制完成以后,应根据具体的实施情况进行不断地修正。

【数学建模论文】相关文章:

数学建模论文格式01-14

数学建模论文的致谢词01-25

数学建模的论文格式12-30

数学建模论文格式规范12-28

数学建模论文格式要求12-30

数学建模优秀论文范文12-23

优秀数学建模优秀论文范文12-23

数学建模协会纳新面试题01-13

基于结构方程建模的供应链价值网络优化论文04-18

数学小论文12-09