我要投稿 投诉建议

中考数学知识点总结

时间:2024-06-10 14:07:20 中考 我要投稿

中考数学知识点总结15篇(热门)

  总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,它可以促使我们思考,让我们好好写一份总结吧。那么总结要注意有什么内容呢?以下是小编帮大家整理的中考数学知识点总结,欢迎阅读,希望大家能够喜欢。

中考数学知识点总结15篇(热门)

中考数学知识点总结1

  1、二次函数的概念

  一般地,如果,那么y叫做x 的二次函数。

  叫做二次函数的一般式。

  2、二次函数的像

  二次函数的像是一条关于对称的曲线,这条曲线叫抛物线。

  抛物线的`主要特征:

  ①有开口方向;②有对称轴;③有顶点。

  3、二次函数像的画法

  五点法:

  (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴

  (2)求抛物线与坐标轴的交点:

  当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的像。

  当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D。由C、M、D三点可粗略地画出二次函数的草。如果需要画出比较精确的像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的像。

中考数学知识点总结2

  一、初中数学基本知识

  ㈠、数与代数

  A、数与式:

  1、有理数

  有理数:①整数→正整数/0/负整数

  ②分数→正分数/负分数

  数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算:

  加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

  除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

  2、实数

  无理数:无限不循环小数叫无理数

  平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

  3、代数式

  代数式:单独一个数或者一个字母也是代数式。

  合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

  4、整式与分式

  整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

  整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

  幂的运算:AMAN=A(MN)

  (AM)N=AMN

  (A/B)N=AN/BN除法一样。

  整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

  公式两条:平方差公式/完全平方公式

  整式的除法:

  ①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

  ②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

  方法:提公因式法、运用公式法、分组分解法、十字相乘法。

  分式:

  ①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

  ②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

  分式的运算:

  乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

  除法:除以一个分式等于乘以这个分式的倒数。

  加减法:

  ①同分母的分式相加减,分母不变,把分子相加减。

  ②异分母的分式先通分,化为同分母的分式,再加减。

  分式方程:

  ①分母中含有未知数的方程叫分式方程。

  ②使方程的分母为0的'解称为原方程的增根。

  20xx年中考数学基础知识总结20xx年中考数学基础知识总结

  B、方程与不等式

  1、方程与方程组

  一元一次方程:

  ①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

  ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

  解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

  二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

  二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。

  一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

  1)一元二次方程的二次函数的关系

  大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了

  2)一元二次方程的解法

  大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解

  (1)配方法

  利用配方,使方程变为完全平方公式,在用直接开平方法去求出解

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解

  (3)公式法

  这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a

  3)解一元二次方程的步骤:

  (1)配方法的步骤:

  先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

  (2)分解因式法的步骤:

  把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式

  (3)公式法

  就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c

  4)韦达定理

  利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a

  也可以表示为x1x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用

  5)一元一次方程根的情况

  利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diata”,而△=b2-4ac,这里可以分为3种情况:

  I当△>0时,一元二次方程有2个不相等的实数根;

  II当△=0时,一元二次方程有2个相同的实数根;

  III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)

  2、不等式与不等式组

  不等式:

  ①用符号〉,=,〈号连接的式子叫不等式。

  ②不等式的两边都加上或减去同一个整式,不等号的方向不变。

  ③不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ④不等式的两边都乘以或除以同一个负数,不等号方向相反。

  不等式的解集:

  ①能使不等式成立的未知数的值,叫做不等式的解。

  ②一个含有未知数的不等式的所有解,组成这个不等式的解集。

  ③求不等式解集的过程叫做解不等式。

  一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

  一元一次不等式组:

  ①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  ②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  ③求不等式组解集的过程,叫做解不等式组。

  一元一次不等式的符号方向:

  在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

  在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,AC>BC

  在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C

  在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)

  在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C

  如果不等式乘以0,那么不等号改为等号

  所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;

  二、函数

  变量:因变量,自变量。

  在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

  一次函数:①若两个变量X,间的关系式可以表示成=XB(B为常数,不等于0)的形式,则称是X的一次函数。②当B=0时,称是X的正比例函数。

  一次函数的图象:①把一个函数的自变量X与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数=X的图象是经过原点的一条直线。③在一次函数中,当〈0,B〈O,则经234象限;当〈0,B〉0时,则经124象限;当〉0,B〈0时,则经134象限;当〉0,B〉0时,则经123象限。④当〉0时,的值随X值的增大而增大,当X〈0时,的值随X值的增大而减少。

  三、空间与图形

  A、图形的认识

  1、点,线,面

  点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

  展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。

  截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

  视图:主视图,左视图,俯视图。

  多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

  20xx年中考数学基础知识总结建造师考试_建筑工程类工程师考试网

  弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。

  2、角

  线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。

  比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。

  角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。

  角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

  垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。

  垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

  垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

  垂直平分线定理:

  性质定理:在垂直平分线上的点到该线段两端点的距离相等;

  判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

  角平分线:把一个角平分的射线叫该角的角平分线。

  定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

  性质定理:角平分线上的点到该角两边的距离相等

  判定定理:到角的两边距离相等的点在该角的角平分线上

  正方形:一组邻边相等的矩形是正方形

  性质:正方形具有平行四边形、菱形、矩形的一切性质

中考数学知识点总结3

  1、方程:含有未知数的等式叫做方程。

  2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

  3、解方程:求方程的解或方判断方程无解的过程叫做解方程。

  4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。

  二、一元方程

  1、一元一次方程

  (1)一元一次方程的标准形式:ax+b=0(其中x是未知数,a、b是已知数,a≠0)

  (2)一玩一次方程的最简形式:ax=b(其中x是未知数,a、b是已知数,a≠0)

  (3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。

  (4)一元一次方程有唯一的一个解。

  2、一元二次方程

  (1)一元二次方程的'一般形式:(其中x是未知数,a、b、c是已知数,a≠0)

  (2)一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法

  (3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。

  (4)一元二次方程的根的判别式:

  当Δ>0时方程有两个不相等的实数根;

  当Δ=0时方程有两个相等的实数根;

  当Δ< 0时方程没有实数根,无解;

  当Δ≥0时方程有两个实数根

  (5)一元二次方程根与系数的关系:

  若是一元二次方程的两个根,那么:,(6)以两个数为根的一元二次方程(二次项系数为1)是:

  三、分式方程

  (1)定义:分母中含有未知数的方程叫做分式方程。

  (2)分式方程的解法:

  一般解法:去分母法,方程两边都乘以最简公分母。

  特殊方法:换元法。

  (3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。

  四、方程组

  1、方程组的解:方程组中各方程的公共解叫做方程组的解。

  2、解方程组:求方程组的解或判断方程组无解的过程叫做解方程组

  3、一次方程组:

  (1)二元一次方程组:

  一般形式:(不全为0)

  解法:代入消远法和加减消元法

  解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。

  (2)三元一次方程组:

  解法:代入消元法和加减消元法

  4、二元二次方程组:

  (1)定义:由一个二元一次方程和一个二元二次方程组成的方程组以及由两个二元二次方程组成的方程组叫做二元二次方程组。

  (2)解法:消元,转化为解一元二次方程,或者降次,转化为二元一次方程组。

中考数学知识点总结4

  第一章实数

  考点一、实数的概念及分类(3分)

  1、实数的分类

  正有理数

  有理数零有限小数和无限循环小数实数负有理数正无理数

  无理数无限不循环小数负无理数

  整数包括正整数、零、负整数。

  正整数又叫自然数。

  正整数、零、负整数、正分数、负分数统称为有理数。

  2、无理数

  在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

  (1)开方开不尽的数,如7,32等;

  (2)有特定意义的数,如圆周率π,或化简后含有π的数,如

  (3)有特定结构的数,如0.1010010001等;

  (4)某些三角函数,如sin60o等

  考点二、实数的倒数、相反数和绝对值(3分)

  1、相反数

  实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=b,反之亦成立。

  2、绝对值

  一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

  3、倒数

  如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

  考点三、平方根、算数平方根和立方根(310分)

  1、平方根

  如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。正数a的平方根记做“。a”

  π+8等;

  2、算术平方根

  正数a的正的平方根叫做a的算术平方根,记作“a”。正数和零的算术平方根都只有一个,零的算术平方根是零。a(a0)a0

  a2a;注意a的双重非负性:

  -a(a考点六、实数的运算(做题的基础,分值相当大)

  1、加法交换律abba

  2、加法结合律(ab)ca(bc)

  3、乘法交换律abba

  4、乘法结合律(ab)ca(bc)

  5、乘法对加法的分配律a(bc)abac

  6、实数混合运算时,对于运算顺序有什么规定?

  实数混合运算时,将运算分为三级,加减为一级运算,乘除为二能为运算,乘方为三级运算。同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行。

  7、有理数除法运算法则就什么?

  两有理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以这个数的倒数;第二,两数相除,同号得正,异号得负,并把绝对值相除。零除以任何一个不为零的.数,商都是零。

  8、什么叫有理数的乘方?幂?底数?指数?

  相同因数相乘积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫底数。记作:an

  9、有理数乘方运算的法则是什么?

  负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数。零的任何正整数幂都是零。

  10、加括号和去括号时各项的符号的变化规律是什么?

  去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去(加)括号后式子各项的符号与原括号内式子相应各项的符号相反。

  平行线与相交线

  知识要点

  一.余角、补角、对顶角

  1,余角:如果两个角的和是直角,那么称这两个角互为余角.

  2,补角:如果两个角的和是平角,那么称这两个角互为补角.

  3,对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.

  4,互为余角的有关性质:

  ①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,

  则∠1+∠2=90°;②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠3=90°,则∠2=∠3.

  5,互为补角的有关性质:①若∠A+∠B=180°,则∠A、∠B互补;反过来,若∠A、∠B互补,则∠A+∠B=180°.

  ②同角或等角的补角相等.如果∠A+∠C=180°,∠A+∠B=180°,则∠B=∠C.

  6,对顶角的性质:对顶角相等.

  二.同位角、内错角、同旁内角的认识及平行线的性质

  7,同一平面内两条直线的位置关系是:相交或平行.

  8,“三线八角”的识别:

  三线八角指的是两条直线被第三条直线所截而成的八个角.

  正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.三.平行线的性质与判定

  9,平行线的定义:在同一平面内,不相交的两条直线是平行线.

  10,平行线的性质:两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.

  11,过直线外一点有且只有一条直线和已知直线平行.

  12,两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.

  13,如果两条直线都与第三条直线平行,那么这两条直线互相平行.

  14,平行线的判定:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等.那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.这三个条件都是由角的数量关系(相等或互补)来确定直线的位置关系(平行)的,因此能否找到两直线平行的条件,关键是能否正确地找到或识别出同位角,内错角或同旁内角.

  15,常见的几种两条直线平行的结论:

  (1)两条平行线被第三条直线所截,一组同位角的角平分线平行;

  (2)两条平行线被第三条直线所截,一组内错角的角平分线互相平行.

  四.尺规作图

  16,只用没有刻度的直尺和圆规的作图的方法称为尺规作图.用尺规可以作一条线段等于已知线段,也可以作一个角等于已知角.利用这两种两种基本作图可以作出两条线段的和或差,也可以作出两个角的和或差.

中考数学知识点总结5

  (1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类: ① 整数 ②分数

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数 0和正整数;a0 a是正数;a0 a是负数;

  a≥0 a是正数或0 a是非负数;a≤ 0 ? a是负数或0 a是非正数.

  有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的`两个数,右边的数总比左边的数大;

  (6)大数-小数 0,小数-大数 0.

中考数学知识点总结6

  1、随机事件

  必然事件:在一定条件下,一定会发生的事件称为必然事件。

  不可能事件:在一定条件下,一定不会发生的事件称为不可能事件。

  必然事件和不可能事件统称确定性事件。

  随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件。

  2、概率

  (1)概率的性质:P(必然事件)=1;P(不可能事件)=0;0

  (2)一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包括其中的m种结果,那么事件A发生的概率。

  1、能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率。

  2、知道通过大量的重复试验,可以用频率来估计概率。

  1、必然事件、不可能事件、随机事件的辨析。

  2、简单事件的概率求解。

  3、用频率估计概率。

  4、用概率解决实际问题。

  5、概率与其它知识的综合运用。

  1、下列事件中是必然事件的是( )

  A、拉萨明日刮西北风 B、抛掷一枚硬币,落地后正面朝上

  C、当x是实数时,x2≥0 D、三角形内角和是360°

  2、下列说法正确的是( )

  A、拉萨市“明天降雨的概率是75%”表示明天有75%的时间会降雨

  B、随机抛掷一枚均匀的硬币,落地后正面一定朝上

  C、在一次抽奖活动中,“中奖的概率是1%”表示抽奖100次就一定会中奖

  D、在平面内,平行四边形的两条对角线一定相交

  3、下列事件是不可能事件的是( )

  A、一个角和它的余角的和是90°

  B、接连掷10次骰子都是6点朝上

  C、一个有理数和它的倒数之和等于0

  D、一个有理数小于它的倒数

  4、下列事件中是必然事件的是( )

  A、从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球

  B、扎西的自行车轮胎被钉子扎坏

  C、卓玛期末考试数学成绩一定得满分

  D、将菜籽油滴入水中,菜籽油会浮在水面上

  5、下列说法中,正确的是( )

  A、生活中,如果一个事件不是不可能事件,那么它就必然发生

  B、生活中,如果一个事件可能发生,那么它就是必然事件

  C、生活中,如果一个事件发生的可能性很大,那么它也可能不发生

  D、生活中,如果一个事件不是必然事件,那么它就不可能发生

  6、同时投掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数。下列事件中是不可能事件的是( )

  A、点数之和为12 B、点数之和小于3

  C、点数之和大于4且小于8 D、点数之和为13

  7、某个事件发生的概率是,这意味着( )

  A、在两次重复实验中该事件必有一次发生 B、在一次实验中没有发生,下次肯定发生

  C、在一次实验中已经发生,下次肯定不发生 D、每次实验中事件发生的可能性是50%

  8、在生产的`100件产品中,有95件正品,5件次品。从中任抽一件是次品的概率为( )

  A、0.05 B、0.5 C、0.95 D、95

  9、有50个型号相同的乒乓球,其中一等品40个,二等品8个,三等品2个,现从中任取一个乒乓球,抽到一等品的概率是( )

  A、 B、 C、 D、

  10、卓玛的文具盒中有两支蜡笔:一支红色的、一支绿色的;三支水彩笔:分别是黄色、红色、黑色,任意拿出一支蜡笔和一支水彩笔,正好都是红色的概率是( )

  A、 B、 C、 D、

  11、某灯泡厂的一次质量检查中,从20xx个灯泡中抽查了100个,其中有6个不合格,那么在这20xx个灯泡中,估计有 个灯泡不合格。

  12、随意安排甲、乙、丙3人在3天节日中值班,每人值班1天。

  (1)这3人的值班顺序共有多少种不同的排列方法?

  (2)其中甲排在乙之前的排法有多少种?

  (3)甲排在乙之前的概率是多少?

  学数学的窍门有哪些

  学数学最重要的就是解题能力。要想会做数学题目,就要有大量的练习积累,知道各类型题目的解题步骤与方法,题目做多了就有手感了,再拿出类似的题目才会有解题思路。

  其次是学会预习。解题思路不是直接就有的,也并非通过做几道简单的题目就能轻易获得,而是在预习过程中不断积累出来的。因此,预习在数学学习过程中起到了非常重要的作用。预习一方面能够让大家提前对数学知识有所了解,另一方面能够培养数学独立学习能力。

  学数学必须多做题。理解了数学基本定义和知识点以后,就需要通过做对应习题去巩固知识,多做多练才能更好地掌握所学知识,学数学也是看花容易绣花难的,只有真正动手去做题、经历了实操过程能学会。

  学好数学有什么技巧

  1、有良好的学习兴趣

  (1)课前预习,对所学知识产生疑问,产生好奇心。

  (2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

  2、建立良好的学习数学习惯

  习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

中考数学知识点总结7

  (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类:①整数②分数

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0?a是负数或0a是非正数.

  有理数比大小:

  (1)正数的'绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数-小数>0,小数-大数<0.

中考数学知识点总结8

  中位线概念

  (1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。

  (2)梯形中位线定义:连接梯形两腰中点的线段叫做梯形的中位线。

  注意(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连接一顶点和它的对边中点的线段,而三角形中位线是连接三角形两边中点的线段。

  (2)梯形的中位线是连接两腰中点的线段而不是连结两底中点的线段。

  (3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时三角形的.中位线就变成梯形的中位线。

  中位线定理

  (1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.

  (2)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.

  中位线定理推广

  三角形有三条中位线,首尾相接时,每个小三角形面积都等于原三角形的四分之一,这四个三角形都互相全等。

中考数学知识点总结9

  三角函数关系

  倒数关系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的关系

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方关系

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函数关系六角形记忆法

  构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

  倒数关系

  对角线上两个函数互为倒数;

  商数关系

  六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。

  平方关系

  在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

  锐角三角函数定义

  锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

  正弦(sin)等于对边比斜边;sinA=a/c

  余弦(cos)等于邻边比斜边;cosA=b/c

  正切(tan)等于对边比邻边;tanA=a/b

  余切(cot)等于邻边比对边;cotA=b/a

  正割(sec)等于斜边比邻边;secA=c/b

  余割(csc)等于斜边比对边。cscA=c/a

  互余角的三角函数间的关系

  sin(90°-α)=cosα,cos(90°-α)=sinα,

  tan(90°-α)=cotα,cot(90°-α)=tanα.

  平方关系:

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  积的'关系:

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  倒数关系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  中考数学知识点

  1、反比例函数的概念

  一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。

  2、反比例函数的图像

  反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

  3、反比例函数的性质

  反比例函数k的符号k>0k<0图像yO xyO x性质①x的取值范围是x0,

  y的取值范围是y0;

  ②当k>0时,函数图像的两个分支分别

  在第一、三象限。在每个象限内,y

  随x 的增大而减小。

  ①x的取值范围是x0,

  y的取值范围是y0;

  ②当k<0时,函数图像的两个分支分别

  在第二、四象限。在每个象限内,y

  随x 的增大而增大。

  4、反比例函数解析式的确定

  确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

  5、反比例函数的几何意义

  设是反比例函数图象上任一点,过点P作轴、轴的垂线,垂足为A,则

  (1)△OPA的面积.

  (2)矩形OAPB的面积。这就是系数的几何意义.并且无论P怎样移动,△OPA的面积和矩形OAPB的面积都保持不变。

  矩形PCEF面积=,平行四边形PDEA面积=

中考数学知识点总结10

  在日常的练习、作业和考试中,学生都会或多或少地出现一些做错的题目,而对待错题的态度不同,学习的效果就会有很大的差别。丁老师就来告诉同学们怎么来用好我们的错题吧!

  错题主要涉及错题收集和存档、错题改正、错题分享、错题应用四个环节。

  一、错题收集和存档:

  这里的错题,不仅指各级各类数学考试中的错题,还包括平时数学作业中做错的题目。最好把错题都摘录到一个固定的本子上面(错题本),便于自己以后查阅。即使是曾经错了而现在理解了的题目也最好登记在册,它们形成独具个性的学习轨迹,有利于知识的理解、识记、储存和提取。

  在进行错题收集的时候,一定要注意分类。分类的方法很多,可以按照错题原因分类、按照错题中所隐含知识的章节进行分类,甚至还可以按照题型进行分类。这样整理好的错题是系统的,到最后复习时就有比较强的针对性。

  二、错题改正:

  收集错题以后,接下来就是改错了,这是错题管理的目的。学生要争取自己独立对错题进行分析,然后找出正确的解答,并订正。在自己独立思考的基础上,如果还是得不到答案,这时候就需要积极地求助他人了,可以是学得比较好的同学,也可以是老师。让他们帮自己分析原因,在他们的启发引导下进行改正。找到出错的症结所在,最好能在错题后面附上自己的心得体会,可以依次回答以下问题:

  这道题目错在什么地方?

  这道题目为什么做错了?(错在计算、化简?错在概念理解?错在理解题意?错在逻辑关系?错在以偏概全?错在粗心大意?错在思维品质?错在类比?等等。)

  这道题目正确的做法是什么?

  这道题目有没有其它解法?哪种方法更好?

  错题改正这个过程其实就是学生再学习、再认识、再提高的过程,它使学生对易出错的知识的理解更全面透彻,掌握更加牢固,同时也提高了学生自主学习的能力。一般意义上,任何学习都需要反思,错题改正是反思的具体途径之一。

  整理错题并不是为了做得好看,是为了实用,对自己的学习有帮助。因而没有固定的标准,关键要符合学生自己的习惯。但是学生一定要抽时间翻阅自己辛勤劳动的结晶,对其中的错题进行温习,这样做有时候可以收到意想不到的效果,会有新的体会。其实整理好的错题集就相当于是以前做过的大量习题中的精华荟萃(这要建立在学生认真整理的基础上),是最适合学生个人的学习资料,比任何一本参考书、习题集都有用,有价值。

  三、错题分享:

  在现行的学习体制下,学生之间的竞争意识很强,但是主动交流分享意识非常薄弱。其实同学就是一个巨大的学习资源库,只要每个学生都愿意敞开心扉,真诚地交流,相互扶持,相互帮助和鼓励,学生就可以从同学身上学到很多东西。正所谓“你有一种思想,我有一种思想,交流之后我们就同时拥有了两种思想”,学生之间的错题集也可以相互交流。这是因为每个学生出错的原因各不相同,所以每个人建立的错题集也不同,通过相互交流可以从别人的错误中汲取教训,拓展自己的视野,得到启发,以警示自己不犯同样错误。不同的人从相同的题目中得到的是不同的体会,通过交流大家就可以领略到知识的不同侧面,从而对知识掌握得更加牢固。在交流的氛围中,学生改变了学习方式,增强了学习数学的积极性。

  四、错题应用:

  将错题收集在一起并改正,还不能完全说明学生对这一知识点的漏洞就补好了。最好的状况是对于每一个错题,学生自己还必须查找资料,找出与之相同或相关的.题型,进行练习解答。如果没有困难,则说明学生对这一知识点可能已经掌握。此时,学生可以尝试着进行更高难度的事情:错题改编。将题目中的条件和结论换一下,还成立吗?把条件减弱或者把结论加强,命题还成立吗?或者尝试着编一道类似的题目,还能做吗?经历了这么一个思维洗礼,学生对知识的理解会更深刻,对方法的把握会更透彻,不管条件怎么变,他们基本上都可以应付自如了。一般情况下,学生在学校可能没有这么充裕的时间来做这样的事情,但是学生之间相互协助,每人找一个类型的题目,或者每人提出一个想法,全班合起来就基本找全了所有的题型,改编了很多道类似的题目。

  错题管理有助于学生的数学学习。但是,错题管理并不是学习的目的,而是帮助学生进行有效学习的一种手段。制作错题集更不是任务,不一定要做得精致、全面,它只是一种训练思维的载体。最关键的是,学生和老师不能轻易放过错题,彻底弄清楚错题所反映的问题,学以致用。在反思学习的过程中完善自己的知识结构,提升解决问题的能力,实现有效学习和有效教学的终极目标。

中考数学知识点总结11

  1、有理数的加法运算:

  同号相加一边倒;异号相加“大”减“小”,符号跟着大的.跑;绝对值相等“零”正好、

  2、合并同类项:

  合并同类项,法则不能忘,只求系数和,字母、指数不变样、

  3、去、添括号法则:

  去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号、

  4、一元一次方程:

  已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒、

  5、平方差公式:

  平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆、

  1、完全平方公式:

  完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;

  首±尾括号带平方,尾项符号随中央、

  2、因式分解:

  一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚、

  3、单项式运算:

  加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行、

  4、一元一次不等式解题的一般步骤:

  去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了、

  5、一元一次不等式组的解集:

  大大取较大,小小取较小,小大、大小取中间,大小、小大无处找、

  一元二次不等式、一元一次绝对值不等式的解集:

  大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

中考数学知识点总结12

  一、 重要概念

  1。数的分类及概念

  数系表:

  说明:“分类”的原则:1)相称(不重、不漏)

  2)有标准

  2。非负数:正实数与零的统称。(表为:x≥0)

  常见的非负数有:

  性质:若干个非负数的和为0,则每个非负担数均为0。

  3。倒数: ①定义及表示法

  ②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a1时,1/a1;D。积为1。

  4。相反数: ①定义及表示法

  ②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C。和为0,商为-1。

  5。数轴:①定义(“三要素”)

  ②作用:A。直观地比较实数的大小;B。明确体现绝对值意义;C。建立点与实数的'一一对应关系。

  6。奇数、偶数、质数、合数(正整数—自然数)

  定义及表示:

  奇数:2n-1

  偶数:2n(n为自然数)

  7。绝对值:①定义(两种):

  代数定义:

  几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

  ②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

中考数学知识点总结13

  考点1

  相似三角形的概念、相似比的意义、画图形的放大和缩小。

  考核要求:

  (1)理解相似形的概念;

  (2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。

  考点2

  平行线分线段成比例定理、三角形一边的平行线的有关定理

  考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。

  注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。

  考点3

  相似三角形的概念

  考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。

  考点4

  相似三角形的判定和性质及其应用

  考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。

  考点5

  三角形的重心

  考核要求:知道重心的定义并初步应用。

  考点6

  向量的有关概念

  考点7

  向量的加法、减法、实数与向量相乘、向量的线性运算

  考核要求:掌握实数与向量相乘、向量的线性运算

  考点8

  锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。

  考点9

  解直角三角形及其应用

  考核要求:

  (1)理解解直角三角形的意义;

  (2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。

  考点10

  函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数

  考核要求:

  (1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;

  (2)知道常值函数;

  (3)知道函数的表示方法,知道符号的意义。

  考点11

  用待定系数法求二次函数的解析式

  考核要求:

  (1)掌握求函数解析式的方法;

  (2)在求函数解析式中熟练运用待定系数法。

  注意求函数解析式的步骤:一设、二代、三列、四还原。

  考点12

  画二次函数的图像

  考核要求:

  (1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像

  (2)理解二次函数的图像,体会数形结合思想;

  (3)会画二次函数的大致图像。

  考点13

  二次函数的图像及其基本性质

  考核要求:

  (1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;

  (2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。

  注意:

  (1)解题时要数形结合;

  (2)二次函数的平移要化成顶点式。

  考点14

  圆心角、弦、弦心距的概念

  考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。

  考点15

  圆心角、弧、弦、弦心距之间的关系

  考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。

  考点16

  垂径定理及其推论

  垂径定理及其推论是圆这一板块中最重要的知识点之一。

  考点17

  直线与圆、圆与圆的位置关系及其相应的数量关系

  直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。

  考点18

  正多边形的有关概念和基本性质

  考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。

  考点19

  画正三、四、六边形。

  考核要求:能用基本作图工具,正确作出正三、四、六边形。

  考点20

  确定事件和随机事件

  考核要求:

  (1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;

  (2)能区分简单生活事件中的必然事件、不可能事件、随机事件。

  考点21

  事件发生的可能性大小,事件的概率

  考核要求:

  (1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;

  (2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;

  (3)理解随机事件发生的.频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。

  注意:

  (1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;

  (2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。

  考点22

  等可能试验中事件的概率问题及概率计算

  考核要求:

  (1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;

  (2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;

  (3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。

  注意:

  (1)计算前要先确定是否为可能事件;

  (2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。

  考点23

  数据整理与统计图表

  考核要求:

  (1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;

  (2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

  考点24

  统计的含义

  考核要求:

  (1)知道统计的意义和一般研究过程;

  (2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。

  考点25

  平均数、加权平均数的概念和计算

  考核要求:

  (1)理解平均数、加权平均数的概念;

  (2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

  考点26

  中位数、众数、方差、标准差的概念和计算

  考核要求:

  (1)知道中位数、众数、方差、标准差的概念;

  (2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。

  注意:

  (1)当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;

  (2)求中位数之前必须先将数据排序。

  考点27

  频数、频率的意义,画频数分布直方图和频率分布直方图

  考核要求:

  (1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;

  (2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。

  考点28

  中位数、众数、方差、标准差、频数、频率的应用

  考核要求:

  (1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;

  (2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;

  (3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。

  如何整理数学学科课堂笔记?

  一、内容提纲。

  老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上。同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹、清晰完整。

  二、疑难问题。

  将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。

  三、思路方法。

  对老师在课堂上介绍的解题方法和分析思路也应及时记下,课后加以消化,若有疑惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。

  四、归纳总结。注意记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作准备,做到目标任务明确。

  五、错误反思。

  学习过程中不可避免地会犯这样或那样的错误,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。

  数学常用解题技巧有哪些?

  第一,应坚持由易到难的做题顺序。

  近年来高考数学试题的设置是8道选择题、6道填空题、6到大题,通常称为866结构。在实体设置的结构中有三个小高峰,选择题是由易到难,最难的题是第8题。填空题同样是这样设置的。也是第9题容易到第14题最难,大题从第15题到第20题,它们的设置也是这样的。根据这样的试题结构,应先做前面容易的,基础好一点的考生就先做前7个选择,前5个填空、前5个大题,称为是755结构。基础差的就是644,先把自己能做的、会做的拿到手。这是第一点。

  第二,审题是关键。

  把题给看清楚了再动笔答题,看清楚题以后问什么、已知什么、让你做什么,把这些问题搞清楚了,自己制订了一个完整的解题策略,在开始写的时候,这个时候是很快就可以完成的。

  第三,属于非智力因素导致想不起来。

  本来是很简单的题比如说是做到第三题、第四题的时候不是难题,但想不起来了,卡住了,这时候怎么办?虽然是简单题却不会做怎么办?应先跳过去,不是这道题不会做吗?后面还有很多的简单题呢,把后面的题做一做,不要在考场上愣神,先跳过去做其他的题,等稳定下来以后再回过头来看会顿悟,豁然开朗。

  第四,做选择题的时候应运用最好的解题方法。

  因为选择题和填空题都是看结果不看过程,因此在这个过程中都应不择手段,只要是能把正确的结论找到就行。考生常用的方法是直接法,从已知的开始也不看它的四个选项,从头到尾写完了之后一看答案就写上去了。另外就是特质法(音),一些出现字母、特别是不等式,这时候给它赋一个值,代进去这时候速度会比较快,正确地找出结果来。再就是数形结合法。最后实在不行了,就将四个选项代入验证,看看哪个符合就是哪个了。填空题用上述的直接法、特质法、数形结合法三种方法都适合。做大题的时候要特别注意解题步骤,规范答题可以减少失分。简单地说,规范答题就是从上一步的原因到下一步的结论,这是一个必然的过程,让谁写、谁看都是这样的。因为什么所以什么是一个必然的过程,这是规范答题。

  学霸分享的数学复习技巧

  1、把答案盖住看例题

  例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。

  所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。

  经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。

  2、研究每题都考什么

  数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。

  3、错一次反思一次

  每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。

  学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。

  4、分析试卷总结经验

  每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。

中考数学知识点总结14

  中考数学知识点:分式混合运算法则

  分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.

  分式混合运算法则:

  分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);

  乘法进行化简,因式分解在先,分子分母相约,然后再行运算;

  加减分母需同,分母化积关键;找出最简公分母,通分不是很难;

  变号必须两处,结果要求最简.

  中考数学二次根式的加减法知识点总结

  二次根式的加减法

  知识点1:同类二次根式

  (Ⅰ)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如这样的二次根式都是同类二次根式。

  (Ⅱ)判断同类二次根式的方法:(1)首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否相同。(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。

  知识点2:合并同类二次根式的方法

  合并同类二次根式的理论依据是逆用乘法对加法的分配律,合并同类二次根式,只把它们的.系数相加,根指数和被开方数都不变,不是同类二次根式的不能合并。

  知识点3:二次根式的加减法则

  二次根式相加减先把各个二次根式化成最简二次根式,再把同类二次根式合并,合并的方法为系数相加,根式不变。

  知识点4:二次根式的混合运算方法和顺序

  运算方法是利用加、减、乘、除法则以及与多项式乘法类似法则进行混合运算。运算的顺序是先乘方,后乘除,最后加减,有括号的先算括号内的。

  知识点5:二次根式的加减法则与乘除法则的区别

  乘除法中,系数相乘,被开方数相乘,与两根式是否是同类根式无关,加减法中,系数相加,被开方数不变而且两根式须是同类最简根式。

  中考数学知识点:直角三角形

  ★重点★解直角三角形

  ☆内容提要☆

  一、三角函数

  1.定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.

  2.特殊角的三角函数值:

  0°30°45°60°90°

  sinα

  cosα

  tgα/

  ctgα/

  3.互余两角的三角函数关系:sin(90°-α)=cosα;…

  4.三角函数值随角度变化的关系

  5.查三角函数表

  二、解直角三角形

  1.定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

  2.依据:①边的关系:

  ②角的关系:A+B=90°

  ③边角关系:三角函数的定义。

  注意:尽量避免使用中间数据和除法。

  三、对实际问题的处理

  1.俯、仰角:2.方位角、象限角:3.坡度:

  4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

中考数学知识点总结15

  不等式与不等式组

  1.定义:

  用符号〉,=,〈号连接的式子叫不等式。

  2.性质:

  ①不等式的两边都加上或减去同一个整式,不等号方向不变。

  ②不等式的`两边都乘以或者除以一个正数,不等号方向不变。

  ③不等式的两边都乘以或除以同一个负数,不等号方向相反。

  3.分类:

  ①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

  ②一元一次不等式组:

  a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  4.考点:

  ①解一元一次不等式(组)

  ②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

  ③用数轴表示一元一次不等式(组)的解集

【中考数学知识点总结】相关文章:

中考数学圆知识点总结01-13

中考数学知识点总结05-24

[实用]中考数学知识点总结05-24

【优】中考数学知识点总结06-09

中考数学知识点总结【热门】06-09

中考数学知识点总结(通用)06-09

中考数学知识点总结(热)06-10

中考数学知识点总结(精华)06-10

中考数学知识点03-15

中考数学必考知识点03-12