矩阵开题报告范文
矩阵变换及应用开题报告
一、 选题意义
1、 理论意义:
矩阵是数学中的一个重要内容,是线性代数核心。矩阵的变换是矩阵中一种十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到非常重要的作用。很多复杂、繁琐的问题经过变换都可以化为简单、易于解决的问题。因此,矩阵变换是研究代数问题的一个重要工具。
2、 现实意义:
矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、控制、模式识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着不可代替的作用。
二、 论文综述
1、 国内外有关研究的综述:
矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此国内外有许多有关于矩阵的研究。英国数学家西尔维斯特首先使用了“矩阵”一词,他与矩阵论的创立者凯莱一起发展了行列式理论。1858年,凯莱发表了关于矩阵的第一篇论文《矩阵论的研究报告》。自此以后,国内外有了许多关于矩阵的研究。在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容,在第一章中有关于矩阵初等变换的`内容,并有初等变换在矩阵方程中的应用,在第四章中也提到了Householder变换和Givens旋转。美国著名的约翰斯.霍普金斯大学的RogerA.Horn和威廉姆和玛丽学院的CharlesR.Johnson联合编著的《矩阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。国内外关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出了巨大贡献。
2 、本人对以上综述的评价:
矩阵理论一直都是各个学科的基本数学工具,矩阵变换是矩阵理论的基础,近年来有许多关于矩阵变换的研究,这些研究将一些繁琐复杂的问题简单化,也极大地推进和丰富了电子信息、航空航天等领域的发展,同时促进了更多的数学家加入到研究矩阵变换的队伍中,这样就使得矩阵变换知识日渐完善,并应用到更多的领域中去。
三、 论文提纲
前言
(一)、矩阵初等变换及应用
1、矩阵初等变换的基本概念
2、初等变换在方程组中的应用
3、初等变换在向量组中的应用
(二)、Householder变换及应用
1、Householder变换与Householder矩阵
2、Householder变换的保范性
3、Householder变换算法
4、Householder变换在参数估计中的应用
(三)、Givens变换及应用
1、反射与旋转
2、Givens旋转及快速Givens旋转
3、Kogbetliantz算法
4、Givens变换在图像旋转中的应用
四、预期的结果:
本论文是在前人研究的基础上就矩阵变换及其应用进行简要讨论,将矩阵变换分为初等矩阵变换、Householder变换、Givens旋转,并将矩阵变换在矩阵、方程组和向量组中的应用进行归纳,希望通过本论文的研究能巩固对矩阵变换知识的掌握,同时熟练运用矩阵变换解决矩阵、方程组和向量组中的繁琐问题,还能将矩阵变换应用于解决实际的问题。
五、参考文献
1.《矩阵理论及应用》 陈公宁著 科学出版社
2.《矩阵分析与应用 》 张贤达 著 清华大学出版社
3.《矩阵分析》 史荣昌 编著 北京理工大学出版社
4.《矩阵论》 戴华 编著科学出版社
5《高等代数》(第三版)王萼芳 石生明 修订 高等教育出版社
6.《矩阵分析》 RogerA.Horn CharlesR.Johnson 编著 机械工业出版社
六、论文写作进度安排
11月17日~12月24日 搜集材料,做好论文前期准备工作,确定论文题目
12月26日~12月30日 搜集、归纳、分析材料,撰写开题报告
12年1月3日交毕业设计开题报告
假期及下学期第1~2周 系统分析与设计,撰写毕业论文
2月~4月初 毕业设计 院毕业论文初检
4月下旬 修改完善论文初稿,完成论文二稿及论文英文摘要学院抽查英文摘要
5月15日前 完成毕业论文撰写工作
5月中旬 论文外审
5月25日~6月5日 毕业答辩
6月初 公开答辩
6月中旬上报学院毕业论文相关材料