我要投稿 投诉建议

初一物理的实验报告

时间:2024-07-16 14:58:32 其他报告 我要投稿
  • 相关推荐

初一物理的实验报告

  在不断进步的时代,报告的适用范围越来越广泛,我们在写报告的时候要注意逻辑的合理性。那么报告应该怎么写才合适呢?下面是小编精心整理的初一物理的实验报告 ,希望能够帮助到大家。

初一物理的实验报告

初一物理的实验报告 1

  一、实验目的

  1,了解LAN中常用的几种传输介质、连接器的性能及各自特点。

  2,学习双绞线、同轴电缆网线的制作和掌握网线制作工具,电缆测试仪的使用。

  二、实验任务

  1,掌握LAN中常用的几种传输介质、连接器的连接方法与实际使用。

  2,独立制作一根合格的双绞线或同轴电缆的网线。

  三、实验设备

  实验所需设备有5类双绞线,RJ-45头,细缆,BNC接头,T型头,端接器、同轴电缆、收发器、AUI电缆、双绞线、同轴细缆压线钳,电缆测试仪,剥线钳、剪刀等。

  四、相关基本知识

  1,电子电路,数字逻辑电路。

  2,微型计算机工作原理,计算机接口技术。

  3,计算机网络拓扑结构,网络传输介质等基础知识。

  五、实验内容与步骤

  (一)实验原理

  目前计算机网络的有线通信大多采用铜芯线或光纤作为传输介质。常用的`传输介质有同轴粗缆与细缆,无屏蔽双绞线(UTP)、光纤等。网络中计算机之间的信息交换,通过网络终端设备将要传输的信息转化成相关传输介质所需的电信号或光信号,然后通过传输介质、网络设备进行传输。不同的传输介质具有不同的电气特性、机械特性、和信息传输格式,因此,它们也就具有不同的传输方式、传输速率,传输距离等。在组建局域网时,要根据具体情况(如覆盖范围、应用对象、性能要求、资金情况等)来决定采用何种网络拓扑结构、传输介质及相关的网络连接设备等。

  双绞线:双绞线是由两根绝缘金属线互相缠绕而成,这样的一对线作为一条通信链路,由四对双绞线构成双绞线电缆。双绞线点到点的通信距离一般不超过100米。目前,计算机网络上用的双绞线有三类(最高传输率为10 Mbps)、五类线(最高传输率为10 0 Mbps)、超五类线和六类线(传输速率至少为250 Mbps)、七类线(传输速率至少为600 Mbps)。双绞线电缆的连接器一般为RJ-45,(二)实验步骤

  1,首先用压线钳的剪线刀口剪裁出计划需要使用到的双绞线长度。

  2,抽出外套层,可以利用压线钳的剪线刀口将线头剪齐,再将线头放到剥线专用的刀口,稍微用力握紧压线钳慢慢旋转,让刀口慢慢划开双绞线的保护胶皮,然后剥掉外套层。

  3,排序,根据实际需要按照标准将线排序。

  4,整理,排序后应尽量将线头拉直理平,然后用压线钳将多余的线头剪掉。

  5,插入水晶头,将排序后的双绞线线头插入部分插入到水晶头中,插入后用力压住双绞线,尽力的将双绞线头向水晶头中推,以保证线头充分的插入水晶头中。

  6,压线,经过上述步骤后,只要使用压线钳将线压紧即可。

  (三)回答思考题。

  1)双绞线、细缆、粗缆三种传输介质各有什么特点

  同轴线和双绞线的区别主要是网络拓扑不同,同轴电缆只能是总线型结构,而双绞线则是星型结构。三种介质传输的最大带宽不同,粗缆传输带宽最宽,其次,细缆,最宅的双绞线。不过双绞线抗干扰能力强,可靠性高,传输距离比细缆和粗缆长。

  2)A线序和B线序有何区别若不遵循上述标准,是否所做的网线不可用。

  两端的线序相同叫直通线,都遵循568B标准,不同类型设备之间连接使用直通线,如网卡到交换机,网卡到ADSL modem,交换机到路由器等;而一端为568B线序,一端为568A线序的为交叉线,即1-3、2-6调换,用于相同设备之间的连接,如两台电脑的网卡连接,交换机与交换机之间的连接,交换机与集线器连接等。

  不按上述标准,只要保持线序正确,就可以正常使用。

  热门报告:实验报告

  通常来讲,有付出就会有收获。每当我们的任务结束后,往往都需要我们撰写报告,写好报告对自己以后的工作有很大帮助。我们在写报告时要怎么样才能写好呢?下面是由小编为大家整理的“热门报告:实验报告”,供大家参考,希望能帮助到有需要的朋友。

  1、实验要求:

  应用全站仪对科技楼楼顶避雷针进行变形观测

  2,实验过程:

  首先认真理解前方交会原理,然后利用GPS做静态控制得出控制点坐标,将全站仪架在其中一个控制点A上,另一个控制点B架上反射棱镜,将全站仪望远镜瞄准反射棱镜定向,然后置零,转动照准部对准避雷针顶端C,记录角度,然后盘右观测,一站观测两个测回,得出夹角α将全站仪与反射棱镜互换位置,同样方法测得夹角β,根据已知A,B两点坐标可求得避雷针顶端的平面坐标,然后在另一已知点D上架全站仪,A点架上反射棱镜,以A点做后视定向,观测A,D两点间夹角,盘左盘右观测两个测回γ,同时观测竖角β,量取仪器高,根据观测数据计算进行比较检核。

  3,实验已知数据:

  A点坐标X 3525052,175

  Y 527483,758

  B点坐标X 3525047,348

  Y 527412,793

  D点坐标X 3524903,239

  Y 527259,558

  4,实验观测数据:

  α=76°22′05″,β=80°37′19″,γ=88°39′44″(检核角)

  竖角θ=37°24′03″

  5

  实验结果:

  C点坐标:X 3524875,2304

  Y 527453,3827

  Z 75,066

  检校误差3″

  6,实验心得:

  通过本次实验巩固了在变形监测课堂上所学的理论知识,极大的提高了我的动手操作能力,仪器操作还不是很熟练,以后应该多加练习,理论和实际还是有一定的差距。要有耐心,要学会等待,忍耐,有时候仪器不稳定,必须得等。

初一物理的实验报告 2

  器材:

  透明平底塑料桶(深度10cm左右,口径宜大些,便于操作)一只、底面基本平整的木块(如象棋子、积木、保温瓶塞等)一个、筷子一根、水一杯。

  制作小孔桶:

  取一铁扦在酒精灯上烧红,在塑料桶底面中央穿一小孔、孔径1cm左右,用砂纸将孔边磨平即成一小孔桶。

  步骤:

  (1)将木块有意揿入水中,松手后木块很快浮起。

  (2)将木块平整的一面朝下放入小孔桶中并遮住小孔,用筷子按住木块,向桶中倒水。移去筷子,可见木块不浮起。(这时小孔处有水向下滴,这是因为木块与桶的接触面之间不很密合)。

  (3)用手指堵住小孔,木块立即上浮。

  上述两例针对实际中物体的'表面不可能绝对平滑这一事实,巧妙地利用“小孔渗漏”使水不在物体下面存留,从而使物体失去液体的向上的压力,也就失去了浮力,结果本应浮在水面上的乒乓球和木块却被牢牢地钉在了水底,不能不令学生叹服。接着步骤(3)又魔术般地使浮力再现,更令学生情绪高涨,跃跃欲试。

  学生自己观察问题、解决问题。

初一物理的实验报告 3

  一、实验目的

  1,测定并绘制生长曲线、底物消耗曲线和产物形成曲线

  2,了解发酵过程中葡萄糖的利用、菌体生长和产物生成的相互关系

  3,初步学会菌体生长、底物消耗和产物生成有关发酵参数的求解

  二、实验仪器及试剂

  菌种:酿酒酵母

  仪器:锥形瓶(250ml)、移液管、pH计、生物传感仪、分析天平

  药品:酵母膏、胰蛋白胨、葡萄糖、磷酸氢二钠、磷酸二氢钠、苯甲酸钠、EDTA钠、氯化钠

  三、实验原理

  酵母菌是兼性厌氧型真菌,喜欢含糖的环境,有氧时将葡萄糖分解成CO和水,无氧时将葡萄糖分解成酒精和二氧化碳,同时都释放出能量

  生物传感器由生物识别元件和信号转换器组成,能够选择性地对样品中的待测物发出相应,通过生物识别系统和电化学或其他传感器把待测物质的浓度转为电信号,根据电信号的大小定量测出待测物质的浓度。生物传感器是应用生物活性材料(如酶、蛋白质、DNA、抗体、抗原、生物膜等)与物理或化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质在分子水平的快速、微量分析方法

  四、实验步骤

  1,种子培养基(YEPD,g/L):称取酵母膏10g、胰蛋白胨20g、葡萄糖20g,加蒸馏水溶解,调节pH 5,0左右,并定容至1000ml。

  2,发酵培养基(g/L):称取酵母膏10g,胰蛋白胨20g,葡萄糖100g加蒸馏水溶解,调节pH至5,0左右,定容至1000ml,分装10个锥形瓶(250ml)封口121℃,30min灭菌。

  3,种子培养:将活化好的种子培养液,用移液管移去10ml接种于灭菌YEPD液体培养基中,于30℃、120 r/min全温摇瓶柜中培养24 h左右,观察种子液的色泽、气味与形态等基本情况。

  4,发酵方法:将培养好的种子液按8-12%的接种比例,接种于发酵培养基中,置于30 ℃、120 r/min全温摇瓶柜中培养96 h。

  5,过程取样:发酵培养基接种发酵后,每隔8小时取样,移取45ml菌液至离心试管中3800r/min离心,上清液取出分析,菌泥放置烘箱烘干,分析菌体生物量、残余葡萄糖浓度与酒精生成量,并以此为基础数据计算参数

  6,生物量的测定:取等量的两份发酵液,一份由烘干法测得菌体干重(DCW),另一份稀释成一定的'浓度于630 nm下测定吸光值(OD值),得到标准曲线为DCW=3,87×OD(R=0,996)。再以相同方法测得样品的OD值,按标准曲线计算出菌体干重。

  7,还原糖的测定与乙醇的测定:使用生物传感仪测定糖类和酒精的含量

  五、数据分析

初一物理的实验报告 4

  实验题目:

  示波器的原理和使用

  实验目的:

  1,了解示波器的基本机构和工作原理,掌握使用示波器和信号发生器的基本方法。

  2,学会使用示波器观测电信号波形和电压副值以及频率。

  3,学会使用示波器观察李萨如图并测频率。

  实验原理:

  1,示波器都包括几个基本组成部分:

  示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路、电源等。

  2,李萨如图形的原理:

  如果示波器的X和Y输入时频率相同或成简单整数比的两个正弦电压,则荧光屏上将呈现特殊的光点轨迹,这种轨迹图称为李萨如图形。

  如果作一个限制光点x、y方向变化范围的假想方框,则图形与此框相切时,横边上的切点数nx与竖边上的切点数ny之比恰好等于Y与X输入的两正弦信号的频率之比,即fy:fx=nx:ny。

  实验仪器:

  示波器×1,信号发生器×2,信号线×2。

  实验内容:

  1,基础操作:

  了解示波器工作原理的基础上阅读所用机器的说明书,了解每个旋钮的作用。其中最主要也是经常使用的旋钮为横向和纵向两个。横向旋钮是控制扫描时间的旋钮,调节时表现为荧光屏上显示波形发生横向的压缩或展开;纵向旋钮是调节垂直放大电路的旋钮,调节时表现为荧光屏上显示波形发生纵向的展开或压缩,次旋钮为两个,分别控制示波器的两个输入信号。

  明确操作步骤及注意事项后,接通示波器电源开关。先找到扫描线并调至清晰。

  2,观测李萨如图形:

  向CH1、CH2分别输入两个信号源的正弦波,“扫描时间”的“粗调”旋钮置于“X-Y”方式(即使两路信号进行合成)。调出不同比值的李萨如图形来,画出草图,并分析图形的特点与两个信号频率之间的关系。绘出所观察到的各种频率比的李萨如图形。

  设fx=1000Hz为约定真值,依次求出另一信号发生器的输出频率fy,并与该信号发生器读数值f′y进行比较,一一求出它们的相对误差。

  实验数据:

  实验结果:

  误差分析:

  1,两台信号发生器不协调。

  2,桌面振动造成的影响。

  3,示波器上显示的荧光线较粗,取电压值时的荧光线间宽度不准,使电压值不准。

  4,取正弦周期时肉眼调节两荧光线间宽度不准,导致周期不准。

  5,机器系统存在系统误差。

  6,fy选取时上下跳动,可能取值不准。

  1,示波器工作原理

  示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。

  2,示波管

  阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。

  3,荧光屏

  现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。

  当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0,1s为中余辉,0,1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。

  由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。

  4,电子枪及聚焦

  电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的'正电位对阴极电子奔向荧光屏起加速作用。

  电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。

  5,偏转系统

  偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波形。图8,1中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。

  6,示波管的电源

  为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。

  7,示波器的基本组成

  从上一小节可以看出,只要控制X轴偏转板和Y轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时间的函数f(t),它随时间的变化而变化。因此,只要在示波管的X轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。

  示波器的基本组成框图如图2所示。它由示波管、Y轴系统、X轴系统、Z轴系统和电源等五部分组成。

  被测信号1,接到“Y"输入端,经Y轴衰减器适当衰减后送至Y1放大器(前置放大),推挽输出信号2和3。经延迟级延迟Г1时间,到Y2放大器。放大后产生足够大的信号4和5,加到示波管的Y轴偏转板上。为了在屏幕上显示出完整的稳定波形,将Y轴的被测信号3引入X轴系统的触发电路,在引入信号的正(或者负)极性的某一电平值产生触发脉冲6,启动锯齿波扫描电路(时基发生器),产生扫描电压7。由于从触发到启动扫描有一时间延迟Г2,为保证Y轴信号到达荧光屏之前X轴开始扫描,Y轴的延迟时间Г1应稍大于X轴的延迟时间Г2。扫描电压7经X轴放大器放大,产生推挽输出9和10,加到示波管的X轴偏转板上。z轴系统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。

  以上是示波器的基本工作原理。双踪显示则是利用电子开关将Y轴输入的两个不同的被测信号分别

  显示在荧光屏上。由于人眼的视觉暂留作用,当转换频率高到一定程度后,看到的是两个稳定的、清晰的信号波形。

  示波器中往往有一个精确稳定的方波信号发生器,供校验示波器用。

  8,示波器使用

  本节介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。

  9,荧光屏

  荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。

  10,示波管和电源系统

  1,电源(Power)

  示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。

  2,辉度(Intensity)

  旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。

  一般不应太亮,以保护荧光屏。

  3,聚焦(Focus)

  聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。

  4,标尺亮度(Illuminance)

  此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。

  11,垂直偏转因数和水平偏转因数

  1,垂直偏转因数选择(VOLTS/DIV)和微调

  在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。

  踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。

  每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是0,2V/DIV。

  在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。

  2,时基选择(TIME/DIV)和微调

  时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。

  “微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的时间值等于2μS×(1/10)=0,2μS

  示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。

  示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。

  12输入通道和输入耦合选择

  1,输入通道选择

  输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10"位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。

  2,输入耦合方式

  输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。

  13,触发

  第一节指出,被测信号从Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。

  1,触发源(Source)选择

  要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发信号由何处供给。通常有三种触发源:内触发(INT)、电源触发内触发使用被测信号作为触发信号,是经常使用的一种触发方式。由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。双踪示波器中通道1或者通道2都可以选作触发信号。

  电源触发使用交流电源频率信号作为触发信号。这种方法在测量与交流电源频率有关的信号时是有效的。特别在测量音频电路、闸流管的低电平交流噪音时更为有效。

  外触发使用外加信号作为触发信号,外加信号从外触发输入端输入。外触发信号与被测信号间应具有周期性的关系。由于被测信号没有用作触发信号,所以何时开始扫描与被测信号无关。

  正确选择触发信号对波形显示的稳定、清晰有很大关系。例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。

  2,触发耦合(Coupling)方式选择

  触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。这里介绍常用的几种。

  AC耦合又称电容耦合。它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。但是如果触发信号的频率小于10Hz,会造成触发困难。

  直流耦合(DC)不隔断触发信号的直流分量。当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。

  低频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电路,触发信号的高频成分被抑制。此外还有用于电视维修的电视同步(TV)触发。这些触发耦合方式各有自己的适用范围,需在使用中去体会。

  3,触发电平(Level)和触发极性(Slope)

  触发电平调节又叫同步调节,它使得扫描与被测信号同步。电平调节旋钮调节触发信号的触发电平。一旦触发信号超过由旋钮设定的触发电平时,扫描即被触发。顺时针旋转旋钮,触发电平上升;逆时针旋转旋钮,触发电平下降。当电平旋钮调到电平锁定位置时,触发电平自动保持在触发信号的幅度之内,不需要电平调节就能产生一个稳定的触发。当信号波形复杂,用电平旋钮不能稳定触发时,用释抑(Hold Off)旋钮调节波形的释抑时间(扫描暂停时间),能使扫描与波形稳定同步。

  极性开关用来选择触发信号的极性。拨在“+”位置上时,在信号增加的方向上,当触发信号超过触发电平时就产生触发。拨在“-”位置上时,在信号减少的方向上,当触发信号超过触发电平时就产生触发。触发极性和触发电平共同决定触发信号的触发点。

  14,扫描方式(SweepMode)

  扫描有自动(Auto)、常态(Norm)和单次(Single)三种扫描方式。

  自动:当无触发信号输入,或者触发信号频率低于50Hz时,扫描为自激方式。

  常态:当无触发信号输入时,扫描处于准备状态,没有扫描线。触发信号到来后,触发扫描。

  单次:单次按钮类似复位开关。单次扫描方式下,按单次按钮时扫描电路复位,此时准备好(Ready)灯亮。触发信号到来后产生一次扫描。单次扫描结束后,准备灯灭。单次扫描用于观测非周期信号或者单次瞬变信号,往往需要对波形拍照。

  上面扼要介绍了示波器的基本功能及操作。示波器还有一些更复杂的功能,如延迟扫描、触发延迟、X-Y工作方式等,这里就不介绍了。示波器入门操作是容易的,真正熟练则要在应用中掌握。值得指出的是,示波器虽然功能较多,但许多情况下用其他仪器、仪表更好。例如,在数字电路实验中,判断一个脉宽较窄的单脉冲是否发生时,用逻辑笔就简单的多;测量单脉冲脉宽时,用逻辑分析仪更好一些。

初一物理的实验报告 5

  “浮力消失”了

  做下面的小试验。

  器材

  找一个底面很平的容器,让一个蜡烛头紧贴在容器底部,再往容器里倒水,蜡烛头并不会浮起来;轻轻地把蜡烛头拨倒,它立刻就会浮起来。

  可见,当物体与容器底部紧密接触时,两个接触面间就没有液体渗入,物体的下表面不再受液体对它向上的压强,液体对它就失去了向上托的力,浮力当然随之消失了。

  现在,你能提出为潜艇摆脱困境的措施了吗?

  “浮力是怎样产生的”,学生对“浮力就是液体对物体向上的压力和向下的压力之差”这一结论是可以理解的,但却难以相信,因此做好浮力消失的'实验是攻克这一难点的关键,下面介绍两种简便方法。

  [方法1]

  器材:大小适当的玻璃漏斗(化学实验室有)一个、乒乓球一只、红水一杯。

  步骤:

  (1)将乒乓球有意揿入水中,松手后乒乓球很快浮起。

  (2)用手托住漏斗(喇叭口朝上,漏斗柄夹在中指和无名指之间),将乒乓球放入其中,以大拇指按住乒乓球,将水倒入漏斗中,松开拇指,可见乒乓球不浮起,(这时漏斗柄下口有水向下流,这是因为乒乓球与漏斗间不太密合)。

  (3)用手指堵住出水口,可见漏斗柄中水面逐渐上升,当水面升至乒乓球时,乒乓球迅即上浮。(若漏斗柄下口出水过快,可在乒乓球与漏斗接触处垫一圈棉花,这样可以从容地观察水在漏斗柄中上升的情况。)

  [方法2]

  器材:透明平底塑料桶(深度10cm左右,口径宜大些,便于操作)一只、底面基本平整的木块(如象棋子、积木、保温瓶塞等)一个、筷子一根、水一杯。

  制作小孔桶:取一铁扦在酒精灯上烧红,在塑料桶底面中央穿一小孔、孔径1cm左右,用砂纸将孔边磨平即成一小孔桶。

  步骤:

  (1)将木块有意揿入水中,松手后木块很快浮起。

  (2)将木块平整的一面朝下放入小孔桶中并遮住小孔,用筷子按住木块,向桶中倒水。移去筷子,可见木块不浮起。(这时小孔处有水向下滴,这是因为木块与桶的接触面之间不很密合)。

  (3)用手指堵住小孔,木块立即上浮。

  上述两例针对实际中物体的表面不可能绝对平滑这一事实,巧妙地利用“小孔渗漏”使水不在物体下面存留,从而使物体失去液体的向上的压力,也就失去了浮力,结果本应浮在水面上的乒乓球和木块却被牢牢地钉在了水底,不能不令学生叹服。接着步骤(3)又魔术般地使浮力再现,更令学生情绪高涨,跃跃欲试。

  学生自己观察问题、解决问题。

【初一物理的实验报告】相关文章:

物理实验报告09-28

物理实验报告通用03-06

物理实验报告心得01-21

初中物理实验报告10-29

物理实验报告[荐]12-07

初中物理实验报告02-23

大学物理实验报告05-13

有关物理实验报告范文01-17

大学物理实验报告03-03